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Safety Verification of Deep Neural Networks⋆

Xiaowei Huang, Marta Kwiatkowska, Sen Wang and Min Wu

Department of Computer Science, University of Oxford

Abstract. Deep neural networks have achieved impressive experimental results

in image classification, but can surprisingly be unstable with respect to adversar-

ial perturbations, that is, minimal changes to the input image that cause the net-

work to misclassify it. With potential applications including perception modules

and end-to-end controllers for self-driving cars, this raises concerns about their

safety. We develop a novel automated verification framework for feed-forward

multi-layer neural networks based on Satisfiability Modulo Theory (SMT). We

focus on image manipulations, such as scratches or changes to camera angle or

lighting conditions, and define safety for an image classification decision in terms

of invariance of the classification with respect to manipulations of the original im-

age within a region of images that are close to it. We enable exhaustive search of

the region by employing discretisation, and propagate the analysis layer by layer.

Our method works directly with the network code and, in contrast to existing

methods, can guarantee that adversarial examples, if they exist, are found for the

given region and family of manipulations. If found, adversarial examples can be

shown to human testers and/or used to fine-tune the network. We implement the

techniques using Z3 and evaluate them on state-of-the-art networks, including

regularised and deep learning networks. We also compare against existing tech-

niques to search for adversarial examples and estimate network robustness.

1 Introduction

Deep neural networks have achieved impressive experimental results in image classifi-

cation, matching the cognitive ability of humans [23] in complex tasks with thousands

of classes. Many applications are envisaged, including their use as perception modules

and end-to-end controllers for self-driving cars [15]. Let Rn be a vector space of images

(points) that we wish to classify and assume that f : Rn → C, where C is a (finite) set of

class labels, models the human perception capability, then a neural network classifier is

a function f̂ (x) which approximates f (x) from M training examples {(xi, ci)}i=1,..,M . For

example, a perception module of a self-driving car may input an image from a camera

and must correctly classify the type of object in its view, irrespective of aspects such

as the angle of its vision and image imperfections. Therefore, though they clearly in-

clude imperfections, all four pairs of images in Figure 1 should arguably be classified

as automobiles, since they appear so to a human eye.

Classifiers employed in vision tasks are typically multi-layer networks, which prop-

agate the input image through a series of linear and non-linear operators. They are
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high-dimensional, often with millions of dimensions (often larger than 106), non-linear

and potentially discontinuous: even a small network, such as that trained to classify

hand-written images of digits 0-9, has over 60,000 real-valued parameters and 21,632

neurons (dimensions) in its first layer. At the same time, they are trained on a finite data

set and expected to generalise to previously unseen images. To increase the probability

of correctly classifying such an image, regularisation techniques such as dropout are

typically used, which improves the smoothness of the classifiers, in the sense that im-

ages that are close (within ǫ distance) of a training point are assigned the same class

label.

automobile to bird automobile to frog automobile to airplane automobile to horse

Fig. 1. Automobile images (classified correctly) and their perturbed images (classified wrongly)

Unfortunately, it has been observed in [13, 36] that deep neural networks, includ-

ing highly trained and smooth networks optimised for vision tasks, are unstable with

respect to so called adversarial perturbations. Such adversarial perturbations are (min-

imal) changes to the input image, often imperceptible to the human eye, that cause the

network to misclassify the image. Examples include not only artificially generated ran-

dom perturbations, but also (more worryingly) modifications of camera images [22] that

correspond to resizing, cropping or change in lighting conditions. They can be devised

without access to the training set [29] and are transferable [19], in the sense that an ex-

ample misclassified by one network is also misclassified by a network with a different

architecture, even if it is trained on different data. Figure 1 gives adversarial pertur-

bations of automobile images that are misclassified as a bird, frog, airplane or horse

by a highly trained state-of-the-art network. This obviously raises potential safety con-

cerns for applications such as autonomous driving and calls for automated verification

techniques that can verify the correctness of their decisions.

Safety of AI systems is receiving increasing attention, to mention [33, 10], in view

of their potential to cause harm in safety-critical situations such as autonomous driving.

Typically, decision making in such systems is either solely based on machine learning,

through end-to-end controllers, or involves some combination of logic-based reasoning

and machine learning components, where an image classifier produces a classification,

say speed limit or a stop sign, that serves as input to a controller. A recent trend towards

“explainable AI” has led to approaches that learn not only how to assign the classifica-

tion labels, but also additional explanations of the model, which can take the form of

a justification explanation (why this decision has been reached, for example identify-

ing the features that supported the decision) [17, 31]. In all these cases, the safety of a

decision can be reduced to ensuring the correct behaviour of a machine learning com-

ponent. However, safety assurance and verification methodologies for machine learning

are little studied.

The main difficulty with image classification tasks, which play a critical role in per-

ception modules of autonomous driving controllers, is that they do not have a formal



specification in the usual sense: ideally, the performance of a classifier should match the

perception ability and class labels assigned by a human. Traditionally, the correctness of

a neural network classifier is expressed in terms of risk [37], defined as the probability

of misclassification of a given image, weighted with respect to the input distribution µ

of images. Similar (statistical) robustness properties of deep neural network classifiers,

which compute the average minimum distance to a misclassification and are indepen-

dent of the data point, have been studied and can be estimated using tools such as Deep-

Fool [25] and cleverhans [27]. However, we are interested in the safety of an individual

decision, and to this end focus on the key property of the classifier being invariant to

perturbations at a given point. This notion is also known as pointwise robustness [18,

12] or local adversarial robustness [21].

Contributions. In this paper we propose a general framework for automated verifi-

cation of safety of classification decisions made by feed-forward deep neural networks.

Although we work concretely with image classifiers, the techniques can be generalised

to other settings. For a given image x (a point in a vector space), we assume that there

is a (possibly infinite) region η around that point that incontrovertibly supports the de-

cision, in the sense that all points in this region must have the same class. This region is

specified by the user and can be given as a small diameter, or the set of all points whose

salient features are of the same type. We next assume that there is a family of operations

∆, which we call manipulations, that specify modifications to the image under which the

classification decision remains invariant in the region η. Such manipulations can repre-

sent, for example, camera imprecisions, change of camera angle, or replacement of a

feature. We define a network decision to be safe for input x and region η with respect to

the set of manipulations ∆ if applying the manipulations on x will not result in a class

change for η. We employ discretisation to enable a finite exhaustive search of the high-

dimensional region η for adversarial misclassifications. The discretisation approach is

justified in the case of image classifiers since they are typically represented as vectors of

discrete pixels (vectors of 8 bit RGB colours). To achieve scalability, we propagate the

analysis layer by layer, mapping the region and manipulations to the deeper layers. We

show that this propagation is sound, and is complete under the additional assumption of

minimality of manipulations, which holds in discretised settings. In contrast to existing

approaches [36, 28], our framework can guarantee that a misclassification is found if it

exists. Since we reduce verification to a search for adversarial examples, we can achieve

safety verification (if no misclassifications are found for all layers) or falsification (in

which case the adversarial examples can be used to fine-tune the network or shown to a

human tester).

We implement the techniques using Z3 [8] in a tool called DLV (Deep Learning Ver-

ification) [2] and evaluate them on state-of-the-art networks, including regularised and

deep learning networks. This includes image classification networks trained for clas-

sifying hand-written images of digits 0-9 (MNIST), 10 classes of small colour images

(CIFAR10), 43 classes of the German Traffic Sign Recognition Benchmark (GTSRB)

[35] and 1000 classes of colour images used for the well-known imageNet large-scale

visual recognition challenge (ILSVRC) [4]. We also perform a comparison of the DLV

falsification functionality on the MNIST dataset against the methods of [36] and [28],

focusing on the search strategies and statistical robustness estimation. The perturbed



images in Figure 1 are found automatically using our tool for the network trained on

the CIFAR10 dataset.

This invited paper is an extended and improved version of [20], where an extended

version including appendices can also be found.

2 Background on Neural Networks

We consider feed-forward multi-layer neural networks [14], henceforth abbreviated as

neural networks. Perceptrons (neurons) in a neural network are arranged in disjoint

layers, with each perceptron in one layer connected to the next layer, but no connection

between perceptrons in the same layer. Each layer Lk of a network is associated with

an nk-dimensional vector space DLk
⊆ Rnk , in which each dimension corresponds to

a perceptron. We write Pk for the set of perceptrons in layer Lk and nk = |Pk | is the

number of perceptrons (dimensions) in layer Lk.

Formally, a (feed-forward and deep) neural network N is a tuple (L,T, Φ), where

L = {Lk | k ∈ {0, ..., n}} is a set of layers such that layer L0 is the input layer and Ln

is the output layer, T ⊆ L × L is a set of sequential connections between layers such

that, except for the input and output layers, each layer has an incoming connection and

an outgoing connection, and Φ = {φk | k ∈ {1, ..., n}} is a set of activation functions

φk : DLk−1
→ DLk

, one for each non-input layer. Layers other than input and output

layers are called the hidden layers.

The network is fed an input x (point in DL0
) through its input layer, which is then

propagated through the layers by successive application of the activation functions. An

activation for point x in layer k is the value of the corresponding function, denoted

αx,k = φk(φk−1(...φ1(x))) ∈ DLk
, where αx,0 = x. For perceptron p ∈ Pk we write

αx,k(p) for the value of its activation on input x. For every activation αx,k and layer

k′ < k, we define Prek′ (αx,k) = {αy,k′ ∈ DLk′
| αy,k = αx,k} to be the set of activations in

layer k′ whose corresponding activation in layer Lk is αx,k. The classification decision

is made based on the activations in the output layer by, e.g., assigning to x the class

arg maxp∈Pn
αx,n(p). For simplicity, we use αx,n to denote the class assigned to input x,

and thus αx,n = αy,n expresses that two inputs x and y have the same class.

The neural network classifier N represents a function f̂ (x) which approximates

f (x) : DL0
→ C, a function that models the human perception capability in labelling im-

ages with labels from C, from M training examples {(xi, ci)}i=1,..,M . Image classification

networks, for example convolutional networks, may contain many layers, which can

be non-linear, and work in high dimensions, which for the image classification prob-

lems can be of the order of millions. Digital images are represented as 3D tensors of

pixels (width, height and depth, the latter to represent colour), where each pixel is a dis-

crete value in the range 0..255. The training process determines real values for weights

used as filters that are convolved with the activation functions. Since it is difficult to

approximate f with few samples in the sparsely populated high-dimensional space, to

increase the probability of classifying correctly a previously unseen image, various reg-

ularisation techniques such as dropout are employed. They improve the smoothness of

the classifier, in the sense that points that are ǫ-close to a training point (potentially

infinitely many of them) classify the same.



In this paper, we work with the code of the network and its trained weights.

3 The Verification Framework

In this section we define our notion of safety for a neural network, based on the concept

of a manipulation of an image, and propose a verification framework. The main chal-

lenge is to ensure finite exhaustive coverage in presence of high-dimensionality and

non-linearity, which we address by developing a layer-by-layer analysis approach.

Safety and Robustness Our method assumes the existence of a (possibly infinite)

region η around a data point (image) x such that all points in the region are indistin-

guishable by a human, and therefore have the same true class. This region is under-

stood as supporting the classification decision and for simplicity we identify such a

region via its diameter d with respect to some user-specified norm, which intuitively

measures the closeness to the point x. As defined in [18], a network f̂ approximating

human capability f is said to be not robust at x if there exists a point y in the region

η = {z ∈ DL0
| ||z − x|| ≤ d} of the input layer such that f̂ (x) , f̂ (y). The point y, at

a minimal distance from x, is known as an adversarial example. We define safety at a

point following the same intuition, except that we work layer by layer, and therefore

will identify such a region ηk, a subspace of DLk
, at each layer Lk, for k ∈ {0, ..., n},

and successively refine the regions through the deeper layers. We justify this choice

based on the observation [11, 23, 24] that deep neural networks are thought to com-

pute progressively more powerful invariants as the depth increases. In other words, they

gradually transform images into a representation in which the classes are separable by

a linear classifier.

Assumption 1 For each activation αx,k of point x in layer Lk, the region ηk(αx,k) con-

tains activations that the human observer believes to be so close to αx,k that they should

be classified the same as x.

Intuitively, safety for network N at a point x means that the classification decision is

robust at x against perturbations within the region ηk(αx,k). Note that, while the pertur-

bation is applied in layer Lk, the classification decision is based on the activation in the

output layer Ln.

Definition 1. [General Safety] Let ηk(αx,k) be a region in layer Lk of a neural network

N such that αx,k ∈ ηk(αx,k). We say that N is safe for input x and region ηk(αx,k), written

as N, ηk |= x, if for all activations αy,k in ηk(αx,k) we have αy,n = αx,n.

We remark that, unlike the notions of risk [37] and robustness of [18, 12], we work

with safety for a specific point and do not account for the input distribution, but such

expectation measures can be considered; see Section 6 for comparison.

Manipulations A key concept of our framework is the notion of a manipulation, an

operator that intuitively models image perturbations, for example bad angles, scratches

or weather conditions, the idea being that the classification decisions in a region of



images close to it should be invariant under such manipulations. Judicious choice of

families of such manipulations and appropriate distance metrics is particularly impor-

tant. For simplicity, we work with operators δk : DLk
→ DLk

over the activations in the

vector space of layer k, and consider the Euclidean (L2) and Manhattan (L1) norms to

measure the distance between an image and its perturbation through δk, but the tech-

niques generalise to other norms discussed in [18, 19, 12]. More specifically, applying

a manipulation δk(αx,k) to an activation αx,k will result in another activation such that

the values of some or all dimensions are changed. We therefore represent a manip-

ulation as a hyper-rectangle, defined for two activations αx,k and αy,k of layer Lk by

rec(αx,k, αy,k) = ×p∈Pk
[min(αx,k(p), αy,k(p)), max(αx,k(p), αy,k(p))]. The main challenge

for verification is the fact that the region ηk contains potentially an uncountable number

of activations. Our approach relies on discretisation in order to enable a finite explo-

ration of the region to discover and/or rule out adversarial perturbations.

For an activation αx,k and a set ∆ of manipulations, we denote by rec(∆, αx,k) the

polyhedron which includes all hyper-rectangles that result from applying some manip-

ulation in ∆ on αx,k, i.e., rec(∆, αx,k) =
⋃

δ∈∆ rec(αx,k, δ(αx,k)). Let ∆k be the set of all

possible manipulations for layer Lk. To ensure region coverage, we define valid manip-

ulation as follows.

Definition 2. Given an activation αx,k, a set of manipulations V(αx,k) ⊆ ∆k is valid if

αx,k is an interior point of rec(V(αx,k), αx,k), i.e., αx,k is in rec(V(αx,k), αx,k) and does

not belong to the boundary of rec(V(αx,k), αx,k).

Figure 2 presents an example of valid manipulations in two-dimensional space: each

arrow represents a manipulation, each dashed box represents a (hyper-)rectangle of the

corresponding manipulation, and activation αx,k is an interior point of the space from

the dashed boxes.

δ1δ1

δ2δ2

δ3δ3

δ4δ4

αx,kαx,k

Fig. 2. Example of a set {δ1, δ2, δ3, δ4} of valid manipulations in a 2-dimensional space

The choice of the type of manipulation is dependent on the application and user-

defined, reflecting knowledge of the classification problem to model perturbations that

should or should not be allowed. Since we work with discretised spaces, which is a

reasonable assumption for images, we introduce the notion of a minimal manipulation.

If applying a minimal manipulation, it suffices to check for misclassification just at

the end points, that is, αx,k and δk(αx,k). This allows an exhaustive, albeit impractical,

exploration of the region in unit steps.

A manipulation δ1
k
(αy,k) is finer than δ2

k
(αx,k), written as δ1

k
(αy,k) ≤ δ2

k
(αx,k), if any

activation in the hyper-rectangle of the former is also in the hyper-rectangle of the latter.



It is implied in this definition that αy,k is an activation in the hyper-rectangle of δ2
k
(αx,k).

Moreover, we write δk,k′ (αx,k) for φk′ (...φk+1(δk(αx,k))), representing the corresponding

activation in layer k′ ≥ k after applying manipulation δk on the activation αx,k, where

δk,k(αx,k) = δk(αx,k).

Definition 3. A manipulation δk on an activation αx,k is minimal if there does not exist

manipulations δ1
k

and δ2
k

and an activation αy,k such that δ1
k
(αx,k) ≤ δk(αx,k), αy,k =

δ1
k
(αx,k), δk(αx,k) = δ2

k
(αy,k), and αy,n , αx,n and αy,n , δk,n(αx,k).

Intuitively, a minimal manipulation does not have a finer manipulation that results in

a different classification. However, it is possible to have different classifications before

and after applying the minimal manipulation, i.e., it is possible that δk,n(αx,k) , αx,n. It

is not hard to see that the minimality of a manipulation implies that the class change in

its associated hyper-rectangle can be detected by checking the class of the end points

αx,k and δk(αx,k).

Bounded Variation Recall that we apply manipulations in layer Lk, but check the

classification decisions in the output layer. To ensure finite, exhaustive coverage of

the region, we introduce a continuity assumption on the mapping from space DLk
to

the output space DLn
, adapted from the concept of bounded variation [9]. Given an

activation αx,k with its associated region ηk(αx,k), we define a “ladder” on ηk(αx,k) to

be a set ld of activations containing αx,k and finitely many, possibly zero, activations

from ηk(αx,k). The activations in a ladder can be arranged into an increasing order

αx,k = αx0,k < αx1,k < ... < αx j,k such that every activation αxt ,k ∈ ld appears once and

has a successor αxt+1,k such that αxt+1,k = δk(αxt ,k) for some manipulation δk ∈ V(αxt ,k).

For the greatest element αx j,k, its successor should be outside the region ηk(αx,k), i.e.,

αx j+1,k < ηk(αx,k). Given a ladder ld, we write ld(t) for its t + 1-th activation, ld[0..t] for

the prefix of ld up to the t + 1-th activation, and last(ld) for the greatest element of ld.

Figure 3 gives a diagrammatic explanation on the ladders.

Definition 4. Let L(ηk(αx,k)) be the set of ladders in ηk(αx,k). Then the total variation

of the region ηk(αx,k) on the neural network with respect to L(ηk(αx,k)) is

V(N; ηk(αx,k)) = sup
ld∈L(ηk(αx,k))

∑

αxt ,k∈ld\{last(ld)}

diffn(αxt ,n, αxt+1,n)

where diffn : DLn
× DLn

→ {0, 1} is given by diffn(αx,n, αy,n) = 0 if αx,n = αy,n and 1

otherwise. We say that the region ηk(αx,k) is a bounded variation if V(N; ηk(αx,k)) < ∞,

and are particularly interested in the case when V(N; rk(αy,k)) = 0, which is called a

0-variation.

The setL(ηk(αx,k)) is complete if, for any ladder ld ∈ L(ηk(αx,k)) of j+1 activations,

any element ld(t) for 0 ≤ t ≤ j, and any manipulation δk ∈ V(ld(t)), there exists a ladder

ld′ ∈ L(ηk(αx,k)) such that ld′[0..t] = ld[0..t] and ld′(t + 1) = δk(ld(t)). Intuitively, a

complete ladder is a complete tree, on which each node represents an activation and

each branch of a node corresponds to a valid manipulation. From the root αx,k, every



δkδk

δkδk

δkδk

δkδk

δkδk

δkδk

αx,k = αx0,kαx,k = αx0,k
αx1,kαx1,k

αx2,kαx2,k

αxj ,kαxj ,k

αxj+1,kαxj+1,k
ηk(αx,k)ηk(αx,k)

Fig. 3. Examples of ladders in region ηk(αx,k). Starting from αx,k = αx0 ,k, the activations

αx1 ,k...αx j ,k form a ladder such that each consecutive activation results from some valid manipula-

tion δk applied to a previous activation, and the final activation αx j ,k is outside the region ηk(αx,k).

path of the tree leading to a leaf is a ladder. Moreover, the set L(ηk(αx,k)) is covering if

the polyhedra of all activations in it cover the region ηk(αx,k), i.e.,

ηk(αx,k) ⊆
⋃

ld∈L(ηk(αx,k))

⋃

αxt ,k∈ld\{last(ld)}

rec(V(αxt ,k), αxt ,k). (1)

Based on the above, we have the following definition of safety with respect to a set

of manipulations. Intuitively, we iteratively and nondeterministically apply manipula-

tions to explore the region ηk(αx,k), and safety means that no class change is observed

by successive application of such manipulations.

Definition 5. [Safety wrt Manipulations] Given a neural network N, an input x and a

set ∆k of manipulations, we say that N is safe for input x with respect to the region ηk

and manipulations ∆k, written as N, ηk, ∆k |= x, if the region ηk(αx,k) is a 0-variation for

the set L(ηk(αx,k)) of its ladders, which is complete and covering.

It is straightforward to note that general safety in the sense of Definition 1 implies

safety wrt manipulations, in the sense of Definition 5.

Theorem 1. Given a neural network N, an input x, and a region ηk, we have that

N, ηk |= x implies N, ηk, ∆k |= x for any set of manipulations ∆k.

In the opposite direction, we require the minimality assumption on manipulations.

Theorem 2. Given a neural network N, an input x, a region ηk(αx,k) and a set ∆k of

manipulations, we have that N, ηk, ∆k |= x implies N, ηk |= x if the manipulations in ∆k

are minimal.



Theorem 2 means that, under the minimality assumption over the manipulations, an

exhaustive search through the complete and covering ladder tree from L(ηk(αx,k)) can

find adversarial examples, if any, and enable us to conclude that the network is safe

at a given point if none are found. Though computing minimal manipulations is not

practical, in discrete spaces by iterating over increasingly refined manipulations we are

able to rule out the existence of adversarial examples in the region. This contrasts with

partial exploration according to, e.g., [25, 12]; for comparison see Section 7.

Layer by Layer Analysis Now we consider how to propagate the analysis layer by

layer. To facilitate such analysis, in addition to the activation function φk : DLk−1
→ DLk

we also require a mapping ψk : DLk
→ DLk−1

in the opposite direction, to represent how

a manipulated activation of layer Lk affects the activations of layer Lk−1. We can simply

take ψk as the inverse function of φk. In order to propagate safety of regions ηk(αx,k) at a

point x into deeper layers, we assume the existence of functions ηk that map activations

to regions, and impose the following restrictions on the functions φk and ψk, shown

diagrammatically in Figure 4.

Definition 6. The functions {η0, η1, ..., ηn} and {ψ1, ..., ψn} mapping activations to re-

gions are such that

1. ηk(αx,k) ⊆ DLk
, for k = 0, ..., n,

2. αx,k ∈ ηk(αx,k), for k = 0, ..., n, and

3. ηk−1(αi,k−1) ⊆ ψk(ηk(αx,k)) for all k = 1, ..., n.

Intuitively, the first two conditions state that each function ηk assigns a region around

the activation αx,k, and the last condition that mapping the region ηk from layer Lk to

Lk−1 via ψk should cover the region ηk−1. The aim is to compute functions ηk+1, ..., ηn

based on ηk and the neural network.

The size and complexity of a deep neural network generally means that determining

whether a given set ∆k of manipulations is minimal is intractable. To partially counter

this, we define a refinement relation between safety wrt manipulations for consecutive

layers in the sense that N, ηk, ∆k |= x is a refinement of N, ηk−1, ∆k−1 |= x if all ma-

nipulations δk−1 in ∆k−1 are refined by a sequence of manipulations δk from the set ∆k.

Therefore, although we cannot theoretically confirm the minimality of ∆k, they are re-

fined layer by layer and, in discrete settings, this process can be bounded from below

by the unit step. Moreover, we can work gradually from a specific layer inwards until

an adversarial example is found, finishing processing when reaching the output layer.

The refinement framework is given in Figure 5. The arrows represent the implication

relations between the safety notions and are labelled with conditions if needed. The

goal of the refinements is to find a chain of implications to justify N, η0 |= x. The

fact that N, ηk |= x implies N, ηk−1 |= x is due to the constraints in Definition 6 when

ψk = φ
−1
k

. The fact that N, ηk |= x implies N, ηk, ∆k |= x follows from Theorem 1. The

implication from N, ηk, ∆k |= x to N, ηk |= x under the condition that ∆k is minimal is

due to Theorem 2.

We now define the notion of refinability of manipulations between layers. Intu-

itively, a manipulation in layer Lk−1 is refinable in layer Lk if there exists a sequence of

manipulations in layer Lk that implements the manipulation in layer Lk−1.
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Fig. 4. Layer by layer analysis according to Definition 6

Definition 7. A manipulation δk−1(αy,k−1) is refinable in layer Lk if there exist activa-

tions αx0,k, ..., αx j,k ∈ DLk
and valid manipulations δ1

k
∈ V(αx0,k), ..., δ

j

k
∈ V(αx j−1,k) such

that αy,k = αx0,k, δk−1,k(αy,k−1) = αx j,k, and αxt ,k = δt
k
(αxt−1,k) for 1 ≤ t ≤ j. Given a

neural network N and an input x, the manipulations ∆k are a refinement by layer of

ηk−1, ∆k−1 and ηk if, for all αy,k−1 ∈ ηk−1(αz,k−1), all its valid manipulations δk−1(αy,k−1)

are refinable in layer Lk.

N, η0 |= xN, η0 |= x N, η1 |= xN, η1 |= x N, η2 |= xN, η2 |= x N, ηk |= xN, ηk |= x

N, η1,∆1 |= xN, η1,∆1 |= x N, η2,∆2 |= xN, η2,∆2 |= x N, ηk,∆k |= xN, ηk,∆k |= x

∆k∆k is minimal

…                 

…                 

Fig. 5. Refinement framework

We have the following theorem stating that the refinement of safety notions is im-

plied by the “refinement by layer” relation.

Theorem 3. Assume a neural network N and an input x. For all layers k ≥ 1, if manip-

ulations ∆k are refinement by layer of ηk−1, ∆k−1 and ηk, then we have that N, ηk, ∆k |= x

implies N, ηk−1, ∆k−1 |= x.

We note that any adversarial example of safety wrt manipulations N, ηk, ∆k |= x

is also an adversarial example for general safety N, ηk |= x. However, an adversarial

example αx,k for N, ηk |= x at layer k needs to be checked to see if it is an adversarial

example of N, η0 |= x, i.e. for the input layer. Recall that Prek′ (αx,k) is not necessarily

unique. This is equivalent to checking the emptiness of Pre0(αx,k)∩ η0(αx,0). If we start

the analysis with a hidden layer k > 0 and there is no specification for η0, we can instead

consider checking the emptiness of {αy,0 ∈ Pre0(αx,k) | αy,n , αx,n}.

While Theorem 1 and 2 provide a finite way to verify safety of a deep neural net-

work against adversarial manipulations, the high-dimensionality of the region ηk(αx,k)



can make any computational approach impractical. In our implementation, we use the

concept of a feature to divide the region ηk(αx,k) into a set of features, and exploit

their independence and low-dimensionality, see 4.2. It has been argued, in e.g. [16]

for natural images, that natural data, for example natural images and sound, forms a

high-dimensional manifold, which embeds tangled manifolds to represent their fea-

tures. Feature manifolds usually have lower dimension than the data manifold, and a

classification algorithm is to separate a set of tangled manifolds. By assuming that the

appearance of features is independent, we can manipulate them one by one regardless

of the manipulation order, and thus reduce the problem of size O(2d1+...+dm ) into a set of

smaller problems of size O(2d1 ), ...,O(2dm ).

4 Implementation

The theory developed in the previous section can be summarised as a verification pro-

cedure given below.

Algorithm 1 Given a neural network N and an input x, recursively perform the fol-

lowing steps, starting from some layer l ≥ 0. Let k ≥ l be the current layer under

consideration.

1. find a region ηk such that if k > l then ηk and ηk−1 satisfy Definition 6;

2. find a manipulation set ∆k such that if k > l then ∆k is a refinement by layer of

ηk−1, ∆k−1 and ηk according to Definition 7;

3. verify whether N, ηk, ∆k |= x,

(a) if N, ηk, ∆k |= x then

i. report that N is safe at x with respect to ηk(αx,k) and ∆k, and

ii. continue to layer k + 1;

(b) if N, ηk, ∆k 6|= x, then report an adversarial example.

The procedure terminates when reaching a specific layer or a timeout bound.

The main challenge in the above is identifying the region ηk and sets of manipula-

tions ∆k, which intuitively correspond to perturbations of the image such as scratches

and imperfections. In our implementation, these are determined automatically, see Ap-

pendix 4.1, but they can be specified by the user for the classification problem at hand.

Similarly to [36, 18, 25], we consider the Euclidean distance between the image x

and its perturbation, except that we compute the distance between activations in the

hidden layers, rather than images in the input layer, and can deal with more refined

measurements. The methods can be extended to other norms used in [19, 12]. For the

choice of manipulations, since we work with features (see Appendix ??), we select a

subset of dimensions (perceptrons) according to a simple heuristic, namely, we select

those dimensions that are far away from the average activation value of the layer. This is

critical to obtain reasonable performance on state-of-the art networks, and we find that

for networks with thousands of dimensions an adversarial example can often be found

quickly by considering only a dozen of dimensions in the hidden layer. The justification

for our choice of heuristics is that the knowledge represented by activations in deeper



layers is more explicit, as the networks are thought to increase in regularity as the depth

increases.

We implement Algorithm 1 by utilising satisfiability modulo theory (SMT) solvers.

The SMT problem is a decision problem for logical formulas with respect to combina-

tions of background theories expressed in classical first-order logic with equality. For

checking refinement by layer, we use the theory of linear real arithmetic with existen-

tial and universal quantifiers, and for verification within a layer (0-variation) we use the

same theory but without universal quantification. The details of the encoding and the ap-

proach taken to compute the regions and manipulations are described in Appendix 4.1.

We note that we work with a single point rather than activation functions.

4.1 Selection of Regions and Manipulations

The procedure in Algorithm 1 can start from any layer Ll in the network, which gives

the user the flexibility to select the regions ηk and manipulations ∆k for k ≥ l. The tool

implements an automated procedure to select these according to parameters {dimsl}∪Vl,

which are described below.

For the first layer to be considered, i.e., k = l, the region ηk(αx,k) is defined by first

selecting the subset of dimsk dimensions from Pk whose activation values are furthest

away from the average activation value of the layer1. Intuitively, the knowledge repre-

sented by these activations is more explicit than the knowledge represented by the other

dimensions, and manipulations over more explicit knowledge are more likely to result

in a class change. Let avgk = (
∑

p∈Pk
αx,k(p))/nk be the average activation value of layer

Lk. We let dimsk(ηk(αx,k)) be the first dimsk dimensions p ∈ Pk with the greatest values

|αx,k(p) − avg| among all dimensions, and then define

ηk(αx,k) = ×p∈dimsk(ηk(αx,k))[αx,k(p) − sp ∗ mp, αx,k(p) + sp ∗ mp] (2)

i.e., a dimsk-polytope containing the activation αx,k, where sp represents a small span

and mp represents the number of such spans. Let Vk = {sp,mp | p ∈ dimsk(ηk(αx,k))} be

a set of variables.

Let d be a function mapping from dimsk(ηk(αx,k)) to {−1, 0,+1} such that {d(p) ,

0 | p ∈ dimsk(ηk(αx,k))} , ∅, and D(dimsk(ηk(αx,k))) be the set of such functions. Let a

manipulation δd
k

be

δd
k (αy,k)(p) =



















αy,k(p) − sp if d(p) = −1

αy,k(p) if d(p) = 0

αy,k(p) + sp if d(p) = +1

(3)

for activation αy,k ∈ ηk(αx,k). That is, each manipulation changes a subset of the dimen-

sions by the span sp, according to the directions given in d. The set ∆k is defined by col-

lecting the set of all such manipulations. Based on this, we can define a set L(ηk(αx,k))

of ladders, which is complete and covering.

1 We also considered other approaches, including computing derivatives up to several layers, but

for the experiments we conduct they are less effective.



Determining the region ηk according to ηk−1 Given ηk−1(αx,k−1) and the functions

φk and ψk, the tool automatically finds a region ηk(αx,k) satisfying Definition 6 using

the following approach. According to the function φk, the activation value αx,k(p) of

perceptron p ∈ Pk is computed from activation values of a subset of perceptrons in

Pk−1. We let Vars(p) ⊆ Pk−1 be such a set of perceptrons. The selection of dimensions

in dimsk(ηk(αx,k)) depends on dimsk−1(ηk−1(αx,k−1)) and φk, by requiring that, for every

p′ ∈ dimsk−1(ηk−1(αx,k−1)), there is at least one dimension p ∈ dimsk(ηk(αx,k)) such that

p′ ∈ Vars(p). In the tool, we let

dimsk(ηk(αx,k)) = {arg max
p∈Pk

{ |αx,k(p)−avgk | | p
′ ∈ Vars(p)} | p′ ∈ dimsk−1(ηk−1(αx,k−1))}

(4)

Therefore, the restriction of Definition 6 can be expressed with the following formula:

∀αy,k−1 ∈ ηk(αx,k−1) : αy,k−1 ∈ ψk(ηk(αx,k)) (5)

We omit the details of rewriting αy,k−1 ∈ ηk(αx,k−1) and αy,k−1 ∈ ψk(ηk(αx,k)) into boolean

expressions, which follow from standard techniques. Note that this expression includes

variables in Vk,Vk−1 and αy,k−1. The variables in Vk−1 are fixed for a given ηk−1(αx,k−1).

Because such a region ηk(αx,k) always exists, a simple iterative procedure can be in-

voked to gradually increase the size of the region represented with variables in Vk to

eventually satisfy the expression.

Determining the manipulation set ∆k according to ηk(αx,k), ηk−1(αx,k−1), and ∆k−1

The values of the variables Vk obtained from the satisfiability of Expression (5) yield a

definition of manipulations using Expression (3). However, the obtained values for span

variables sp do not necessarily satisfy the “refinement by layer” relation as defined

in Definition 7. Therefore, we need to adapt the values for the variables Vk while, at

the same time, retaining the region ηk(αx,k). To do so, we could rewrite the constraint

in Definition 7 into a formula, which can then be solved by an SMT solver. But, in

practice, we notice that such precise computations easily lead to overly small spans sp,

which in turn result in an unacceptable amount of computation needed to verify the

relation N, ηk, ∆k |= x.

To reduce computational cost, we work with a weaker “refinable in layer Lk” notion,

parameterised with respect to precision. Given two activations αy,k and αm,k, we use

dist(αy,k, αm,k) to represent their Euclidean distance.

Definition 8. A manipulation δk−1(αy,k−1) is refinable in layer Lk with precision ε > 0

if there exists a sequence of activations αx0,k, ..., αx j,k ∈ DLk
and valid manipulations

δ1
k
∈ V(αx0,k), ..., δd

k
∈ V(αx j−1,k) such that αy,k = αx0,k, δk−1,k(αy,k−1) ∈ rec(αx j−1,k, αx j,k),

dist(αx j−1,k, αx j,k) ≤ ǫ, and αxt ,k = δ
t
k
(αxt−1,k) for 1 ≤ t ≤ j. Given a neural network N

and an input x, the manipulations ∆k are a refinement by layer of ηk, ηk−1, ∆k−1 with

precision ε if, for all αy,k−1 ∈ ηk−1(αx,k−1), all its legal manipulations δk−1(αy,k−1) are

refinable in layer Lk with precision ε.

Comparing with Definition 7, the above definition replaces δk−1,k(αy,k−1) = αx j,k

with δk−1,k(αy,k−1) ∈ rec(αx j−1,k, αx j,k) and dist(αx j−1,k, αx j,k) ≤ ε. Intuitively, instead of



requiring a manipulation to reach the activation δk−1,k(αy,k−1) precisely, this definition

allows for each δk−1,k(αy,k−1) to be within the hyper-rectangle rec(αx j−1,k, αx j,k). To find

suitable values for Vk according to the approximate “refinement-by-layer” relation with

precision, we use a variable h to represent the maximal number of manipulations of

layer Lk used to express a manipulation in layer k−1. The tool automatically adapts the

value of h (and variables sp and np in Vk) to ensure the satisfiability of the following

formula, which expresses the constraints of Definition 8.

∀αy,k−1 ∈ ηk(αx,k−1)∀d ∈ D(dimsk(ηk(αx,k−1)))∀δd
k−1
∈ Vk−1(αy,k−1)

∃αy0,k, ..., αyh,k ∈ ηk(αx,k) : αy0,k = αy,k ∧
∧h−1

t=0 αyt+1,k = δ
d
k
(αyt ,k)∧

∨h−1
t=0 (δd

k−1,k
(αy,k) ∈ rec(αyt ,k, αyt+1,k) ∧ dist(αyt ,k, αyt+1,k) ≤ ε)

(6)

It is noted that sp and mp for p ∈ dimsk(ηk(αx,k)) are employed when expressing δd
k
.

The manipulation δd
k

is obtained from δd
k−1

by considering the corresponding relation

between dimensions in dimsk(ηk(αx,k)) and dimsk−1(ηk−1(αx,k−1)). The precision ε is an

input parameter for the tool.

4.2 Features

When computing the relation N, ηk, ∆k |= x, the region ηk(αx,k) can be high-dimensional.

For example, in our experiments on the network for the CIFAR-10 dataset, we let

dimsk = 500, and in the experiments on the network for ImageNet we let dimsk =

20, 000. Such high dimensions can easily make any exhaustive search intractable if

done in a naive way. In the following, we use the concept of a feature to partition the

region ηk(αx,k) into a set of sub-regions called features. The features can be independent

and of lower dimension, which leads to a practical algorithm for safety verification.

For each layer Lk, a feature function fk : DLk
→ P(DLk

) assigns a small region for

each activation αx,k in the space DLk
, where P(DLk

) is the set of subspaces of DLk
. The

region fk(αx,k) may have lower dimension than that of Dk. Intuitively, it defines for each

point in the high-dimensional space DLk
the most explicit feature it has. Such features

may represent, e.g., the red-coloured frame of a street sign in Figure 10. It has been

argued in, e.g., [16] for natural images that natural data, e.g., natural images and sound,

etc, forms a high-dimensional manifold, which embeds tangled manifolds to represent

their features. Feature manifolds usually have lower dimension than the data manifold,

and the task of a neural network classification algorithm is to separate a set of tangled

manifolds.

We remark that it is reasonable to assume that, in the high-dimensional spaces of

an image classification network, the features are independent. Intuitively, for the input

layer, an image usually has several main features, e.g., a human or a dog, and, for a dog,

it has features such as the shape of eyes and ears. These features can be regarded as in-

dependent. For the hidden layers, due to the increase of linearity, features become more

explicit and therefore independent. Moreover, defining the feature fk on each activa-

tion as a single region corresponding to a specific feature is without loss of generality:

although an activation such as an image may include multiple features, the indepen-

dence relation between features suggests the existence of a total relation between these



features. The function fk essentially defines for each activation one particular feature,

subject to certain criteria such as explicit knowledge.

The analysis of activations in hidden layers, as performed by our method, provides

an opportunity to discover the features automatically. In the tool, the automatic discov-

ery of features is achieved by the same heuristic that has been used to find the region

ηk(αx,k), i.e., identifying a set of dimensions whose activation values are far away from

the average value of the layer. After identifying the features, we can manipulate them

one by one regardless of the manipulation order. By assuming that features have lower

dimensions and different features include disjoint sets of dimensions, we can break

down a problem of size O(2d1+...+dm ) into a sequential set of smaller problems of size

O(2d1 ), ...,O(2dm ), respectively.

More specifically, similarly to the region ηk(αx,k), every feature fk(αy,k) is defined

according to a pre-specified number dimsk, f of dimensions, which is taken as an input to

the tool. Let dimsk( fk(αy,k)) be the set of dimensions selected according to the heuristic.

Then we have that

fk(αy,k)(p) =

{

ηk(αx,k)(p), if p ∈ dimsk( fk(αy,k))

[αy,k(p), αy,k(p)] otherwise.
(7)

Moreover, we need a set of features to partition the region ηk(αx,k) as follows.

Definition 9. A set { f1, ..., fm} of regions is a partition of ηk(αx,k), written as π(ηk(αx,k)),

if dimsk, f ( fi) ∩ dimsk, f ( f j) = ∅ for i, j ∈ {1, ...,m} and ηk(αx,k) = ×m
i=1

fi.

Given such a partition π(ηk(αx,k)), we define a function acts(x, k) by

acts(x, k) = {αy,k ∈ x | x ∈ π(ηk(αx,k))} (8)

which contains one point for each feature. Then, we reduce the checking of 0-variation

of a region ηk(αx,k) to the following problems:

– checking whether the points in acts(x, k) have the same class as αx,k, and

– checking the 0-variation of all features in π(ηk(αx,k)).

In the above procedure, the checking of points in acts(x, k) can be conducted either

by following a pre-specified sequential order (or path) or by exhaustively searching all

possible orders. In this paper, the pre-specified sequential order is with respect to their

heuristic values. From our experiments in Section 5, we can see that the specific order

can enable us to find adversarial examples, although an exhaustive search may find other

examples with smaller distances to the original input.

4.3 Computation of Pre0(αy,k)

To check the 0-variation of a region ηk(αx,k), we need to compute diffn(αx,n, αy,n) for

many points αy,x in ηk(αx,k), where diffn : DLn
×DLn

→ {0, 1} is given by diffn(αx,n, αy,n) =

0 if αx,n = αy,n and 1 otherwise. Because αx,n is known, we only need to compute αy,n.

The tool computes αy,n by finding a point αy,0 ∈ Pre0(αy,k) and then using the neural



network to predict the value αy,n. It should be noted that although Pre0(αy,k) may in-

clude more than one points, all points have the same class, so any point in Pre0(αy,k) is

sufficient for our purpose.

To compute αy,0 from αy,k, we use functions ψk, ψk−1, ..., ψ1 and compute points

αy,k−1, αy,k−2, ..., αy,0 such that

αy, j−1 = ψ j(αy, j) ∧ αy, j−1 ∈ η j−1(αx, j−1)

for 1 ≤ j ≤ k. The computation relies on an SMT solver to encode the functions

ψk, ψk−1, ..., ψ1 if they are piecewise linear functions, and by taking the corresponding

inverse functions directly if they are sigmoid functions. It is possible that for some

1 ≤ j ≤ k, no point can be found by SMT solver, which means that the point αy,k does

not have any corresponding point in the input layer. We can safely discard these points.

Maxpooling function ψ j selects from every m ∗ m dimensions the maximal element

for some m > 0. The computation of maxpooling layer ψ j−1 is combined with the

computation of the next layer ψ j. That is, it is to find αy, j−2 with the following expression

∃αx, j−1 : αy, j−2 = ψ j−1(ψ j(αy, j)) ∧ αy, j−1 ∈ η j−1(αx, j−1) ∧ αy, j−2 ∈ η j−2(αx, j−2)

This is to ensure that in the expression αy, j−2 = ψ j−1(ψ j(αy, j)), we can reuse m ∗ m − 1

elements in αx, j−2 and only need to replace the maximal element.

5 Experimental Results

The proposed framework has been implemented as a software tool called DLV (Deep

Learning Verification) [2] written in Python. The SMT solver we use is Z3 [8], which

has Python APIs. The neural networks are built from a widely-used neural networks

library Keras [3] with a deep learning package Theano [6] as its backend.

We validate DLV on a set of experiments performed for neural networks trained for

classification based on a predefined multi-dimensional surface (small size networks),

as well as image classification (medium size networks). These networks respectively

use two representative types of layers: fully connected layers and convolutional layers.

They may also use other types of layers, e.g., the ReLU layer, the pooling layer, the

zero-padding layer, and the dropout layer. The experiments are conducted on a Mac-

Book Pro laptop, with 2.7 GHz Intel Core i5 CPU and 8 GB memory. The experiments

in this section follow a specific order (with respect to the heuristic value as used in find-

ing regions and features) to explore the set of points in acts(x, k). We will discuss the

exhaustive search in the next section.

Two-Dimensional Point Classification Network To demonstrate the working of our

framework, we consider a neural network trained for classifying points above and below

a two-dimensional curve shown in red in Figure 6 and Figure 7. The network has three

fully-connected hidden layers with the ReLU activation function. The input layer has

two perceptrons, every hidden layer has 20 perceptrons, and the output layer has two

perceptrons. The network is trained with 5,000 points sampled from the provided two-

dimensional space, and has an accuracy of more than 99%.



For a given input x = (3.59, 1.11), we start from the input layer and define a region

around this point by taking unit steps in both directions

η0(αx,0) = [3.59− 1.0, 3.59+ 1.0]× [1.11− 1.0, 1.11+ 1.0] = [2.59, 4.59]× [0.11, 2.11]

The manipulation set ∆0 is shown in Figure 6: there are 9 points, of which the point in

the middle represents the activation αx,0 and the other 8 points represent the activations

resulting from applying one of the manipulations in ∆0 on αx,0. Note that, although there

are class changes in the region η0(αx,0), the manipulation set ∆0 is not able to detect such

changes. Therefore, we have that N, η0, ∆0 |= x.

Fig. 6. Input layer Fig. 7. First hidden layer

Now consider layer k = 1. To obtain the region η1(αx,1), the tool selects two dimen-

sions p1,17, p1,19 ∈ P1 in layer L1 with indices 17 and 19 and computes

η1(αx,1) = [αx,1(p1,17) − 3.6, αx,1(p1,17) + 3.6] × [αx,1(p1,19) − 3.52, αx,1(p1,19) + 3.52]

The manipulation set ∆1, after mapping back to the input layer with function ψ1, is given

as Figure 7. Note that η1 and η0 satisfy Definition 6, and ∆1 is a refinement by layer of

η0, ∆0 and η1. We can see that a class change can be detected (represented as the red

coloured point). Therefore, we have that N, η1, ∆1 6|= x.

Image Classification Network for the MNIST Handwritten Image Dataset The

well-known MNIST image dataset contains images of size 28 × 28 and one channel

and the network is trained with the source code given in [5]. The trained network is of

medium size with 600,810 parameters, has an accuracy of more than 99%, and is state-

of-the-art. It has 12 layers, within which there are 2 convolutional layers, as well as

layers such as ReLU, dropout, fully-connected layers and a softmax layer. The images

are preprocessed to make the value of each pixel within the bound [0, 1].

Given an image x, we start with layer k = 1 and the parameter set to at most 150

dimensions (there are 21632 dimensions in layer L1). All ηk, ∆k for k ≥ 2 are computed



according to the simple heuristic mentioned in Section 4 and satisfy Definition 6 and

Definition 7. For the region η1(αx,1), we allow changes to the activation value of each

selected dimension that are within [-1,1]. The set ∆1 includes manipulations that can

change the activation value for a subset of the 150 dimensions, by incrementing or

decrementing the value for each dimension by 1. The experimental results show that

for most of the examples we can find a class change within 100 dimensional changes

in layer L1, by comparing the number of pixels that have changed, and some of them

can have less than 30 dimensional changes. Figure 8 presents examples of such class

changes for layer L1. We also experiment on images with up to 40 dimensional changes

in layer L1; the tool is able to check the entire network, reaching the output layer and

claiming that N, ηk, ∆k |= x for all k ≥ 1. While training of the network takes half an

hour, finding an adversarial example takes up to several minutes.

8 to 0 2 to 1 4 to 2 2 to 3 9 to 4

6 to 5 4 to 6 9 to 7 0 to 8 7 to 9

Fig. 8. Adversarial Examples for a Neural Network Trained on MNIST

Image Classification Network for the CIFAR-10 Small Image Dataset We work

with a medium size neural network, trained with the source code from [1] for more than

12 hours on the well-known CIFAR10 dataset. The inputs to the network are images

of size 32 × 32 with three channels. The trained network has 1,250,858 real-valued pa-

rameters and includes convolutional layers, ReLU layers, max-pooling layers, dropout

layers, fully-connected layers, and a softmax layer.

As an illustration of the type of perturbations that we are investigating, consider

the images in Figure 9, which correspond to the parameter setting of up to 25, 45,

65, 85, 105, 125, 145 dimensions, respectively, for layer k = 1. The manipulations

change the activation values of these dimensions. Each image is obtained by mapping

back from the first hidden layer and represents a point close to the boundary of the

corresponding region. The relation N, η1, ∆1 |= x holds for the first 7 images, but fails

for the last one and the image is classified as a truck. Intuitively, our choice of the

region η1(αx,1) identifies the subset of dimensions with most extreme activations, taking

advantage of the analytical capability of the first hidden layer. A higher number of

selected dimensions implies a larger region in terms of the Euclidean norm in which we

apply manipulations, and, more importantly, suggests a more dramatic change to the

knowledge represented by the activations when moving to the boundary of the region.

We also work with 500 dimensions and otherwise the same experimental parame-

ters as for MNIST. Figure 12 in Appendix B gives 16 pairs of original images (classified

correctly) and perturbed images (classified wrongly). We found that, while the manip-

ulations lead to human-recognisable modifications to the images, the perturbed images



Fig. 9. An Illustrative Example from the Cifar-10 Dataset: the last image classifies as a truck.

can be classified wrongly by the network. For each image, finding an adversarial exam-

ple ranges from seconds to 20 minutes.

Image Classification Network for the ImageNet Dataset We also conduct experi-

ments on a large image classification network trained on the popular ImageNet dataset.

The images are of size 224 × 224 and have three channels. The network is the model

of the 16-layer network [34], called VGG16, used by the VGG team in the ILSVRC-

2014 competition, downloaded from [7]. The trained network has 138,357,544 real-

valued parameters and includes convolutional layers, ReLU layers, zero-padding lay-

ers, dropout layers, max-pooling layers, fully-connected layers, and a softmax layer.

The experimental parameters are the same as for the previous two experiments, except

that we work with 20,000 dimensions.

We again include several pairs of original and perturbed images in Figure 13 in

Appendix B. In Figure 10 we also give two examples of street sign images. The image

on the left is reported unsafe for the second layer with 6346 dimensional changes (0.2%

of the 3,211,264 dimensions of layer L2). The one on the right is reported safe for 20,000

dimensional changes of layer L2. It appears that more complex manipulations, involving

more dimensions (perceptrons), are needed in this case to cause a class change.

Fig. 10. Street Sign Images. Found an adversarial example for the left image (class changed into

bird house), but cannot find an adversarial example for the right image for 20,000 dimensions.

6 Comparison

We compare our approach with two existing approaches for finding adversarial exam-

ples, i.e., fast gradient sign method (FGSM) [36] and Jacobian saliency map algorithm

(JSMA) [28]. FGSM calculates the optimal attack for a linear approximation of the net-

work cost, whereas DLV explores a proportion of dimensions in the feature space in the

input or hidden layers. JSMA finds a set of dimensions in the input layer to manipulate,

according to the linear approximation (by computing the Jacobian matrix) of the model



from current output to a nominated target output. Intuitively, the difference between

DLV’s manipulation and JSMA is that DLV manipulates over features discovered in

the activations of the hidden layer, while JSMA manipulates according to the partial

derivatives, which depend on the parameters of the network.

Experiment 1. We randomly select an image from the MNIST dataset. Figure 11

shows some intermediate and final images obtained by running the three approaches:

FGSM, JSMA and DLV. FGSM has a single parameter, ǫ, where a greater ǫ represents a

greater perturbation along the gradient of cost function. Given an ǫ, for each input exam-

ple a perturbed example is returned and we test whether it is an adversarial example by

checking for misclassification against the original image. We gradually increase the pa-

rameter ǫ = 0.05, 0.1, 0.2, 0.3, 0.4, with the last image (i.e., ǫ = 0.4) witnessing a class

change, see the images in the top row of Figure 11. FGSM can efficiently manipulate a

set of images, but it requires a relatively large manipulation to find a misclassification.

Fig. 11. FGSM vs. JSMA vs. DLV, where FGSM and JSMA search a single path and DLV

multiple paths. Top row: Original image (7) perturbed deterministically by FGSM with ǫ =

0.05, 0.1, 0.2, 0.3, 0.4, with the final image (i.e., ǫ = 0.4) misclassified as 9. Middle row: Original

image (7) perturbed deterministically by JSMA with ǫ = 0.1 and θ = 1.0. We show even num-

bered images of the 12 produced by JSMA, with the final image misclassified as 3. Bottom row:

Original image (7) perturbed nondeterministically by DLV, for the same manipulation on a single

pixel as that of JSMA (i.e., sp ∗ mp = 1.0) and working in the input layer, with the final image

misclassified as 3.

For the JSMA approach, we conduct the experiment on a setting with parameters

ǫ = 0.1 and θ = 1.0. The parameter ǫ = 0.1 means that we only consider adversarial ex-

amples changing no more than 10% of all the pixels, which is sufficient here. As stated

in [29], the parameter θ = 1.0, which allows a maximum change to every pixel, can en-

sure that fewer pixels need to be changed. The approach takes a series of manipulations

to gradually lead to a misclassification, see the images in the middle row of Figure 11.

The misclassified image has an L2 (Euclidean) distance of 0.17 and an L1 (Manhattan)

distance of 0.03 from the original image. While JSMA can find adversarial examples

with smaller distance from the original image, it takes longer to manipulate a set of

images.

Both FGSM and JSMA follow their specific heuristics to deterministically explore

the space of images. However, in some cases, the heuristics may omit better adversarial



examples. In the experiment for DLV, instead of giving features a specific order and

manipulating them sequentially, we allow the program to nondeterministically choose

features. This is currently done by MCTS (Monte Carlo Tree Search), which has a theo-

retical guarantee of convergence for infinite sampling. Therefore, the high-dimensional

space is explored by following many different paths. By taking the same manipulation

on a single pixel as that of JSMA (i.e., sp ∗ mp = 1.0) and working on the input layer,

DLV is able to find another perturbed image that is also classified as 3 but has a smaller

distance (L2 distance is 0.14 and L1 distance is 0.02) from the original image, see the

images in the last row of Figure 11. In terms of the time taken to find an adversarial

example, DLV may take longer than JSMA, since it searches over many different paths.

FGSM (ǫ = 0.1) (0.2) (0.4) DLV (dimsl = 75) (150) (450) JSMA (θ = 0.1) (0.4)

L2 0.08 0.15 0.32 0.19 0.22 0.27 0.11 0.11

L1 0.06 0.12 0.25 0.04 0.06 0.09 0.02 0.02

% 17.5% 70.9% 97.2% 52.3% 79% 98% 92% 99%

Table 1. FGSM vs. DLV (on a single path) vs. JSMA

Experiment 2. Table 1 gives a comparison of robustness evaluation of the three

appraoches on the MNIST dataset. For FGSM, we vary the input parameter ǫ accord-

ing to the values {0.1, 0.2, 0.4}. For DLV, we select regions as defined in Section 4.1

on a single path (by defining a specific order on the features and manipulating them

sequentially) for the first hidden layer. The experiment is parameterised by varying the

maximal number of dimensions to be changed, i.e., dimsl ∈ {75, 150, 450}. For each

input image, an adversarial example is returned, if found, by manipulating fewer than

the maximal number of dimensions. When the maximal number has been reached, DLV

will report failure and return the last perturbed example. For JSMA, the experiment is

conducted by letting θ take the value in the set {0.1, 0.4} and setting ǫ to 1.0.

We collect three statistics, i.e., the average L1 distance over the adversarial exam-

ples, the average L2 distance over the adversarial examples, and the success rate of

finding adversary examples. Let Ld(x, δ(x)) for d ∈ {1, 2} be the distance between an

input x and the returned perturbed image δ(x), and diff(x, δ(x)) ∈ {0, 1} be a Boolean

value representing whether x and δ(x) have different classes. We let

Ld =

∑

x in test set diff(x, δ(x)) × Ld(x, δ(x))
∑

x in test set diff(x, δ(x))

and

% =

∑

x in test set diff(x, δ(x))

the number of examples in test set

We note that the approaches yield different perturbed examples δ(x).

The test set size is 500 images selected randomly. DLV takes 1-2 minutes to manip-

ulate each input image in MNIST. JSMA takes about 10 minutes for each image, but it

works for 10 classes, so the running time is similar to that of DLV. FGSM works with a

set of images, so it is the fastest per image.



For the case when the success rates are very high, i.e., 97.2% for FGSM with ǫ =

0.4, 98% for DLV with dimsl = 450, and 99% for JSMA with θ = 0.4, JSMA has the

smallest average distances, followed by DLV, which has smaller average distances than

FGSM on both L1 and L2 distances.

We mention that a smaller distance leading to a misclassification may result in a

lower rate of transferability [29], meaning that a misclassification can be harder to wit-

ness on another model trained on the same (or a small subset of) data-set.

7 Related Work

AI safety is recognised an an important problem, see e.g., [33, 10]. An early verification

approach for neural networks was proposed in [30], where, using the notation of this

paper, safety is defined as the existence, for all inputs in a region η0 ∈ DL0
, of a corre-

sponding output in another region ηn ⊆ DLn
. They encode the entire network as a set of

constraints, approximating the sigmoid using constraints, which can then be solved by a

SAT solver, but their approach only works with 6 neurons (3 hidden neurons). A similar

idea is presented in [32]. In contrast, we work layer by layer and obtain much greater

scalability. Since the first version of this paper appeared [20], another constraint-based

method has been proposed in [21] which improves on [30]. While they consider more

general correctness properties than this paper, they can only handle the ReLU activation

functions, by extending the Simplex method to work with the piecewise linear ReLU

functions that cannot be expressed using linear programming. This necessitates a search

tree (instead of a search path as in Simplex), for which a heuristic search is proposed

and shown to be complete. The approach is demonstrated on networks with 300 ReLU

nodes, but as it encodes the full network it is unclear whether it can be scaled to work

with practical deep neural networks: for example, the MNIST network has 630,016

ReLU nodes. They also handle continuous spaces directly without discretisation, the

benefits of which are not yet clear, since it is argued in [19] that linear behaviour in

high-dimensional spaces is sufficient to cause adversarial examples.

Concerns about the instability of neural networks to adversarial examples were first

raised in [13, 36], where optimisation is used to identify misclassifications. A method

for computing the perturbations is also proposed, which is based on box-constrained

optimisation and is approximate in view of non-convexity of the search space. This

work is followed by [19], which introduced the much faster FGSM method, and [22],

which employed a compromise between the two (iterative, but with a smaller number

of iterations than [36]). In our notation, [19] uses a deterministic, iterative manipula-

tion δ(x) = x + ǫsign(▽xJ(x, αx,n)), where x is an image in matrix representation, ǫ is a

hyper-parameter that can be tuned to get different manipulated images, and J(x, αx,n) is

the cross-entropy cost function of the neural network on input x and class αx,n. There-

fore, their approach will test a set of discrete points in the region η0(αx,0) of the input

layer. Therefore these manipulations will test a lasso-type ladder tree (i.e., a ladder tree

without branches) L(ηk(αx,k)), which does not satisfy the covering property. In [26],

instead of working with a single image, an evolutionary algorithm is employed for a

population of images. For each individual image in the current population, the manip-

ulation is the mutation and/or crossover. While mutations can be nondeterministic, the



manipulations of an individual image are also following a lasso-type ladder tree which

is not covering. We also mention that [38] uses several distortions such as JPEG com-

pression, thumbnail resizing, random cropping, etc, to test the robustness of the trained

network. These distortions can be understood as manipulations. All these attacks do not

leverage any specific properties of the model family, and do not guarantee that they will

find a misclassified image in the constraint region, even if such an image exists.

The notion of robustness studied in [18] has some similarities to our definition of

safety, except that the authors work with values averaged over the input distribution µ,

which is difficult to estimate accurately in high dimensions. As in [36, 22], they use

optimisation without convergence guarantees, as a result computing only an approx-

imation to the minimal perturbation. In [12] pointwise robustness is adopted, which

corresponds to our general safety; they also use a constraint solver but represent the

full constraint system by reduction to a convex LP problem, and only verify an ap-

proximation of the property. In contrast, we work directly with activations rather than

an encoding of activation functions, and our method exhaustively searches through the

complete ladder tree for an adversarial example by iterative and nondeterministic appli-

cation of manipulations. Further, our definition of a manipulation is more flexible, since

it allows us to select a subset of dimensions, and each such subset can have a different

region diameter computed with respect to a different norm.

8 Conclusions

This paper presents an automated verification framework for checking safety of deep

neural networks that is based on a systematic exploration of a region around a data point

to search for adversarial manipulations of a given type, and propagating the analysis into

deeper layers. Though we focus on the classification task, the approach also generalises

to other types of networks. We have implemented the approach using SMT and vali-

dated it on several state-of-the-art neural network classifiers for realistic images. The

results are encouraging, with adversarial examples found in some cases in a matter of

seconds when working with few dimensions, but the verification process itself is expo-

nential in the number of features and has prohibitive complexity for larger images. The

performance and scalability of our method can be significantly improved through par-

allelisation. It would be interesting to see if the notions of regularity suggested in [24]

permit a symbolic approach, and whether an abstraction refinement framework can be

formulated to improve the scalability and computational performance.
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A Input Parameters and Experimental Setup

The DLV tool accepts as input a network N and an image x, and has the following input

parameters:

– an integer l ∈ [0, n] indicating the starting layer Ll,

– an integer dimsl ≥ 1 indicating the maximal number of dimensions that need to be

considered in layer Ll,

– the values of variables sp and mp in Vl; for simplicity, we ask that, for all dimensions

p that will be selected by the automated procedure, sp and mp have the same values,

– the precision ε ∈ [0,∞),

– an integer dimsk, f indicating the number of dimensions for each feature; for sim-

plicity, we ask that every feature has the same number of dimensions and dimsk, f =

dimsk′, f for all layers k and k′, and

– type of search: either heuristic (single-path) or Monte Carlo Tree Search (MCTS)

(multi-path).

A.1 Two-Dimensional Point Classification Network

– l = 0

– dimsl = 2,

– sp = 1.0 and mp = 1.0,

– ε = 0.1, and

– dimsk, f = 2

A.2 Network for the MNIST Dataset

– l = 1

– dimsl = 150,

– sp = 1.0 and mp = 1.0,

– ε = 1.0, and

– dimsk, f = 5

A.3 Network for the CIFAR-10 Dataset

– l = 1

– dimsl = 500,

– sp = 1.0 and mp = 1.0,

– ε = 1.0, and

– dimsk, f = 5

A.4 Network for the GTSRB Dataset

– l = 1

– dimsl = 1000,

– sp = 1.0 and mp = 1.0,

– ε = 1.0, and

– dimsk, f = 5



A.5 Network for the ImageNet Dataset

– l = 2

– dimsl = 20, 000,

– sp = 1.0 and mp = 1.0,

– ε = 1.0, and

– dimsk, f = 5

B Additional Adversarial Examples Found for the CIFAR-10,

ImageNet, and MNIST Networks

Figure 12 and Figure 13 present additional adversarial examples for the CIFAR-10 and

ImageNet networks by single-path search. Figure 14 presents adversarial examples for

the MNIST network by multi-path search.

automobile to bird automobile to frog automobile to airplane automobile to horse

airplane to dog airplane to deer airplane to truck airplane to cat

truck to frog truck to cat ship to bird ship to airplane

ship to truck horse to cat horse to automobile horse to truck

Fig. 12. Adversarial Examples for a Neural Network Trained on the CIFAR-10 Dataset By Single-

Path Search

C The German Traffic Sign Recognition Benchmark (GTSRB)

We evaluate DLV on the GTSRB dataset (by resizing images into size 32*32), which

has 43 classes. Figure 15 presents the results for the multi-path search. The first, diffi-

cult, case (approx. 20 minutes to manipulate) is a stop sign (confidence 1.0) changed

into a speed limit of 30 miles, with an L1 distance of 0.045 and L2 distance of 0.19.

The confidence of the manipulated image is 0.79. The second, easy, case (seconds to



labrador to life boat rhodesian ridgeback to malinois

boxer to rhodesian ridgeback great pyrenees to kuvasz

Fig. 13. Adversarial Examples for the VGG16 Network Trained on the imageNet Dataset By

Single-Path Search

9 to 4 8 to 3 5 to 3 4 to 9 5 to 3

7 to 3 9 to 4 9 to 4 2 to 3 1 to 8

8 to 5 0 to 3 7 to 2 8 to 3 3 to 2

9 to 7 3 to 2 4 to 9 6 to 4 3 to 5

9 to 4 0 to 2 2 to 3 9 to 8 4 to 2

Fig. 14. Adversarial Examples for the Network Trained on MNIST Dataset by Multi-Path Search



manipulate) is a speed limit of 80 miles (confidence 0.999964) changed into a speed

limit of 30 miles, with an L1 distance of 0.004 and L2 distance of 0.06. The confidence

of the manipulated image is 0.99 (a very high confidence of misclassification). Also, a

“go right” sign can easily be manipulated into a sign classified as “go straight”.

Fig. 15. Adversarial Examples for the Network Trained on the GTSRB Dataset by Multi-Path

Search

Figure 16 presents adversarial examples obtained when selecting single-path search.

D Architectures of Neural Networks

Figure 17, Figure 18, Figure 19, and Figure 20 present architectures of the networks we

work with in this paper. The network for the ImageNet dataset is from [34].



speed limit 50 (pro-

hibitory) to speed limit

80 (prohibitory)

restriction ends (other)

to restriction ends (80)

no overtaking (trucks)

(prohibitory) to speed

limit 80 (prohibitory)

give way (other) to

priority road (other)

priority road (other) to

speed limit 30 (pro-

hibitory)

speed limit 70 (pro-

hibitory) to speed limit

120 (prohibitory)

no overtaking (pro-

hibitory) to go straight

(mandatory)

speed limit 50 (pro-

hibitory) to stop (other)

road narrows (danger)

to construction (danger)

restriction ends 80

(other) to speed limit 80

(prohibitory)

no overtaking (trucks)

(prohibitory) to speed

limit 80 (prohibitory)

no overtaking (pro-

hibitory) to restriction

ends (overtaking

(trucks)) (other)

priority at next intersec-

tion (danger) to speed

limit 30 (prohibitory)

uneven road (danger) to

traffic signal (danger)

danger (danger) to

school crossing (danger)

Fig. 16. Adversarial Examples for the GTSRB Dataset by Single-Path Search

Fig. 17. Architecture of the Neural Network for Two-Dimensional Point Classification



Fig. 18. Architecture of the Neural Network for the MNIST Dataset

Fig. 19. Architecture of the Neural Network for the CIFAR-10 Dataset

Fig. 20. Architecture of the Neural Network for the GTSRB Dataset


