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Safety Verification of Autonomous Vehicles

for Coordinated Evasive Maneuvers

Matthias Althoff, Daniel Althoff, Dirk Wollherr and Martin Buss

Abstract— The verification of evasive maneuvers for au-
tonomous vehicles driving with constant velocity is consid-
ered. Modeling uncertainties, uncertain measurements, and
disturbances can cause substantial deviations from an initially
planned evasive maneuver. From this follows that the maneuver,
which is safe under perfect conditions, might become unsafe. In
this work, the possible set of deviations is computed with meth-
ods from reachability analysis, which allows to verify evasive
maneuvers under consideration of the mentioned uncertainties.
Since the presented approach has a short response time, it
can be applied for real time safety decisions. The methods are

presented for a numerical example where two autonomous cars
plan a coordinated evasive maneuver in order to prevent a
collision with a wrong-way driver.

I. INTRODUCTION

Recently, numerous autonomous vehicle projects have

been realized, among them the project Cognitive Automobiles

[1] in which this work has been partly carried out. It is

out of question that safety is of paramount importance

for autonomous vehicles, since their development should

reduce the number of road accidents. For slow moving

autonomous vehicles, it is sufficient to check if the set of

occupied positions does not intersect any obstacle when the

planned trajectory is almost perfectly followed [2]. However,

one cannot assume that a planned trajectory is perfectly

followed for evasive maneuvers due to e.g. tire slip, uncertain

parameters, uncertain initial states, disturbances and so on. In

order to compute the reachable positions under the mentioned

uncertainties, the reachable set of other states such as e.g.

velocity, orientation, and side slip angle has to be computed

as well. The online safety verification of planned trajectories

using reachability analysis is the subject of this paper.

The literature on reachability analysis applied to au-

tonomous vehicles and car-like robots is rather limited.

Reachable sets of obstacles with a velocity bound can be

described by circles around the initial position and are often

used for path planning in dynamic environments, see e.g. [3].

Circles can also represent the reachable sets of the slightly

more complicated maximum acceleration model [4]. An ap-

proximate solution of reachable positions of robots has been

used in [5] for a multi robot system. For the lateral control

of vehicles, reachable sets of the deviation along a planned

path have been investigated in [6]. However, in that work,

the reachable set is obtained from worst case simulations,

but no proof is given which guarantees the enclosure of

all reachable states by the worst case simulations. Provable
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results using simulations can only be obtained with special

methods developed in e.g. [7]–[9].

There is more literature on safety verification of trans-

portation systems which is not necessarily performed by

reachability analysis. There is work on verification algo-

rithms for platooning of road vehicles [10], [11], air traffic

safety [12]–[14] and rail traffic safety [15], [16]. However, a

verification algorithm for evasive maneuvers of road vehicles

is novel to the best knowledge of the authors. An overview

of reachable set algorithms for different problem classes can

be found in [17].

II. CONTRIBUTION AND MOTIVATION

The contribution of this work is to prove the safety of

evasive maneuvers with constant velocity for autonomous

vehicles before the maneuver is executed. This is done by

considering the set of tracking errors for a planned trajectory

into the collision detection. It is assumed that the trajectory

of evasive maneuvers is provided from a planner which is

not subject of this work.

The tracking errors are mainly caused by measurement

uncertainties, uncertain system parameters, and disturbances.

In order to prove the safety, the set of positions possibly

occupied by each vehicle under the mentioned uncertainties

has to be obtained. This set is also referred to as the

occupancy set from now on. If the occupancy sets of all

traffic participants do not intersect for a predefined time

horizon t 2 [0; tf ℄, the maneuver of each traffic participant

is safe for this time horizon. In order to extend the safety

verification for an infinite time horizon (8t > 0), possible

follow-up maneuvers in which all traffic participants come

to a standstill have to be planned. Since the vehicles are not

moving anymore after a finite time horizon, this trick allows

to verify infinite time horizons if the original and the follow-

up maneuver (which is not executed) are collision-free.

If the planned trajectory is unsafe, the trajectory planner

has to replan the trajectory or execute the trajectory with the

least intersection of occupancy sets.

A. Known Versus Unknown Plans of Other Vehicles

Next, it is motivated why the concept of occupancy sets is

only reasonable when the plan of other traffic participants is

known, e.g. broadcast via wireless communication. Thereto,

a scenario is considered in which two vehicles pass each

other on a straight road, see Fig. 1. Assuming that the

maximum force applicable between tires and road is isotropic

(independent of the direction) according to Kamm’s circle,

the reachable set of a vehicle at time t can be described



by a circle [4]. Since the circles overlap already after a

prediction horizon of only one second (v0 = 20 m/s for both

vehicles) an everyday situation has to be classified as unsafe,

see Fig. 1. However, when the vehicles broadcast their plans

of driving straight, the situation is verified as safe, unless the

tracking errors are abnormally large.

The presented scenario demonstrates that if no maneuver

plans are exchanged, one has to work with probabilistic

methods. Those methods would compute a low crash proba-

bility for the presented scenario, which would be a sufficient

condition for continuing the plan of following the straight

road. Probabilistic approaches for the safety analysis of

traffic scenes have been presented in e.g. [18], [19].

Unknown plan:

Known plan:

Fig. 1. Known versus unknown plans in a straight road scenario.

B. Braking Versus Evasive Maneuvers

Finally, it is motivated why this work focuses on evasive

maneuvers since the autonomous vehicle might also plan a

braking maneuver. This is justified since the computation

of reachable sets for braking maneuvers is trivial, as shown

next.

The reachable set of a braking maneuver is influenced by

the deceleration which is uncertain within ade 2 [ade; ade℄
due to varying tire friction, where ade is the lower andade is the upper limit. The initial position s0 2 [s0; s0℄ and

velocity v0 2 [v0; v0℄ are also uncertain due to measurement

uncertainties. Clearly, after the integration of the acceleration

and the velocity, the limits of reachable positions s(t) are:s(t) = s0 + v0t+ 12adet2; s(t) = s0 + v0t+ 12adet2:
After additionally considering the size of the vehicle body,

the occupancy set is obtained.

Next, the model for the lateral vehicle dynamics is intro-

duced which allows to compute the reachable set of more

complex evasive maneuvers.

III. SYSTEM MODEL

One of the most widely used models for road vehicles is

the bicycle model whose name origins from the fact that the

two wheels of each axle are lumped into one wheel located

at the middle of the vehicle. This is also depicted in Fig.

2, where xCG is the center of gravity, lr, lf , dT , dS are

the distances from the center of gravity to the axles, the

front, and the tail sensor. The sensors measure the distances�yT and �yS to the reference trajectory and are chosen

according to the control concept introduced subsequently.

The reference trajectory is modeled as piecewise circular arcs

with curvature �ref . The steering angle is denoted by Æf and

the velocity by v. The state space model of the bicycle model

is according to [20]:2664� _yS��yS� _yT��yT3775 = 2664 0 1 0 0a21 a22 �a21 a240 0 0 1a41 a42 �a41 a443775| {z }A
2664�yS� _yS�yT� _yT3775 (1)

+2664 0 0b2 �v20 h4 vb4 �v23775| {z }B � Æf�ref�
wherea21 = h2M h4 � dSh1I	h4 ; a22 = h1 � dT h2M v h4 + dS(dT h1 � h3)I	 v h4 ;a41 = h2M h4 + dT h1I	h4 ; a42 = h1 � dT h2M v h4 � dT (dT h1 � h3)I	 v h4 ;b2 = � f � 1M + dS lfI	 � ; a24 = �h1 + dSh2M v h4 + dS(dSh1 + h3)I	 v h4 ;b4 = � f � 1M � dT lfI	 � ; a44 = �h1 + dSh2M v h4 + dT (dSh1 + h3)I	 v h4 ;
for which the auxiliary variablesh1 = �(rlr � f lf ); h2 = �(f + r);h3 = �(rl2r + f l2f ); h4 = dS + dT ;
have been used.

For the control of vehicles along planned trajectories, the

controller presented in [20] is used which has been verified

experimentally within the California PATH program. The

controller is a state feedback controller Æf = �kT x (x: state,Æf : steering input, k: controller gain), wherekT = �0:510 0:087 �0:280 �0:024� : (2)

The parameters of the considered car are listed in Tab. I. It is

remarked that the same control approach has been applied in

another study on steering controllers [21]. Other works that

have developed steering controllers and evasive maneuvers

can be found in [22]–[24].

For the evading scenario considered later, the initial veloc-

ity of the vehicle is uncertain within an interval such that the

elements a22, a42, a24 and a44 of the system matrix A are

uncertain within an interval. Matrices whose elements can

take values within intervals are also referred to as interval

matrices. From now on, the set of system and input matrices

is denoted by A = [A;A℄ and B = [B;B℄, respectively. The

elements of A and B which are not uncertain have the same

left and right limit. The interval matrices allow to describe

the bicycle model in (1) together with the controller in (2)

by the differential inclusion_x 2 Ax+ Bu; (3)

where x is the state vector and u the input vector. The

form of writing the system equations as a linear differential



inclusion allows to apply the proposed reachability algorithm

as presented in the next section. If the velocity was modeled

as another state instead of an uncertain parameter, the above

model would become nonlinear and thus more complicated

to analyze. There are methods for the reachability analysis

of nonlinear systems, but they would not yet fulfill the tight

restrictions on the allowed computational time [25]. This

problem is subject of future work.

TABLE I

VEHICLE PARAMETERS.M I	 lf lr1573 kg 2873 kg m2 1:1 m 1:58 mdS dT f = r �1:96 m 2:49 m 8000 N/rad 1dT dSlr lfv Æf�yT �ySxCGtail
sensor

front
sensor

Fig. 2. Bicycle model.

IV. REACHABILITY ANALYSIS

For the dynamic model (3) described in the previous sec-

tion, the set of reachable states is computed. The computation

considers uncertain initial states x(0) 2 X0, uncertain inputsu(t) 2 U , and uncertain parameters, where the latter is

considered by the interval matrices A and B. The exact set

of reachable states Re(r) for a time t = r can be formally

written as:Re(r) = �x(r)����x(t) = Z t0 [Ax(�) +Bu(�)℄ d�;x(0) 2 X0; A 2 A; B 2 B; 8t : u(t) 2 U�:
However, the reachable set of linear systems can be exactly

computed only for time invariant linear systems whose eigen-

values are rational or purely imaginary [26]. Since this is not

the case for the bicycle model, the reachable set R(r) has

to be over-approximated, so that R(r) � Re(r). The over-

approximated set for a time interval t 2 [0; r℄ is defined as

the union of all R(t) for t 2 [0; r℄: R([0; r℄) = St2[0;r℄R(t).
A. Overview of Reachable Set Computations

This section deals with the computation of reachable

sets for linear continuous systems with uncertain system

and input matrices as in (3). In order to focus on the

application of reachability analysis to evasive maneuvers,

only the most important aspects of reachability analysis are

treated. Many approaches, e.g. [27]–[30] developed for the

over-approximative computation of reachable sets of linear

systems use the following three basic steps:

1) computation of the reachable set R̂ without input at the

point in time tk := k �r, where r is the time increment,

2) generation of the convex hull of the time point solu-

tions at tk�1 and tk,

3) enlargement of the convex hull to ensure enclosure

of all trajectories for the current time interval t 2[tk�1; tk℄ under all possible inputs.

These steps are also illustrated in Fig. 3. Note that R̂ denotes

the reachable set of the homogeneous solution (no input),

while R denotes the overall reachable set consisting of the

homogeneous and the inhomogeneous solution. The separate

computation of the homogeneous and the inhomogeneous

solution is possible due to the superposition principle of

linear systems. Finally, the reachable set for the complete

time interval is obtained by the union of the intermediate

time intervals:R([0; tf ℄) = tf=r[k=1 R([tk�1; tk℄):
R̂(tk�1 )̂R(tk)

Convex
Hull ofR̂(tk�1),R̂(tk)R([tk�1; tk ℄)

➀ ➁ ➂

enlargement

Fig. 3. Main steps for the computation of reachable sets.

B. Algorithmic Formulation

The first step for the computation of the reachable set in

Fig. 3 is the computation of the reachable set at the next time

step tk. It is well known that the homogeneous solution of a

linear system is x(tk) = eArx(tk�1), where A is the system

matrix and r the time increment. Thus, the reachable set of

the homogeneous solution isR̂(tk) = eArR̂(tk�1): (4)

Since eAr shifts the time by r, the reachable set for a time

interval can be updated in the same manner: R̂([tk; tk+1℄) =eArR̂([tk�1; tk℄). However, the system matrix A 2 A is

uncertain in this work which requires to compute the set of

exponential matrices eA r = feArjA 2 Ag. This procedure

and the computation of reachable sets for a time intervalR̂([0; r℄) is explained in detail in [30] for the interested

reader.

As the superposition principle is applicable to linear

systems, the reachable set of the inhomogeneous solution

denoted by �R(t) is computed separately as shown in [30].

Combining the homogeneous solution with the inhomoge-

neous solution and applying the time shift from (4) yields

the main algorithm for the computation of the reachable set:



R̂([tk ; tk+1℄) = eA rR̂([tk�1; tk℄); (hom. sol.)�R([tk ; tk+1℄) = eA r �R([tk�1; tk℄) + �R([0; r℄); (inhom. sol.)R([tk; tk+1℄) = R̂([tk; tk+1℄) + �R([tk; tk+1℄) (overall sol.):
Note that the addition of two sets R̂([tk; tk+1℄) and�R([tk; tk+1℄) is also called Minkowski addition where each

element of one set is added to each other value of the other

set: A + B = fa+ bja 2 A; b 2 Bg. The algorithm can be

simplified toR([tk; tk+1℄) = eA rR([tk�1; tk℄) + �R([0; r℄): (5)

The set of reachable states is used in the next section

to obtain the set of occupied positions of the considered

vehicles.

V. SET OF OCCUPIED POSITIONS

This section deals with the computation of the occupancy

set, i.e. the set covering all areas occupied by the vehicle

body for time intervals [tk�1; tk℄. The set of vehicle centers

is simply obtained from the velocity uncertainty v 2 [v; v℄
and the initial position s0 2 [s0; s0℄:s�([tk�1; tk℄) = s0 + v tk�1; s�([tk�1; tk℄) = s0 + v tk:
Since s�(t) refers only to the position of the vehicle center,

the length l of the vehicle has to be taken into account:s = s� � 0:5 l and s = s� + 0:5 l.
It remains to consider the set of deviations from the

reference trajectory. In order to obtain a simple geometry of

the occupancy set, it is represented by a trapezoid, see Fig.

4. The directions of the parallel sides are determined by the

straight line from the position s([tk�1; tk℄) to s([tk�1; tk℄).
The directions of the non-parallel lines are given by the

normal vectors in s([tk�1; tk℄) and s([tk�1; tk℄). The parallel

sides are pushed outwards due to:� The curvature of the arc segment. An arc with length�s([tk�1; tk℄) = s([tk�1; tk℄) � s([tk�1; tk℄) covers

an angle range �� = �s �ref , where �ref is the

curvature. From elementary geometry it follows that the

corresponding parallel side of the trapezoid have to be

pushed outside by h = 1�ref (1�os(0:5�s �ref)), wherelim�ref!0 h = 0.� The intervals of deviation �yS([tk�1; tk℄) and�yT ([tk�1; tk℄) from the reference trajectory which

is obtained from the reachable set of the controlled

bicycle model (3).

In order to retain the trapezoidal representation of the

occupancy set, the parallel sets have to be pushed

outwards by the extreme values of �yS and �yT .

The maximum deviation interval �y 2 [�y;�y℄ is:�y = min(�yS ;�yT ) and �y = max(�yS ;�yT ).� The width w of the vehicle.

The values contributing to the enlargement of the occupancy

set are also marked in Fig. 4.

lw
�y �y 0:5 l0:5 l 0:5w0:5whs� s�s

s
�� perpendicular

reference
trajectory

occupancy set

y = min(�yS ;�yT )y = max(�yS ;�yT )h = 1�ref (1 � os(0:5��))
Fig. 4. Occupancy set of the vehicle.

VI. NUMERICAL EXAMPLE

The numerical example considers a situation in which

a wrong-way driver threatens two autonomously driving

vehicles on a road with three lanes. In order to minimize

the risk of a crash with the wrong-way driver, both vehiclesA and B plan a coordinated lane change maneuver as shown

in Fig. 7. It is assumed that the wrong-way driver does

not change lanes so that the task is to clear the leftmost

lane as fast as possible. Since the verification is limited

to communicating vehicles, the wrong-way driver is not

considered in the verification.

In this scenario, both evading vehicles have parameters

as listed in Tab. I and the controller parameters from (2).

The reference trajectory of both vehicles consists of two

arcs. The curvature values �ref are chosen such that the

nominal lateral accelerations along the reference trajectory

are aAlat = 0:4 g, aBlat = 0:3 g for vehicle A and B, whereg is the gravitational acceleration. The velocity of vehicleA is vA = 20 � 1m/s and vB = 24 � 1m/s for vehicleB. After combining the controller with the bicycle model of

the vehicle and after insertion of the vehicle and controller

parameters, the dynamic model for vehicle A is:24� _yS��yS� _yT��yT35 2 24 0 1 0 0�3:96 [�1:40;�1:36℄ 1:41 [0:27; 0:33℄0 0 0 14:33 [0:14; 0:18℄ �3:75 [0:02; 0:08℄3524�yS� _yS�yT� _yT35+24 0[�441;�361℄[84:6; 93:5℄[�441;�361℄35 �ref
The model of vehicle B is similar but differs due to

the different velocity interval. The initial states are within[�0:2; 0:2℄m for �yS , �yT and within [�0:2; 0:2℄m/s for� _yS and � _yT for both vehicles. The reachable set is

computed for a time step size of 0:04 sec.

A. Reachable Set

The reachable set of vehicle A for the first arc of the

reference trajectory together with exemplary trajectories are
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represent exemplary trajectories starting in the set of initial states.

plotted in Fig. 5. It can be observed that no trajectory leaves

the reachable set and that the reachable set is not overly

conservative, i.e. the trajectories are not far away from the

boundaries of the reachable set. The result for vehicle B is

similar and thus not shown.

For the second arc, the input �ref is changed. Due to

the uncertain vehicle velocity v, the time point for the

change of �ref is also uncertain within [tswith; tswith℄.
The computed over-approximative set of initial states for

the computation along the second arc is: X2nd ar0 =R1st ar([tswith; tswith℄). The union of reachable sets for

the time interval [tswith; tswith℄ is over-approximated by an

axis-aligned box and serves as the new initial set for the

reachability computations along the second arc, see Fig. 6.

For the remaining time intervals, zonotopes are used as a

representation of the reachable set [30]. The reachable set

together with randomly generated trajectories of vehicle A

for the second arc are shown in Fig. 6.

Note that the evasive trajectory can be composed by more

than two arcs so that other paths such as clothoids can be

approximated. In order to obtain an over-approximation of

the reachability computations for more complicated paths,

one can additionally specify the curvature �ref to be uncertain

within an interval for each arc segment.

B. Occupancy Set

In order to determine if a crash can occur, the reachable

set of the states �yS , � _yS , �yT and � _yT is used to obtain

the occupancy set for each time interval as presented in Sec.

V. The resulting occupancy sets for the described scenario

are found in Fig. 7(a). In order to efficiently check if the

occupancy sets of vehicle A and B intersect for any time

interval, candidates for possible intersection are searched

by over-approximating the occupancy set with bounding

boxes and checking for their intersection. For all intersection

candidates, it is finally checked if the trapezoids of the

occupancy sets intersect.

The evasive maneuver in Fig. 7(a) is verified as safe.

However, for a lateral acceleration of aAlat = 0:6 g, the

evasive maneuver cannot be verified collision-free as shown

in Fig. 7(b). It has also been checked if any of the vehicles

leaves the road boundary.

The computation time for the reachable set is 0:34 sec for

one vehicle on an AMD Athlon64 3700+ processor (single

core) in Matlab. This computational time is deterministic and

scales linearly with the time horizon. The collision check

took 0:05 sec on the same CPU. Note that the reachable

sets can be computed from each vehicle and then send to

the vehicle that does the collision check. The occupancy set

that has to be broadcast in this scenario is 25:8 kb which

can be broadcast with modern car to car communication

in less than 0:05 sec such that the total computation time

is 0:34 sec + 0:05 sec = 0:39 sec assuming an on-the-fly

collision check. Note that it is also possible to compute with

several alternative reference trajectories in parallel which

drastically increases the probability of finding a safe evasive

maneuver. In case no safe maneuver is found, one could

execute the one causing the least intersection of occupancy

sets. The computational time can be further decreased by

using specialized hardware such as GPUs or DSPs since

the computation of reachable sets is mainly performed using

matrix multiplications, see (5) and [30].

VII. CONCLUSIONS

An approach for the safety verification of evasive maneu-

vers of autonomous vehicles has been presented. The main

feature of this approach is the possibility to guarantee safety

under uncertainties (measurements, system parameters, dis-

turbances) by computing the reachable set of the vehicle. The

reachable set allows obtaining the set of occupied positions

which then guarantees safety if not intersected with any other

set of occupied positions. The computations are efficient

allowing the algorithms to be used online for the decision

of executing planned evasive maneuvers. Possible extensions

of the presented approach are the consideration of evasive

maneuvers with time varying velocity and paths that are not

limited to arc segments.
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(a) Evasive maneuver foraAlat = 0:4 g.
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(b) Evasive maneuver foraAlat = 0:6 g.

Fig. 7. Occupancy set of evasive maneuvers (the axis coordinates are
distances in meters).
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