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Abstract. The interplay of random phenomena and continuous real-time con-
trol deserves increased attention for instance in wireless sensing and control
applications. Safety verification for such systems thus needs to consider prob-
abilistic variations of systems with hybrid dynamics. In safety verification of
classical hybrid systems we are interested in whether a certain set of unsafe sys-
tem states can be reached from a set of initial states. In the probabilistic setting,
we may ask instead whether the probability of reaching unsafe states is below
some given threshold. In this paper, we consider probabilistic hybrid systems and
develop a general abstraction technique for verifying probabilistic safety prob-
lems. This gives rise to the first mechanisable technique that can, in practice,
formally verify safety properties of non-trivial continuous-time stochastic hybrid
systems—without resorting to point-wise discretisation. Moreover, being based
on arbitrary abstractions computed by tools for the analysis of non-probabilistic
hybrid systems, improvements in effectivity of such tools directly carry over to
improvements in effectivity of the technique we describe. We demonstrate the
applicability of our approach on a number of case studies, tackled using a proto-
typical implementation.

1 Introduction

Conventional hybrid system formalisms [1–4] capture many characteristics of real sys-
tems (telecommunication networks, air traffic management, etc.). However, in some
modern application areas, the lack of randomness hampers faithful modelling and ver-
ification. This is especially true for wireless sensing and control applications, where
message loss probabilities and other random effects (node placement, node failure, bat-
tery drain) turn the overall control problem into a problem that can only be managed
with a certain, hopefully sufficiently large, probability.

The idea of integrating probabilities into hybrid systems is not new, and different
models have been proposed, each from its own perspective [5–9]. The most important
difference lies in the place where to introduce randomness. One option is to replace de-
terministic jumps by probability distributions over deterministic jumps. Another option
is to replace differential equations in each mode by stochastic differential equations.
More general models can be obtained by blending the above two choices, and by com-
bining with memoryless timed probabilistic jumps [10].

An important problem in hybrid systems theory is that of reachability analysis. In
general terms, a reachability analysis problem consists in evaluating whether a given
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system will reach certain unsafe states, starting from certain initial states. This problem
is associated with the safety verification problem: if the system cannot reach any unsafe
state, then the system is declared to be safe. In the probabilistic setting, the safety veri-
fication problem can be formulated as that of checking whether the probability that the
system trajectories reach an unsafe state from its initial states can be bounded by some
given probability threshold.

In this paper, we focus on the probabilistic hybrid automata model [6], an extension
of hybrid automata where the jumps involve probability distributions. This makes it pos-
sible to model component failures, message losses, buffer overflows and the like. Since
these phenomena are important aspects when aiming at faithful models for networked
and embedded applications, the interest in this formalism is growing [11,12].

Up to now, foundational results on the probabilistic reachability problem for prob-
abilistic hybrid automata are scarce. Since they form a strict superclass of hybrid au-
tomata, this is not surprising. Decidability results are known for probabilistic linear
hybrid automata and o-minimal hybrid automata [6].

This paper reports how we harvest and combine recent advances in the hybrid au-
tomata and the probabilistic automata worlds, in order to treat the general case. We are
doing so by computing safe over-approximations via abstractions in the continuous as
well as the probabilistic domain. One of the core challenges then is how to construct
a sound probabilistic abstraction over a given covering of the state space. For this pur-
pose, we first consider the non-probabilistic hybrid automaton obtained by replacing
probabilistic branching with nondeterministic choices. Provided that there is a finite
abstraction for this classical hybrid automaton, we then decorate this abstraction with
probabilities to obtain a probabilistic abstraction, namely a finite probabilistic automa-
ton [13]. We show the soundness of this abstraction, which allows us to verify proba-
bilistic safety properties on the abstraction: if such a property holds in the abstraction,
it holds also in the concrete system. Otherwise, refinement of the abstraction is required
to obtain a more precise result.

Our abstraction approach can be considered as an orthogonal combination of the
abstraction for hybrid automata [4,14], and Markov decision processes [15,16]. Be-
cause of this orthogonality, abstractions of probabilistic hybrid automata can be com-
puted via abstractions for non-probabilistic hybrid automata and Markov decision pro-
cesses. To show the applicability of this combination, we implemented a prototype tool,
ProHVer, that first builds an abstraction via existing techniques [17] for classical hy-
brid automata, and then via techniques for Markov decision processes [15,16,18]. Sub-
sequently, a fixed-point engine computes the reachability probabilities on the abstrac-
tion, which provides a safe upper bound. If needed, iterative refinement of the hybrid
abstraction is performed. We report several successful applications of this prototypical
implementation on different case studies. To the best of our knowledge, this is the first
implementation which automatically checks safety properties for probabilistic hybrid
automata.

2 Related Work

The verification of safety properties is undecidable for general hybrid automata. How-
ever, certain classes (e.g., initialised rectangular automata [19], o-minimal hybrid
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automata [20]), are decidable, and there are algorithms that construct finite bisimulation
quotient automata. These results have been lifted to probabilistic hybrid automata [6],
and provide exact results, rooted in a bisimulation-based abstraction. In these special
cases, our approach can yield the same results, but it gives us the freedom to use differ-
ent abstractions, that are more adapted to the problem at hand, but then not exact, but
over-approximating. We actually treat the general case using that a practical verifica-
tion can —to a certain extent— circumvent the decidability barrier by a semi-decision
algorithm: we exploit tools that can, in practice, verify hybrid automata belonging to
undecidable classes, to verify corresponding probabilistic hybrid automata.

The abstraction approach has also successfully been applied to probabilistic timed
automata [18,21], a class of probabilistic hybrid automata, where only derivatives of
constant value 1 occur. Their abstract analysis is based on difference-bound matrices
(DBMs), and does not extend to the general setting considered here. Fränzle et al. [11,
12] use stochastic SAT to solve reachability problems on probabilistic hybrid automata.
Their analysis is limited to depth-bounded reachability properties, i.e., the probability
of reaching a location within at most N discrete jumps.

While the model we consider has probabilistic discrete jumps, there are several
other suggestions equipping hybrid automata with continuous-time jumps. Davis [22]
introduced piecewise deterministic Markov processes, whose state changes are trig-
gered spontaneously as in continuous-time Markov chains. Stochastic differential equa-
tions [23] incorporate the continuous dynamics with random perturbations, such as
Brownian motion. In stochastic hybrid systems [24,25], the transitions between differ-
ent locations are resolved via a race between different Poisson processes. While these
models enjoy a variety of applications, their analysis are limited and often based on
Monte-Carlo simulations [8,9,26,27].

3 Preliminaries

In this section, we repeat the definition of conventional hybrid automata, in the style
of [4], followed by the definition of probabilistic hybrid automata [6].

3.1 Hybrid Automata

We fix a variable m ranging over a finite set of discrete modes M = {m1, . . . , mn}
and variables x1, . . . , xk ranging over reals R. We denote by S the resulting state space
M × R

k. For denoting the derivatives of x1, . . . , xk we use variables ẋ1, . . . , ẋk, rang-
ing over R correspondingly. For simplicity, we sometimes use the vector x to denote
(x1, . . . , xk), and (m, x) to denote a state. Similar notations are used for the primed
and dotted versions x′, ẋ.

In order to describe hybrid automata we use constraints that are arbitrary Boolean
combinations of equalities and inequalities over terms. These constraints are used, on
the one hand, to describe the possible flows and jumps and, on the other hand, to mark
certain parts of the state space (e.g., the set of initial/unsafe states). A state space con-
straint is a constraint over the variables m, x. A flow constraint is a constraint over the
variables m, x, ẋ.
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For capturing the jump behaviours, we introduce the notion of update constraints.
An update constraint u, also called a guarded command, has the form: condition →
update where condition is a constraint over m, x, and update is an expression denoting
a function M×R

k → M×R
k which is called the reset mapping for m and x. Intuitively,

assume that the state (m, x) satisfies condition , then the mode m and variable x are
updated1 to the new state update(m, x).

A jump constraint is a finite disjunction
∨

u∈U u where U is a set of guarded com-
mands. The constraint

∨
u∈U u can be represented by the set U for simplicity.

A hybrid automaton is a tuple H = (Flow ,U, Init ,UnSafe) consisting of a flow
constraint Flow , a finite set of update constraints U, a state space constraint Init de-
scribing the set of initial states, and a state space constraint UnSafe describing the set
of unsafe states.

A flow of length l in a mode m is a function r : [0, l] �→ R
k with l > 0 such that

r is differentiable for all t ∈ [0, l], and for all t ∈ [0, l], (m, r(t), ṙ(t)) satisfies Flow,
where ṙ is the derivative of r.

Transition System Semantics. The semantics of a hybrid automaton is a transi-
tion system with an uncountable set of states. Formally, the semantics of H =
{Flow ,U, Init ,UnSafe} is a transition system TH = (S, T, SInit , SUnSafe ) where
S = M × R

k is the set of states, SInit = {s ∈ S | s satisfies Init} denotes the set
of initial states, and SUnSafe = {s ∈ S | s satisfies UnSafe} represents the set of
unsafe states. The transition set T is defined as the union of two transition relations
TC, TD ⊆ S × S, where TC corresponds to transitions due to continuous flows defined
by:

– ((m, x), (m, x′)) ∈ TC, if there exists a flow r of length l in m such that r(0) = x
and r(l) = x′;

and TD corresponds to transitions due to discrete jumps. The transition due to an update
constraint u : condition → update, denoted by TD(u) is defined by:

– ((m, x), (m′, x′)) ∈ TD(u) if (m, x) satisfies the guard condition and it holds
that (m′, x′) = update(m, x).

Then, we define TD = ∪u∈UTD(u).
In the rest of the paper, if no confusion arises, we use Init to denote both the con-

straint for the initial states and the set of initial states. Similarly, UnSafe is used to
denote both the constraint for the unsafe states and the set of unsafe states.

3.2 Probabilistic Automata

For defining the semantics of a probabilistic hybrid automaton, we recall first the no-
tion of a probabilistic automaton [13]. It is an extension of a transition system with
probabilistic branching.

1 Our definition of jumps is deterministic, as in [14], i.e., if a jump is triggered for a state satis-
fying condition , the successor state is updated deterministically according to update . In [4],
the jump is defined to be nondeterministic: if a state satisfies condition , a successor will be
selected nondeterministically from a set of states. Our method can be easily extended to this.
We restrict to deterministic jumps for simplicity of the presentation in this paper.
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We first introduce some notation. Let S be a (possibly uncountable) set. A distribu-
tion over S is a function μ : S → [0, 1] such that (a) the set {s ∈ S | μ(s) > 0} is finite,
and (b) the sum

∑
s∈S μ(s) = 1. Let the support Supp(μ) of μ be {s ∈ S | μ(s) > 0}.

Let Distr(S) denote the set of all distributions over S. For an arbitrary but fixed state
s in S, a Dirac distribution for s, denoted by Diracs, is a distribution over S such that
Diracs(s) = 1, that is, Supp(Diracs) = {s}. Note that the Dirac distribution will be
used to describe the continuous evolution of a probabilistic hybrid automaton.

Definition 1. A probabilistic automaton M is a tuple (S,Steps , Init ,UnSafe), where
Steps ⊆ S × Distr(S), Init ⊆ S, and UnSafe ⊆ S. Here, S denotes the (possible
uncountable) set of states, Init is the set of initial states, UnSafe the set of unsafe states,
and Steps ⊆ S × Distr(S) the transition relation.

For a transition (s, μ) ∈ Steps , we use s → μ as a shorthand notation, and call μ a
successor distribution of s. Let Steps(s) be the set {μ | (s, μ) ∈ Steps}. We assume
that Steps(s) �= ∅ for all s ∈ S.

A path of M is a finite or infinite sequence σ = s0μ0s1μ1 . . . such that si → μi and
μi(si+1) > 0 for all possible i ≥ 0. We denote by first(σ) the first state s0 of σ, by
σ[i] the i + 1-th state si, and, if σ is finite, by last(σ) the last state of σ. Let Path be
the set of all infinite paths and Path∗ the set of all finite paths.

The non-deterministic choices in M can be resolved by adversaries. Formally, an
adversary of M is a map A : Path∗ → Distr(Steps) such that A(σ)(s, μ) > 0
implies that s = last(σ) and s → μ. Intuitively, if A(σ)(s, μ) > 0, then the successor
distribution μ should be selected from state s with probability A(σ)(s, μ). Moreover, an
adversary A is called Markovian if for all σ ∈ Path∗, A(σ) = A(last(σ)), that is, for
each finite path, A depends only on its last state. An adversary A is called deterministic
if for all σ ∈ Path∗, A(σ) is always a Dirac distribution. We say that an adversary A is
simple if A is Markovian and deterministic. Given an adversary A and an initial state s,
a unique probability measure over Path , which is denoted by ProbA

s , can be defined.

3.3 Probabilistic Hybrid Automata

Now we recall the definition of probabilistic hybrid automata, by equipping the discrete
jumps with probabilities. This is needed to model, for example, component failure or
message losses.

For capturing the probabilistic jump behaviours, a guarded command c is defined to
have the form

condition → p1 : update1 + . . . + pqc : updateqc

where qc ≥ 1 denotes the number of probabilistic branching of c, pi > 0 for i =
1, . . . , qc and

∑qc
i=1 pi = 1, condition is a constraint over (m, x), and updatei is an ex-

pression denoting a reset mapping for m and x for all i = 1, . . . , qc. Intuitively, if a state
(m, x) satisfies the guard condition , a jump to states (m1, x1), . . . , (mqc , xqc) occurs
such that (mi, xi) = updatei(m, x) is selected with probability pi for i = 1, . . . , qc.
Observe that for different i �= j, it could be the case that (mi, xi) = (mj , xj). In this
paper we assume that qc is finite for all c.
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Definition 2. A probabilistic hybrid automaton is a tupleH = (Flow ,C, Init ,UnSafe)
where Flow , Init ,UnSafe are the same as in the hybrid automaton, and C is a finite set
of guarded commands C.

The probabilistic hybrid automaton induces a classical hybrid automaton where proba-
bilistic branching is replaced by nondeterministic choices. Intuitively, the semantics of
the latter spans the semantics of the former.

Definition 3. Let c : condition → p1 : update1 + . . . + pqc : updateqc be a guarded
command. It induces a set of q update constraints: ind(c) = {u1, . . . ,uqc} where ui

corresponds to the update constraint condition → updatei for i = 1, . . . , qc. More-
over, we define ind(C) :=

⋃
c∈C ind(c).

Let H = (Flow ,C, Init ,UnSafe) be a probabilistic hybrid automaton. The induced
hybrid automaton is a tuple ind(H) = (Flow , ind(C), Init ,UnSafe).

Semantics. The semantics of a probabilistic hybrid automaton is a probabilistic au-
tomaton [6]. Let H = (Flow ,C, Init ,UnSafe) be a probabilistic hybrid automaton. Let
ind(H) denote the induced hybrid automaton, and let Tind(H) = (S, T, Init ,UnSafe)
denote the transition system representing the semantics of ind(H). Recall that T =
TC ∪ TD where TC corresponds to transitions due to continuous flow and TD corre-
sponds to transitions due to discrete jumps.

The semantics of H is the probabilistic automaton MH = (S,Steps , Init ,UnSafe)
where S, Init ,UnSafe are the same as in Tind(H), and Steps is defined as the union
of two transition relations StepsC ,StepsD ⊆ S × Distr(S). Here, as in the non-
probabilistic setting, StepsC corresponds to transitions due to continuous flows, while
StepsD corresponds to transitions due to discrete jumps. Both of them are defined re-
spectively as follows.

For each transition ((m, x), (m, x′)) ∈ TC in ind(H), there is a corresponding
transition in H from (m, x) to (m, x′) with probability 1. So, StepsC is defined by:
StepsC = {((m, x),Dirac(m,x′)) | ((m, x), (m, x′)) ∈ TC}.

Now we discuss transitions induced by discrete jumps. First, for a guarded
command c, we define the set StepsD(c) corresponding to it. Let ind(c) =
{u1, . . . ,uqc} be as defined in Definition 3. Then, for arbitrary qc + 1 states (m, x),
(m1, x1), . . . , (mqc , xqc) ∈ S satisfying the condition ((m, x), (mi, xi)) ∈ TD(ui)
for i = 1, . . . , qc, we introduce the transition ((m, x), μ) ∈ StepsD(c) with

μ(mi, xi) =
∑

j∈{j|mj=mi∧xj=xi}
pj , (1)

for i = 1, . . . , qc. Then, StepsD is defined to be
⋃
c∈C StepsD(c). Recall that we have

assumed that qc is finite for all c. This implies Supp(μ) is finite for all transitions (s, μ)
with s ∈ S.

Safety Properties. For hybrid automata, the safety property asserts that the unsafe
states can never be reached. For probabilistic hybrid automata, however, the safety prop-
erty expresses that the maximal probability of reaching the set UnSafe is bounded by
some give threshold ε. In the following we fix a certain threshold ε. Let Reach(UnSafe)
denote the set of paths {σ ∈ Path | ∃i. σ[i] ∈ UnSafe}. The automatonH is called safe
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if for each adversary A and each initial state s of M(H), ProbA
s (Reach(UnSafe)) ≤ ε

holds. In this paper, we would like to develop a framework to deal with such a proba-
bilistic safety verification problem for general probabilistic hybrid automata.

Simulation Relations. We recall the notion of simulations between probabilistic au-
tomata. Intuitively, if M2 simulates M1, that is, M2 is an over-approximation of M1,
then M2 can mimic all behaviours of M1. Thus, this allows us to verify safety prop-
erties on the abstraction M2 instead of M1. To establish the notion of simulations, we
introduce first the notion of weight functions [28], which establish the correspondence
between distributions.

Definition 4. Let μ1 ∈ Distr(S1) and μ2 ∈ Distr(S2) be two distributions. For a
relation R ⊆ S1 × S2, a weight function for (μ1, μ2) with respect to R is a function
Δ : S1 × S2 → [0, 1] such that (i) Δ(s1, s2) > 0 implies (s1, s2) ∈ R, (ii) μ1(s1) =∑

s2∈S2
Δ(s1, s2) for s1 ∈ S1, and (iii) μ2(s2) =

∑
s1∈S1

Δ(s1, s2) for s2 ∈ S2.
We write μ1 �R μ2 if and only if there exists a weight function for μ1 and μ2 with

respect to R.

Now, we recall the notion of simulations [13]. The simulation requires that every suc-
cessor distribution of a state of M1 is related to a successor distribution of its corre-
sponding state of M2 via a weight function.

Definition 5. Given two automata M1 = (S1, Init1,Steps1,UnSafe1) and M2 =
(S2, Init2,Steps2,UnSafe2), we say that M2 simulates M1, denoted by M1  M2,
if and only if there exists a relation R ⊆ S1×S2, which we will call simulation relation
from now on, such that

1. for each s1 ∈ Init1 there exists an s2 ∈ Init2 with (s1, s2) ∈ R.
2. for each s1 ∈ UnSafe1 there exists an s2 ∈ UnSafe2 with (s1, s2) ∈ R.
3. for each pair (s1, s2) ∈ R, if there exists (s1, μ1) ∈ Steps1, there exists a distribu-

tion μ2 ∈ Distr(S2) such that (s2, μ2) ∈ Steps2 and μ1 �R μ2.

4 Abstractions for Probabilistic Hybrid Automata

Various abstraction refinement techniques have been developed for verifying safety
properties against non-probabilistic hybrid automata. All of them have a common strat-
egy: the set S is covered by a finite set of abstract states, each representing a set of
concrete states. Then, the abstraction is constructed which is an over-approximation of
the original system. Afterwards, the safety property is checked on the abstraction. If
the set of unsafe states is unreachable, the original system is safe since the abstraction
over-approximates the original system. If not, the covering might have been chosen
too coarse, and a refinement step is needed. Based on this idea, predicate abstraction
based abstraction refinement has been used [3,14] for safety verification of linear hy-
brid automata, and constraint propagation based abstraction refinement has been used
for safety verification of general hybrid automata [4].

Let H = (Flow ,C, Init ,UnSafe) be a probabilistic hybrid automaton. The aim
of this section is—independent of which abstraction technique is used—to develop
a framework for constructing an abstraction for H, which is a finite probabilistic
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automaton. First we introduce the notion of abstract states which form a (not neces-
sarily disjoint) covering of the concrete state space:

Definition 6. An abstract state is a pair (m, B) where m ∈ M and B ⊆ R
k. The set

B is a finite set of abstract states such that S =
⋃
{(m, x) | (m, B) ∈ B ∧ x ∈ B}.

In the above definition, any two abstract states (m, B1) and (m, B2) may have common
interiors, including common borders2. The case allowing common interiors is the case if
the polyhedra based abstraction technique is used [17], and common border is the case
if the constraint propagation based abstraction technique is used [4]. Our abstraction
scheme in this section works for all of them.

H ind(H)

QuoH(B) Quoind(H)(B)

AbsH(B) Absind(H)(B)

Lemma 3

Theorem 1

Lemma 1

Lemma 2

Fig. 1. Computation of the
abstraction

Fig. 1 illustrates how this section is organised. Given
a probabilistic hybrid automaton H and an abstract state
space B, we introduce the quotient automaton for both
ind(H) and H in Sec. 4.1, respectively. In Sec. 4.2, we
show the soundness with respect to the quotient automaton
(cf. Lemma 1 and Lemma 2).

The quotient automaton is in general hard to compute.
Thus, we introduce in Sec. 4.3 general abstractions, which
over-approximate the quotient automata conservatively. In
Sec. 4.4, we discuss how the abstraction for the given prob-
abilistic hybrid automaton is constructed (see Fig. 1): we
construct first the abstraction of the induced hybrid automaton, from which the abstrac-
tion of the probabilistic setting is then obtained.

4.1 Quotient Automaton for H
We define the quotient automaton for the probabilistic hybrid automaton H. First we
define the quotient automaton for the induced hybrid automaton ind(H). As a conven-
tion we use T , I,U to denote the set of transitions, initial states, unsafe states in the
quotient automata.

Definition 7. Let H = (Flow ,C, Init ,UnSafe) be a probabilistic hybrid automaton,
and let B denote the abstract state space. Let Tind(H) = (S, TC ∪ TD, Init ,UnSafe)
denote the automaton representing the semantics of ind(H). The quotient automa-
ton for Tind(H), denoted by Quoind(H)(B), is a finite transition system (B, T , I,U)
where

– I = {(m, B) ∈ B | ∃x ∈ B. (m, x) ∈ Init},
– U = {(m, B) ∈ B | ∃x ∈ B. (m, x) ∈ UnSafe},
– TC corresponds to the set of abstract transitions due to continuous flow: TC =

{((m, B), (m, B′)) ∈ B2 | ∃x ∈ B ∧ ∃x′ ∈ B′ ∧ ((m, x), (m, x′)) ∈ TC},
– TD corresponds to the set of abstract transitions due to discrete jumps. We first

define the transition induced by one fixed update u ∈ ind(C). Assume that we have

2 We may also require that abstract states form a partitioning over the original state S, with
pairwise disjoint abstract states. Such abstractions are, however, harder to construct for non-
trivial models.
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((m, x), (m′, x′)) ∈ StepsD(u). Then, it induces an abstract transition ((m, B),
(m′, B′)) ∈ TD(u) where B, B′ are the abstract states containing x, x′ respec-
tively. Then, let TD = ∪u∈ind(C)TD(u).

Let H = (Flow ,C, Init ,UnSafe) be a probabilistic hybrid automaton, and let MH =
(S,StepsC∪StepsD, Init ,UnSafe) denote the automaton representing the semantics of
H. As in the induced non-probabilistic setting, we define a quotient automaton, denoted
by QuoH(B), for an abstract state space B. For this we first introduce the set of lifted
distributions:

Definition 8. Let H and MH be as described above. Let B denote the abstract state
space. Let c ∈ C and assume that (s, μ) ∈ StepsD(c) in MH. By definition of
StepsD(c), there exist states (m1, x1), . . . , (mqc , xqc) ∈ S satisfying the condition
((m, x), (mi, xi)) ∈ TD(ui) for i = 1, . . . , qc. Then, for arbitrary abstract states
(m1, B1), . . . , (mqc , Bqc) with xi ∈ Bi for i = 1, . . . , qc we introduce the distribution
μ′ ∈ Distr(B) by: μ′(mi, Bi) =

∑
{j|(mj ,Bj)=(mi,Bi)} μ(mj , xj). The set of lifted

distributions liftB(μ) contains all such μ′.

Let μ be the distribution according to a guarded command c. Since the covering B is in
general not disjoint, a concrete state (mi, xi) might belong to more than one abstract
states. In this case μ induces more than one lifted distribution. In the above definition,
this is reflected by the way of defining one specific lifted distribution μ′, for which we
first fix to which abstract state each concrete state (mi, xi) belongs. Note that if B is a
disjoint partitioning of S, the set liftB(μ) is a singleton. We now introduce the quotient
automaton for the probabilistic hybrid automaton:

Definition 9. Let H and MH be as described above. Let B denote the abstract state
space. The quotient automaton for MH with respect to B is defined by QuoH(B) =
(B,ST , I,U) where I andU are defined as for Quoind(H)(B), and ST = ST C∪ST D
is the set of abstract transitions where:

– ST C corresponds to the set of abstract transitions due to continuous flow: ST C =
{((m, B),Dirac(m,B′)) | ∃x ∈ B ∧ ∃x′ ∈ B′ ∧ ((m, x), (m, x′)) ∈ StepsC}.

– ST D corresponds to the set of abstract transitions due to discrete jumps. We
first define the transition induced by one fixed guarded command c. Consider
all ((m, x), μ) ∈ StepsD(c). These pairs induce corresponding abstract transi-
tions ((m, B), μ′) ∈ ST D(c) where B is the abstract state containing x, and
μ′ ∈ liftB(μ). Then, let ST D = ∪c∈CST D(c).

Example 1. Consider Fig. 2 and assume we have a guarded command c : condition →
p1 : up1 + . . . + p4 : up4. Thus qc = 4. The abstract states are represented by cir-
cles, labelled with the corresponding tuple. The concrete states are represented by black
points, labelled with only the evaluation of the variables (assume that all of them are
different). Thus s0 represents state (m0, s0) and so on. Arrows are transitions in the con-
crete models, where the labels represent the probability pi of the corresponding update
upi of c.
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(m0, B0)

(m3, B3)
(m1, B1)

p1 : up1

p2 : up2

(m2, B2)

s4
s1

s2
s3

s0

p4 : up4

p3 : up3

Fig. 2. Illustrating the abstract
discrete transitions in the quo-
tient automaton

Consider the two (there may be more) con-
crete transitions in Tind(H): ((m0, s0), (m1, s1)),
((m0, s0), (m1, s2)) ∈ TD. Both of them lead from
(m0, B0) to the same abstract state (m1, B1). By Def-
inition 7, we have that ((m0, B0), (mi, Bi)) ∈ TD for
i = 1, 2, 3 in Quoind(H)(B).

We have a concrete transition ((m0, s0), μ) where μ
is defined by: μ(si) = pi for i = 1, 2, 3, 4. Assume
first that B0, B1, B2, B3 are disjoint. By Definition 8,
liftB(μ) = {μ′} where μ′ is defined by: μ′(m1, B1) =
p1 + p2, μ′(m2, B2) = p3, and μ′(m3, B3) = p4.
Then, by Definition 9, this induces an abstract transi-
tion ((m0, B0), μ′) ∈ liftB(μ) in QuoH(B).

Assume now that the abstract states B1 and B2 are not disjoint, and that s2 is on
the common border of (m1, B1) and (m2, B2) (which implies also m1 = m2). In this
case the set liftB(μ) contains another element μ′′ which defined by: μ′′(m1, B1) = p1,
μ′′(m2, B2) = p2 + p3 and μ′′(m3, B3) = p4. Again by Definition 9, μ′′ induces
another abstract transition ((m0, B0), μ′′) in QuoH(B).

4.2 Soundness

Given a probabilistic hybrid automaton H and a set of abstract states B, we defined
a probabilistic quotient automaton QuoH(B). The following lemma shows that this
automaton conservatively over-approximates MH.

Lemma 1. QuoH(B) simulates MH.

Proof sketch: We define R = {((m, x), (m′, B)) ∈ S × B | m = m′ ∧ x ∈
B}. It suffices to show that R is a simulation relation. Let ((m, x), (m, B)) ∈ R.
The first two conditions for simulation relations are trivially satisfied. It remains the
third condition. There are two type of transitions starting from (m, x) in MH: the
case ((m, x),Dirac(m,x′)) ∈ StepsC is trivial and skipped. Now consider the case
((m, x), μ) ∈ StepsD: there exists then a guarded command c such that ((m, x), μ) ∈
StepsD(c). Let c and ind(c) = {u1, . . . ,uqc} be as described in Definition 3, and
let (mi, xi) = updatei(m, x) be the state with respect to updatei for i = 1, . . . , qc.
Note that it could be the case that, for i �= j, xi = xj . Moreover, let (mi, Bi) ∈ B
denote the abstract state satisfying xi ∈ Bi. By construction of the relation R, we
know that ((mi, xi), (mi, Bi)) ∈ R. By the definition of ST (cf. Definition 11), we
have that ((m, B), μ′) ∈ ST D(c) where μ′(mi, Bi) =

∑
j∈{j|mj=mi∧Bj=Bi} pj for

i = 1, . . . , qc. Define Δ for (μ, μ′) with respect to R by: Δ((mi, xi), (mi, Bi)) equals
μ(mi, xi) for i = 1, . . . , qc, and equals 0 otherwise. It remains to show that Δ is the
proper weight function. For the first condition, assume Δ((m∗, x∗), (m′, B′)) > 0. By
the definition of Δ, we have m∗ = m′ and x∗ ∈ B′, implying ((m∗, x∗), (m′, B′)) ∈
R. Now we show the third condition (the second condition is similar). Let (mj , Bj) be
an abstract state with j ∈ {1, . . . , qc} (otherwise trivial). On one hand, due to the defi-
nition of μ′, μ′(mj , Bj) =

∑
i∈I pi where I = {i | mi = mj ∧ Bi = Bj} denotes the

set of all indices i such that (mi, Bi) = (mj , Bj). On the other hand, by the definition
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of Δ, it holds
∑

i∈I pi =
∑

xk∈Bj
μ(mj , xk) =

∑
k∈I Δ((mj , xk), (mj , Bj)) (cf.

Equation (1)), which implies the third condition.

Since simulation on probabilistic automata preserves safety properties [13], we have
the correctness of our construction:

Lemma 2. The abstraction preserves the safety property: if the probability of reaching
UnSafe in QuoH(B) is bounded by ε, this is also the case in H.

4.3 Abstractions for H
Consider the probabilistic hybrid automatonH. Often the computation of the exact quo-
tient automaton QuoH(B) as defined in Definition 9 refers to concrete states, and is hard
or even impossible. In this subsection we introduce the notion of abstractions which
over-approximate the quotient automata. As a convention we use the primed version
T ′, I ′,U ′ to denote the set of transitions, initial states, unsafe states in the abstraction.

Definition 10. Let H = (Flow ,C, Init ,UnSafe) be a probabilistic hybrid automaton,
and let B denote the abstract state space. Then,

– Absind(H)(B) = (B, T ′, I ′,U ′) is an abstraction of the quotient Quoind(H)(B) iff
T ′ = ∪u∈ind(C)T ′

D(u)∪T ′
C and it holds TC ⊆ T ′

C , TD(u) ⊆ T ′
D(u) for u ∈ ind(C),

I ⊆ I′ and U ⊆ U ′,
– AbsH(B) = (B,ST ′, I ′,U ′) is an abstraction of the quotient QuoH(B) iff ST ′ =

∪c∈CST ′
D(c) ∪ ST ′

C and it holds ST D(c) ⊆ ST ′
D(c) for c ∈ C, ST C ⊆ ST ′

C ,
I ⊆ I′ and U ⊆ U ′.

In that case, we say also that Absind(H)(B) is an abstraction of the induced hybrid
automaton ind(H). Similarly, we say also that AbsH(B) is an abstraction of the prob-
abilistic hybrid automaton H. Since the abstraction as defined may have more initial
states, unsafe states and transitions than the quotient automaton, it is easy to verify that
the abstraction simulates the corresponding quotient automaton. Since simulation is
transitive, the abstraction also simulates the corresponding semantics automaton. Thus,
the abstraction preserves also safety properties of H.

4.4 Computing Abstractions

Let H be a probabilistic hybrid automaton. Existing methods can be used to compute
an abstraction Absind(H)(B) for the induced hybrid automaton ind(H), for example [4,
14,17]. In the following we define an abstraction based on Absind(H)(B):

Definition 11. For a probabilistic hybrid automaton H, let B be the abstract state
space, and Absind(H) = (B, T ′

D ∪ T ′
C , I ′,U ′) be an abstraction of ind(H). We define

AbsH(B) = (B,ST ′
C ∪ ST ′

D, I ′,U ′) for H as follows:

– ST ′
C = T ′

C ,
– ST ′

D corresponds to the set of abstract transitions due to discrete jumps.
We first define the transition induced by one fixed guarded command c :
condition → p1 : update1 + . . . + pqc : updateqc , and ind(c) =
{u1, . . . ,uqc} as defined in Definition 3. Then, for every sequence of abstract states
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(m, B), (m1, B1), . . . , (mqc , Bqc) satisfying the condition: ((m, B), (mi, Bi)) ∈
T ′
D(ui) for i = 1, . . . , qc we introduce the transition ((m, B), μ) ∈ ST ′

D(c) such
that μ(mi, Bi) =

∑
j∈{j|mj=mi∧Bj=Bi} pj for i = 1, . . . , qc. Then, ST ′

D is de-

fined to be
⋃
c∈C ST

′
D(c).

Is AbsH(B) in fact an abstraction of H? Since Absind(H)(B) is an abstraction for
Quoind(H)(B), by Definition 10 it holds that TC ⊆ T ′

C , I ⊆ I′,U ⊆ U ′ and that
TD(u) ⊆ T ′

D(u) for u ∈ ind(C). Note that in general most of the inclusions above are
strict [4,14]. By the construction of AbsH(B), it holds that ST C ⊆ ST ′

C , I ⊆ I′,U ⊆
U ′. The following lemma shows that it holds also ST D ⊆ ST ′

D:

Lemma 3. Consider the abstraction AbsH(B) as defined in Definition 11. Then, it
holds that ST D(c) ⊆ ST ′

D(c), for all c ∈ C.

Proof sketch: Fix c ∈ C. Assume that ((m, B), μ′) ∈ ST D(c). Then, by Defi-
nition 9, there exists x ∈ B and a transition ((m, x), μ) ∈ StepsD(c) such that
μ′ ∈ liftB(μ). For i = 1, . . . , qc, let (mi, xi) = updatei(m, x), and let (mi, Bi) be the
abstract states corresponding to the distribution μ′ (cf. Definition 8), i.e., μ′(mi, Bi) =∑

{j|(mj ,Bj)=(mi,Bi)} μ(mj , xj). Obviously, ((m, x), (mi, xi)) ∈ TD(ui). Since xi ∈
Bi it holds that ((m, B), (mi, Bi)) ∈ TD(ui) ⊆ T ′

D(ui) for i = 1, . . . , qc. By Defini-
tion 11, we have that ((m, B), μ′) ∈ ST D(c).

The set of transitions ST ′
D(c) is indeed an over-approximation, which is illustrated as

follows.

(m0, B0)

(m3, B3)
(m1, B1)

(m2, B2)

p4 : up4

p2 : up2

p3 : up3

s1

s0
s2

s4

s3

s5

s6

p3 : up3

p2 : up2

p1 : up1

p4 : up4

Fig. 3. Abstracting abstract
discrete transitions

Example 2. Consider the fragment of the abstraction de-
picted in Fig. 3 in which we assume that the transitions
correspond to the guarded command c with qc = 4:
condition → p1 : up1 + . . . + p4 : up4. The abstract
states are represented by circles, labelled with the cor-
responding tuple. The concrete states are represented by
black points, labelled with only the evaluation of the vari-
ables (assume that all of them are different). Thus s0 rep-
resents state (m0, s0) and so on. Arrows are transitions in
the concrete models, where the labels represent the prob-
ability pi of the corresponding update upi of c. Assume
that all of the concrete states are different and are not on borders. (Note: only parts
of successor distributions are depicted, and we assume that other parts (e.g. for state
(m0, s1)) lead to abstract states outside the depicted fragment.)
havNow we consider the distribution μ∗ ∈ Distr(B) which is defined as follows:
μ∗(m1, B1) = p1 + p2, μ∗(m2, B2) = p3 and μ∗(m3, B3) = p4. By the above
assumption, no concrete successor distributions of s0, s1 or s2 could induce μ∗ ac-
cording Definition 8. Thus, by Definition 9, ((m0, B0), μ∗) �∈ ST D(c). On the other
hand, it holds ((m0, B0), (m1, B1)) ∈ T ′

D(upi) for i = 1, 2, ((m0, B0), (m2, B2)) ∈
T ′
D(up3), and ((m0, B0), (m3, B3)) ∈ T ′

D(up4). Thus, by Definition 11 we have that
((m0, B0), μ∗) ∈ ST ′

D(c).
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Lemma 3 implies that AbsH(B) is an abstraction of QuoH(B). Thus:

Theorem 1. For every probabilistic hybrid automaton H , for every abstraction
Absind(H)(B) of the induced hybrid automaton ind(H), the safety of AbsH(B) implies
the safety of H .

5 Experiments

We implemented our method in the prototypical tool ProHVer (probabilistic hybrid
automata verifier). It combines a modified version of PHAVer [17] to obtain the abstract
state space with a component to compute an upper probability bound for the reachability
problem using value iteration in the induced abstract probabilistic automaton. To show
the applicability of our approach, we applied ProHVer on several case studies, which
are small but diverse in the nature of their behaviour. Even though in each of them
we considered bounded reachability (by using a clock variable to bound the time) to get
result other than 1, our method is not in principal restricted to time bounded reachability.
PHAVer covers the reachable continuous space (per discrete location) by polyhedra

of a maximal width. It can split locations (introducing new discrete locations) if the
over-approximations carried out while constructing this covering are too coarse. This is
effective in practice. But if we attempt to improve precision by reducing the maximal
width, the resulting covering and location splits can look entirely different. This carries
over to the probabilistic side.

This phenomenon of PHAVer may induce situations, where that reduced width set-
ting does not lead to tighter probability bounds. Usually it does.

Error

Heat

Cool Check

Ṫ = 0

Ṫ = 2
T ≤ 10 ∧ t ≤ 3

T ≥ 5

Ṫ = −T Ṫ = −T/2

T ≥ 9

T ≤ 6 →

t ≤ 1

0.05

0.95 : t′ = 0
t′ = 0

t ≥ 2 →
t′ = 0

t ≥ 0.5 →

Fig. 4. A probabilistic hybrid automaton
for the thermostat

We here consider the thermostat exam-
ple depicted in Fig. 4, which is extended
from the one in [14]. There are four modes:
Cool ,Heat ,Check and Error . The latter
mode models the occurrence of a failure,
where the temperature sensor gets stuck at the
last checked temperature. The set of variables
are {t, x, T} where T represents the temper-
ature, t represents a local timer and x is used
to measure the total time passed so far. Thus,
in all modes it holds that ẋ = 1 and ṫ = 1.
In each mode there is also an invariant constraint restricting the set of state space for
this mode. Invariant constraints are only for the sake of convenience and comparison
with [14].

The given initial condition is m = Heat ∧ t = 0 ∧ x = 0 ∧ 9 ≤ T ≤ 10. The
unsafe constraint is m = Error ∧ x ≤ 5, which corresponds to reaching the Error
mode within time 5. Assume that the probability threshold for this risk is specified to
be 0.2. ProHVer can verify this nontrivial system and property, and will answer that
the system is safe, the upper bound computed is 0.097.

In Fig. 5, we give probability bounds and performance statistics (time to build the
abstraction – the value iteration time is negligible, and number of constructed abstract
states) for different time bounds. For the left (right) part we instantiated the splitting
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interval for variable x with length 2 (respectively length 10). This governs the refine-
ment technique of PHAVer. The time needed for the analysis as well as the number
of states of the abstract transition systems grows about linearly in the time bound,

time interval length 2 interval length 10
bound prob. build (s) #states prob. build (s) #states

2 0 0 11 0 0 8
4 0.05 0 43 1 0 12
5 0.097 1 58 1 0 13

20 0.370 20 916 1 1 95
40 0.642 68 2207 0.512 30 609
80 0.884 134 4916 1 96 1717

120 0.940 159 4704 0.878 52 1502
160 0.986 322 10195 0.954 307 4260
180 0.986 398 10760 0.961 226 3768
600 1.0 1938 47609 1 1101 12617

Fig. 5. Thermostat performance

though with oscillations. Comparing the left
and the right side, we see that for the larger
interval we need less resources, as was to be
expected. Due to the way PHAVer splits lo-
cations along intervals, for some table entries,
we see somewhat counter-intuitive behaviour.
We observe that bounds do not necessarily
improve with decreasing interval length. This
is because PHAVer does not guarantee ab-
stractions with smaller intervals to be an im-
provement, though they are in most cases.
Furthermore, the abstraction we obtain from

PHAVer can not guarantee probability bounds to increase monotonically with the time
bound. This is because a slightly increased time bound might induce an entirely differ-
ent abstraction, leading to a tighter probability bound, and thus giving the impression
of a decrease in probability, even though the actual maximal probability indeed stays
the same or increases.

In addition to the thermostat case, we have considered a selection of other case stud-
ies: a bouncing ball assembled from different materials, a water level control system
where sensor values may be delayed probabilistically, and an autonomous lawn-mower
that uses a probability bias to avoid patterns on lawns. As safety problems to be verified
we considered (time bounded) reachability properties. We varied the time bounds and
other parameters of the analysis, leading to different upper bounds of varying precision.
Mostly, the upper bounds we could obtain were tight or exact (checked by manual in-
spection). Due to space restrictions, we have put the complete descriptions of all case
studies and corresponding results on our preliminary homepage for the tool at:

http://depend.cs.uni-sb.de/tools/prohver

6 Conclusions

In this paper we have discussed how to check safety properties for probabilistic hybrid
automata. These models and properties are of central importance for the design and ver-
ification of emerging wireless and embedded real-time applications. Moreover, being
based on arbitrary abstractions computed by tools for the analysis of non-probabilistic
hybrid automata, improvements in effectivity of such tools directly carry over to im-
provements in effectivity of the technique we describe. The applicability of our ap-
proach has been demonstrated on a number of case studies, tackled using a prototypical
implementation.

As future work we are investigating whether our approach can be adapted to the
safety verification problem for more general probabilistic hybrid systems [7,8], that is,
systems with stochastic differential equations instead of ordinary differential equations.

http://depend.cs.uni-sb.de/tools/prohver
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