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Safety of a Hybrid Closed-Loop Insulin Delivery
System in Patients With Type 1 Diabetes
Closed-loop artificial pancreas technology uses a control al-
gorithm to automatically adjust insulin delivery based on sub-
cutaneous sensor data to improve diabetes management. Cur-
rently available systems stop insulin in response to existing1

or predicted2 low sensor glucose values, whereas hybrid closed-
loop systems combine user-delivered premeal boluses with au-
tomatic interprandial insulin delivery.3 This study investi-
gated the safety of a hybrid closed-loop system in patients with
type 1 diabetes.

Methods | Patients aged 14 to 75 years with type 1 diabetes for at
least 2 years, glycated hemoglobin (HbA1c) less than 10%, and
more than 6 months of insulin pump use were recruited from
10 centers (9 in the United States, 1 in Israel) between June 2,
2015, and November 11, 2015. This before and after study had a
2-week run-in period (baseline) for patients to learn the de-
vices without the automated features followed by a 3-month
study period with the initial 6 days used to collect insulin and
sensor glucose data for the hybrid closed-loop algorithm. In the
study period, there was a 6-day hotel stay during which 1 day
was used for frequent sampling of venous blood glucose to verify
the accuracy of the system. The last patient visit was March 7,
2016. Two central and 4 local institutional review boards ap-
proved the study. Written informed consent was obtained from
adults and parents, and written assent from minors.

The system included investigational continuous glucose
monitoring sensors with transmitters, insulin pumps display-
ing real-time glucose data, a proprietary algorithm, and blood
glucose meters.4 Patients were required to periodically cali-
brate sensors and enter carbohydrate estimates for meal bo-
luses. Every midnight, multiple parameters were automati-
cally adjusted by the algorithm.

Safety end points obtained during the run-in and study pe-
riods (including the hotel stay) were the incidence of severe
hypoglycemia and diabetic ketoacidosis, serious adverse
events, and device-related serious and unanticipated ad-
verse events. Prespecified descriptive end points included
time in open vs closed-loop systems; the percentage of sen-
sor glucose values below, within, and above target range
(71-180 mg/dL), including at night time; changes in HbA1c, in-
sulin requirements and body weight; and measures of glyce-
mic variability. End points were collected during both peri-
ods and analyzed with SAS (SAS Institute), version 9.4.

Results | Of the 124 participants (mean age, 37.8 years [SD, 16.5];
men, 44.4%), mean diabetes duration was 21.7 years, mean
total daily insulin dose was 47.5 U/d (SD, 22.7), and mean HbA1c

was 7.4% (SD, 0.9). Over 12 389 patient-days, no episodes of

severe hypoglycemia or ketoacidosis were observed. There
were 28 device-related adverse events (Table 1) that were re-
solved at home. There were 4 serious adverse events (appen-
dicitis, bacterial arthritis, worsening rheumatoid arthritis, Clos-
tridium difficile diarrhea) and 117 adverse events not related
to the system, including 7 episodes of severe hyperglycemia
due to intercurrent illness or other nonsystem causes.

The system was in closed-loop mode for a median of
87.2% of the study period (interquartile range, 75.0%-
91.7%). Glycated hemoglobin levels changed from 7.4% (SD,
0.9) at baseline to 6.9% (SD, 0.6) at study end (Table 2).
From baseline to the end of the study, daily dose of insulin
changed from 47.5 U/d to 50.9 U/d, and weight changed
from 76.9 kg to 77.6 kg. The percentage of sensor glucose
values within the target range changed from 66.7% at base-
line to 72.2% at study end. The percentage of sensor glucose
values below and above the target and glycemic variability
are also shown in Table 2. Sensor and reference glucose val-
ues collected during the hotel stays were in good agree-
ment, with an overall mean absolute relative difference of
10.3% (SD, 9.0).

Discussion | To our knowledge, this is the largest outpatient
study to date5,6 and it demonstrated that hybrid closed-loop
automated insulin delivery was associated with few serious
or device-related adverse events in patients with type 1 dia-
betes. Limitations include lack of a control group, restriction
to relatively healthy and well-controlled patients, the rela-
tively short duration, and an imbalance between the length
of the study periods. Differences in HbA1c levels may be
attributable to participation in the study. A similar study in

Table 1. Device-Related Adverse Events Among Patients Using Hybrid
Closed-Loop Insulin Systemsa

Adverse Event

No. of Events

Run-in Periodb Study Periodb

Total 8 20

Skin irritation 3 1

Hyperglycemia 0 6

Rash 0 1

Severe hyperglycemiac

Due to infusion set 5 6

Due to software or hardware issues 0 5

Due to sensor issues 0 1

a A data and safety monitoring board was used to adjudicate all serious adverse
events and severe hyperglycemia events. A serious adverse event was defined
as an event leading to death or serious deterioration in health.

b Run-in period was 2 weeks and study period was 12 weeks.
c Glucose greater than 300 mg/dL (to convert glucose to mmol/L, multiply by

0.0555) and serum ketones greater than 0.6 mmol/L or symptoms of nausea,
vomiting, or abdominal pain.
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children (NCT02660827) is under way. Longer-term registry data
and randomized studies are needed to further characterize the
safety and efficacy of the hybrid closed-loop system.
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Table 2. Glucose Control, Insulin Usage, and Weight Among Patients
Using Hybrid Closed-Loop Systems

Parameter Run-in Period Study Period
Sensor glucose,
mean (SD) [median],
mg/dL

150.2 (22.7) [150.1] 150.8 (13.7) [149.9]

Percentage of time
with glucose level in
range, mean (SD);
median (IQR)

Sensor glucose
values

>300 mg/dL 2.3 (4.2);
1.3 (0.2-2.6)

1.7 (1.9);
0.9 (0.5-2.1)

>180 mg/dL 27.4 (13.7);
26.7 (16.0-37.2)

24.5 (9.2);
24.1 (17.3-29.8)

71-180 mg/dL 66.7 (12.2);
67.8 (59.0-75.1)

72.2 (8.8);
73.4 (67.7-78.4)

≤70 mg/dL 5.9 (4.1);
5.2 (3.0-7.6)

3.3 (2.0);
2.9 (1.7-4.3)

≤50 mg/dL 1.0 (1.1);
0.6 (0.2-1.3)

0.6 (0.6);
0.4 (0.2-0.8)

Sensor glucose
values at night time
onlya

>180 mg/dL 26.8 (15.2);
26.4 (15.3-35.8)

21.6 (9.9);
20.6 (13.6-28.5)

71-180 mg/dL 66.8 (14.0);
67.0 (57.6-75.2)

75.3 (9.8);
76.4 (69.0-83.1)

≤70 mg/dL 6.4 (5.3);
5.4 (2.3-8.5)

3.1 (2.2);
2.6 (1.7-4.2)

Within-day SD of
glucose, mean (SD);
median (IQR), mg/dLb

50.1 (9.9);
48.9 (43.7-56.2)

46.7 (7.3);
45.6 (41.7-50.4)

Within-day coefficient
of variation of glucose,
mean (SD); median
(IQR), %b

33.5 (4.3);
33.1 (30.3-36.4)

30.8 (3.3);
30.7 (28.2-33.0)

Glycated hemoglobin,
mean (SD) [median], %

7.4 (0.9) [7.3] 6.9 (0.6) [6.8]

Total daily dose of
insulin, mean (SD)
[median], U

47.5 (22.7) [43.9] 50.9 (26.7) [44.1]

Weight, mean (SD)
[median], kg

76.9 (17.9) [73.5] 77.6 (16.1) [74.7]

Abbreviations: IQR, interquartile range.

SI conversion factor: To convert glucose to mmol/L, multiply by 0.0555.
a Night time was defined as 10:00 PM to 7:00 AM.
b Measures of glycemic variability.
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