
 

 - 1 -  

Safety Factor and Inverse Reliability Measures 
 

Palaniappan Ramu*(palramu@ufl.edu), Xueyong Qu** (xueyong@mae.ufl.edu), and 
Raphael T. Haftka †(haftka@ufl.edu) 

Department of Mechanical and Aerospace Engineering 
University of Florida, P.O.Box 116250, Gainesville , FL 32611 

 
Abstract: 
 Probability performance measure and probability sufficiency factor are two 
inverse reliability measures that have gained importance as alternate measures of 
safety.  Inverse measures have several advantages, including improving accuracy in 
response surface approximations, computational efficiency, and allowing easy 
estimates of resources needed for achieving the target safety levels. This paper 
establishes the relationship between the two inverse measures, and describes their 
advantages compared to the direct measures of probability and reliability index. 
Methods to compute the inverse measures are also described. Reliability based design 
optimization with inverse measure is demonstrated with a beam design example.  
 
1 
Introduction 

Traditionally structural safety was defined in terms of safety factor to 
compensate for uncertainties in loading and material properties and for inaccuracies in 
geometry and theory. Safety factors permit design using inexpensive deterministic 
optimization. In addition, it is relatively easy to estimate the change in structural 
weight needed to satisfy a target safety factor requirement. 

 
Probabilistic approaches provide more accurate measures of uncertainty 

incorporating available uncertainty data. Structural safety is measured in terms of 
probability of failure to satisfy a performance criterion. The probability of failure is 
often expressed in terms of reliability index, which is the ratio of the mean to the 
standard deviation of the safety margin distribution. 
 

Optimization for safety using probabilistic approaches called Reliability Based 
Design Optimization (RBDO) is computationally expensive. In addition, the 
difference between the probability of failure or the reliability index and their target 
values does not provide the designer with easy estimates of the necessary resources to 
achieve these target values.  Finally, when the probability of failure is low, 
probabilities calculated through Monte Carlo Simulation (MCS) are computed as 
zero. This zero probability of failure does not provide useful gradient information for 
optimization.  

 
One safety measure that combines the advantages of safety factors and 

probability of failure was proposed by Birger (1970). It is an inverse measure that 
quantifies the level of safety in terms of the change in structural response needed to 
meet the target probability of failure. More recently, several researchers developed 
inverse reliability methods (Tu et al., 1999, Lee et al., 2002, Qu and Haftka., 2003) 
that are closely related to the Birger measure. 
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Tu et al. (1999) developed a method called Probabilistic Measure Approach 
(PMA). This method involves computing an inverse measure they call the probability 
performance measure (PPM). They showed that this method allows faster RBDO 
compared to the traditional use of the Reliability Index Approach (RIA).  Qu and 
Haftka (2003) developed a similar inverse measure, which they called the probability 
sufficiency factor (PSF) for use with response surface approximation (RSA) and 
Monte Carlo Simulation (MCS). They showed that PSF leads to more accurate RSA, 
more effective RBDO and permits estimating the resources needed to meet the target 
reliability.   
 
  The objectives of this work are to establish the relationship between the PSF 
and PPM, to discuss methods available for calculating these inverse measures, and to 
explore the advantages of using inverse measures. Section 2 describes inverse 
reliability measures. Calculation of inverse measures by MCS is discussed in section 
3. Section 4 describes calculation of inverse measures using moment-based 
techniques, followed by discussion of using inverse measures in RBDO in section 5. 
Section 6 demonstrates the concepts with the help of a beam design example, and 
section 7 provides concluding remarks. 
 
2 
Inverse Reliability Measures 

The safety factor, Q , is defined as the ratio of the capacity of the system 

cg (e.g., strength allowable) to the response rg . To account for uncertainties, the 
design safety factor is greater than one (e.g., 1.5 in aeronautical applications). To 
address the probabilistic interpretation of safety factor, Birger (1970) proposed to 
consider the probability distribution function QF of the safety factor:  

q)
g
g

Prob((q)F
r

c
Q ≤=    (1) 

 
Note that unlike the deterministic safety factor, which is normally calculated 

for the mean value of the random variables, 
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in (1), is a random function.  Given a 

target probability, etftP arg , Birger suggested calculating a safety factor *q (which we 
call here the Birger safety factor) by solving  
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That is, the Birger safety factor is found by setting the cumulative density function 
(CDF) of the safety factor equal to the target probability and solving for the safety 
factor. This is illustrated in Figure 1.  
 

Qu and Haftka (2003) developed a similar measure to the Birger safety factor, 
calling it first the probabilistic safety factor and then the probabilistic sufficiency 
factor (PSF). They found the reference to Birger’s work in Elishakoff (2001) excellent 
review of safety factors and their relations to probabilities. It is desirable to avoid the 
term safety factor for this entity because the common use of the term safety factor is 
mostly deterministic and independent of the target safety level. Therefore, while 
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noting the identity of the Birger safety factor and the probabilistic sufficiency factor, 
we will use the latter term in the following. 
 

Failure happens when the actual safety factor Q  is less than 1.The basic design 
condition that the probability of failure should be smaller than the target probability 
for a safe design may then be written as: 
 

etftQf PFQProbP arg)1()1( ≤=≤=    (3)  
Using inverse transformation (3) can be expressed as:  
 
     *)(1 1 qPF ftargetQ =≤ −    (4) 
  
The use of the inverse transformation accounts for calling the probability sufficiency 
factor an inverse measure.  
 

The PSF concept is illustrated in Figure 1. ftargetP , the design requirement is 
known and the corresponding area in the CDF of the safety factor is the shaded region 
in Figure 1. The upper bound of the abscissa *q is the value of PSF. The region to the  

     

     
Figure 1: Schematic distribution of safety factor Q . PSF is the value of the safety  

factor corresponding to the target probability of failure. 
 

left of the vertical line 1=Q  represent failure. To satisfy the basic design condition, 
*q  should be larger than or equal to 1. In order to achieve this, it is possible to either 

increase cg  or decrease rg . The PSF, *q  represents the factor that has to multiply the 
response rg or divide the capacity cg so that the safety factor be raised to 1. 
 

For example, a PSF of 0.8 means that rg has to be multiplied by 0.8 or cg be 
divided by 0.8 so that the safety factor ratio increases to one. In other words, it means 
that rg has to be decreased by 20 %( 1-0.8) or cg has to be increased by 25% ((1/0.8)-
1) in order to achieve the target failure probability. 

 
PSF is useful in estimating the resources to achieve the required target 

probability of failure. For example, in a stress dominated design, if the target 
probability of failure is 10-5 and a current design yields a probability of failure of 10-3, 
one cannot easily estimate the change in the weight required to achieve the target 
failure probability. Instead, if the failure probability corresponds to a PSF of 0.8, this 
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supplies the designer with an estimate that the weight of the overstressed component 
has to be increased by about 20% to meet the target. 
 

In probabilistic approaches, instead of safety factor it is customary to use a 
performance function or a limit state function to define failure (or success) of a 
system. For example, the limit state function can be expressed as: 
       (x)g(x)gG(x) rc −=     (5a) 
 
In terms of safety factor, limit state function is: 
     1-Q(x)G =′                (5b) 
 
Failure happens when )(xG  is less than zero, so the probability of failure fP  is:  
     )Prob(G(x)Pf 0≤=     (6) 
 
Using (6), (3) can be rewritten as: 
    ftargetGf PFxGobPrP ≤=≤= )0()0)((   (7) 
 
Inverse transformation allows us to write (7) as, 
     *)(0 1 gPF ftargetG =≤ −    (8) 
 
Here, *g is the Probabilistic Performance Measure (PPM, Tu et al, 1999). PPM can 
be defined as the solution to (7). Figure 2 illustrates the concept of PPM.  

 

          
Figure 2: Schematic distribution of limit state function. PPM is the value of the limit 

state function corresponding to the target probability of failure. 
 
The shaded area corresponds to target failure probability. The area to the left of the 
line 0=G  indicates failure. *g  is the factor that has to be subtracted from (5a) in 
order to make the vertical line at *g move to or further to the right of 0=G  line and 
hence facilitating a safe design. 

 
For example, a PPM of -0.8 means that the design is not safe enough, and -0.8 

has to be subtracted from )(xG in order to achieve the target probability of failure. A 
PPM value of 0.3 means that it is an over qualified design and we have a safety 
margin of 0.3 to reduce the cost function while meeting the target failure probability. 
 

Considering *g  as the solution for (7), it can be rewritten in terms of safety 
factor as: 
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   ftargetPg*)1Q(x)GProb( =≤−=′   (9) 
Comparing (4), (8) and (9), we can observe a relationship between *q and *g . PSF 
( *q ) is related to PPM ( *g ) as: 

*q = *g +1    (10) 
 
This simple relationship between PPM and PSF shows that they are closely related. 
Both are inverse measures, and the difference is only in the way the limit state 
function is written. If the limit state function is expressed as the difference between 
capacity and response as in (5a), failure probability formulation allows us to define 
PPM. Alternately, if the limit state function is expressed in terms of safety factor as in 
(5b), corresponding failure probability formulation allows us to define PSF.  
 
3 
Inverse Measure Calculation by MCS  
 Conceptually, the simplest approach to evaluate PSF or PPM is by Monte 
Carlo simulation (MCS), which involves generation of random sample points 
according to the statistical distribution of the variables. The sample points which 
violate the performance criteria are considered failed. Figure 3 illustrates the concept  

 

Figure 3: Illustration of the calculation of PSF with Monte Carlo Simulation  
for linear performance function. 

 
of MCS. A two variable problem with linear limit state function is considered. The 
straight lines are the contour lines of the limit state function and   sample points 
generated by MCS are represented by small circles, with the numbered circles 
representing failed samples. The limit value of the limit state function divides the 
distribution space to safe region and failure region. The dashed lines represent failed 
conditions and the continuous lines represent safe conditions. 

  
The failure probability is estimated as the ratio of number of samples failed to 

the total number of samples 
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N

xGnum
Pf

)0)̂(( ≤
≈    (11) 

where, x̂  is the randomly chosen sample point, )0)̂(( ≤xGnum  denotes the number 
of trials  for which )0)̂(( ≤xG and N is the total number of trials. For example, in Fig. 
3, the number of sample points that fall in the failure region above the 0=G  curve is 
12. Considering that the total number of samples is 100,000 the  failure probability is 
estimated at 1.2*10-4. For a fixed number of samples, the accuracy of MCS 
deteriorates with the decrease in failure probability. For example, with only 12 failure 
points out of the 100,000 samples, the accuracy of the estimate of the probability is 
not high. In fact, the standard deviation of the estimate is 0.35x10-5, more than a 
quarter of the estimate. When the probability of failure is smaller than one over the 
number of sample points, its calculated value by MCS is likely to be zero. 

 
PSF is estimated by MCS as the nth smallest safety factor among the N 

sampled safety factors. For example, considering the example illustrated in Figure 3, 
if the target failure probability is 10-4, to satisfy the target probability of failure, no 
more than 10 samples out of the 100,000 should fail. With the given ftargetP , 10 
samples are allowed to fail, so the focus is on the two extra samples that failed.  PSF 
is equal to the value of the highest safety factor among the n (in this case, it is 10) 
lowest safety factors. The numbered small circles are the sample points that failed. Of 
these, three sample points with the highest safety factor are marked with their 
corresponding limit state curves. The tenth smallest safety factor corresponds to the 
sample numbered 8 and has a limit state value of -0.4, which is the value of PPM. 
Mathematically expressed as:  

    ))((min
1

i

N

i

th
n xQnQ

=
=     (12) 

where, nth min is the nth  smallest safety factor. So, the calculation of PSF requires 
only sorting the lowest safety factors in the MCS sample.  
 

It is observed from Figure 1 and Figure 3 that the probability of failure 
changes by several orders of magnitude but the PSF varies by less than one order of 
magnitude. The accuracy of PSF is maintained in regions where the target failure 
probability is very low.   

 
For complex problems, response surface approximations can be used to reduce 

the computational cost. The noisy response produced by MCS can be filtered out by 
fitting design response surface approximations to probability of failure. Accurate 
values of probability of failure requires higher order design response surface. It is 
difficult to construct highly accurate design response surface because of the huge 
variation of failure probability. To overcome these difficulties, Qu and Haftka (2003) 
discusses the usage of PSF to improve the accuracy of design response surface. It is 
shown that design response surface based on PSF has higher accuracy and accelerates 
the convergence of RBDO. Since PSF exhibits very less variation when compared to 

fP and reliability index, it is easier to approximate PSF rather than reliability index 
or fP .  
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4 
Inverse Measure Calculation by Moment Based Methods  

Moment based methods provide for less expensive calculation of the 
probability of failure compared to MCS, though they are limited to single failure 
mode. These methods require a search for the most probable point (MPP) on the 
failure surface in the standard normal space. First Order Reliability Method (FORM) 
is the most widely used moment based technique. FORM is based on the idea of linear 
approximation of the limit state function and is accurate as long as the curvature of 
the limit state function is not too high. Second Order Reliability Method (SORM) 
approximates the effect of the curvature of the limit state function. All the random 
variables are to be transformed to the standard normal variables with zero mean and 
unit variance. 

 
When the limit state has a significant curvature, linear approximation for the 

limit state becomes less accurate. Methods that deal with non- linearity of the limit 
state function are termed as ‘second order’ methods. The second order methods 
approximate the limit state function by second order Taylor series expansion.  
 

Moment based methods are employed to calculate reliability index, which is 
denoted by β   and related to probability of failure as: 

    )( β−Φ=fP     (13) 
where Φ  is the standard normal cumulative distribution function. Respective target 
values of β  and failure probability are also related in the same manner. β  can be 
calculated using standard reliability analysis. In the standard normal space, the point 
on the first order limit state function at which the distance from the origin is minimum 
is the MPP and its distance from the origin is the reliability index.  

 
Figure 4 illustrates the concept of reliability index and MPP search for a two 

variable case in the standard normal space. In reliability analysis, concerns are first  

 
 
 
focused on the 0)( =uG curve. Next, among the various β  values possible (denoted 
by 1β , 2β , 3β ) the minimum β  is sought.  The corresponding point is the MPP. This 
process can be mathematically expressed as: 

Figure 4: Reliability analysis and MPP 
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   Minimize uuT=β  
     Subject to: 0)( =uG    (14) 

 
Inverse reliability measures can also be computed through moment based methods. 
Figure 5 illustrates the concept of inverse reliability analysis and MPP search. The 
circles represent the β curves with the target β curve represented by dashed circle.  

 
 

     
 
Here, among the different values of limit state functions that pass through the ett argβ  
curve, the one with minimum value is sought. The value of this minimal limit state 
function is the PPM. The point on the target circle with the minimal limit state 
function is searched. In this case, the value of the minimal limit state function or the 
PPM is -0.2. This process can be  expressed as: 
 

Minimize )(uG  

Subjected to: ett
T uuu argβ==   (15) 

 
 Reliability ana lysis and inverse reliability analysis search for different MPP. 
In reliability analysis the MPP is on the 0)( =uG failure surface. In inverse reliability 
analysis, the MPP search is the ett argβ curve.  
 
 
5 
RBDO with Inverse Measures: 

Generally, RBDO problems are formulated as: 
 
   Minimize: Cost function (design variables) 

    Subject to: probabilistic constraint  (16) 
 

Figure 5: Inverse reliability analysis and MPP for target probability 
  of failure of 0.00135 ( β =3). 
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The probabilistic constraint can be prescribed by several methods like the Reliability 
Index Approach (RIA), the Performance Measure Approach (PMA), the Probability 
Sufficiency Factor approach (PSF), see. Table1.  
 
 

 
To date, most researchers have used RIA to prescribe the probabilistic 

constraint. The inverse reliability measures led to the usage of PMA (Tu et al. 1999) 
and PSF (Qu and Haftka, 2003).  RIA is efficient in solving violated probabilistic 
constraints but yields singularity in some cases.  Whereas, PMA is very efficient for 
inactive constraints and the convergence rate is higher compared to RIA, hence 
making it a computationally attractive method.  

 
 In RIA, β  can be computed as the product of reliability analysis as discussed 

in the previous section. In PMA, PPM can be computed through inverse reliability 
analysis. Using (11) PSF can be computed from PPM, for PSF approach. 

 
 
 
6 
Beam Design Example: 
 

The cantilever beam shown in Figure 6 is taken from Wu et al. (2001). The 
objective of the design is to minimize the weight or equivalently the cross sectional 
area: wtA =  subject to two reliability constraints, which require the safety indices for 
strength and deflection constraints to be larger than three. The first two failure modes 
are expressed as: 

Yielding:   





 +−=−= X

tw
Y

wt
RRg s 22

600600
σ     (17) 

Tip Displacement:  
















+






−=−=

2

2

2

2

34
w
X

t
Y

Ewt
L

DDDg OOd    (18) 

 
where R is the yield strength, X and Y are the horizontal and vertical loads and w and  
 

 
 
 
 
 

 
 
 

  Method RIA PMA PSF 
Probabilistic Constraint ett argββ ≥  0* ≥g  1* ≥q  

Quantity to be computed Reliability Index ( β ) PPM ( *g ) PSF ( *q ) 

Table1: Different approaches to prescribe probabilistic constraint 

t X 

L=100” Y 

Figure 6: Cantilever beam subjected to horizontal and vertical random loads 
w 
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t are the design parameters. L is the length and E is the elastic modulus. R, X, Y and E 
are random in nature and are defined in table 2. 
 
 

Random 
Variables 

X Y R E 

Distribution Normal 
(500,100)lb 

Normal  
(1000,100)lb 

Normal  
(40000,2000) psi 

Normal  
(29E6,1.45E6) psi 

 
 

 The relation between the stresses, displacement and weight for this problem is 
presented to demonstrate the utility of PSF in estimating the required resources to 
achieve a safe design. Considering a design with a PSF of *q  which is lesser than one 
with the dimensions of 000 twA = , the structure can be made safer by scaling both w  
and t  by a factor c. This will change the stress and displacement expressed in (17) and 
(18) by a factor of c3 and the area by a factor of c2. Since PSF is inversely 
proportional to the most critical stress and displacement, the relation between PSF and 
area can be expressed as: 

     PSF= *q  
5.1

0








A
A

    (19) 

(19) indicates that a one percent increase in area will increase the PSF by 1.5 percent. 
Thus, for example, considering a design with a PSF of 0.97, the safety factor 
deficiency is 3% and the structure can be made safer with a weight increase of less 
than two percent.   
 

The design with strength reliability constraint is solved first followed by 
design for system reliability constraint. The results for the strength constraint are 
presented in Table 3. The yield strength case has a linear limit state function and 
FORM gives reasonably accurate results for this case. The MCS is performed with 
100,000 samples. The standard deviation in the failure probability calculated by MCS 
can be estimated as: 

M
PP ff

p

)1( −
=σ     (20) 

In this case, the failure probability of 0.0013 calculated from 100,000 samples has a 
standard deviation of 1.1394E-4.  
 
 
 
Minimize objective function A such that β >=3 

Inverse Reliability Analysis Method Reliability 
Analysis 
FORM 

FORM MCS 
(Qu and Haftka.,2003) 

Exact Optimum 
(Wu et al, 2001) 

w   2.4460 2.4460 2.4526 2.4484 Optima 
t  3.8922 3.8920 3.8840 3.8884 

Objective Function 9.5202 9.5202 9.5367 9.5204 
Safety Index 3.00 3.00 3.0162 3.00 

Failure Probability 0.00135 0.00135 0.0013 0.00135 
 

Table 2. Random variables 

Table 3. Comparison of optimum design for strength constraint 
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In an attempt to verify the relation in (10) numerically, inverse reliability analysis is 
conducted by adapting FORM for the optimal values of design variables obtained 
from inverse reliability analysis using MCS. The results are presented in table 4.  

 
    
 
   Inverse Reliability Analysis with w = 2.4526 and t =3.8840 

Method FORM MCS(10E7 samples) 
Failure Probability 0.001238 0.001241 
Inverse Measure PPM: 0.00258 PSF: 1.002619 

 
It is observed from table 4 that the relationship between the two inverse measures 
expressed in (10) is numerically verified.  The results of inverse reliability analysis for 
reliability design with system reliability constraint by MCS with 100,000 samples are 
presented in table 5. The allowable deflection is chosen to be 2.5” in order to have 
competing constraints (Wu et al., 2001). 
 
    
 
Minimize objective function A such that β >=3  

Optima Objective 
Function 

Failure 
Probability 

Safety Index PSF 

w =2.6881, t =3.500 9.4084 0.00314 2.7328 0.9733 
  
In this case, the safety factor deficiency is 2.67% and the structure can be made safe 
by scaling the area by a factor of 1.0182 according to (19) and the design variables w  
and t  by 1.0091 (i.e., 1.0182 0.5). Hence the final scaled design has dimensions of  
w = 2.7123 and t =3.5315. The failure probability of the scaled design is 0.001302 
with a PSF of 1.0011 evaluated by MCS with 1,000,000 samples. 
 
 
 
7 
Concluding Remarks 
 
 The relationship between two inverse safety measures, PPM and PSF is 
established. The computation of inverse measure by Monte Carlo simulation and 
moment based techniques were discussed. Usage of inverse measures in reliability 
based design optimization (RBDO) accelerates convergence. They can be employed 
to increase the accuracy of design response surface. The accuracy of inverse measures 
are maintained even when the failure probability is very low. Moreover, inverse 
measures can be employed to estimate the additional cost change to achieve the target 
reliability. These features of inverse measure make it a valuable resource in RBDO. A 
simple beam example was used to demonstrate some of the concepts. The proposed 
paper will have additional comparisons, including the use of second order reliability 
method (SORM). 
 
    
  
 

Table 4. Comparison of inverse measures 

Table 5. Design for System Reliability by MCS 
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