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Abstract

In the online false discovery rate (FDR) problem,

one observes a possibly infinite sequence of p-

values P1, P2, . . . , each testing a different null hy-

pothesis, and an algorithm must pick a sequence

of rejection thresholds α1, α2, . . . in an online

fashion, effectively rejecting the k-th null hypoth-

esis whenever Pk ≤ αk. Importantly, αk must be

a function of the past, and cannot depend on Pk

or any of the later unseen p-values, and must be

chosen to guarantee that for any time t, the FDR

up to time t is less than some pre-determined

quantity α ∈ (0, 1). In this work, we present a

powerful new framework for online FDR control

that we refer to as “SAFFRON”. Like older alpha-

investing algorithms, SAFFRON starts off with

an error budget (called alpha-wealth) that it intel-

ligently allocates to different tests over time, earn-

ing back some alpha-wealth whenever it makes a

new discovery. However, unlike older methods,

SAFFRON’s threshold sequence is based on a

novel estimate of the alpha fraction that it allo-

cates to true null hypotheses. In the offline setting,

algorithms that employ an estimate of the pro-

portion of true nulls are called “adaptive”, hence

SAFFRON can be seen as an online analogue of

the offline Storey-BH adaptive procedure. Just

as Storey-BH is typically more powerful than the

Benjamini-Hochberg (BH) procedure under inde-

pendence, we demonstrate that SAFFRON is also

more powerful than its non-adaptive counterparts

such as LORD.
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1. Introduction

It is now commonplace in science and technology to make

thousands or even millions of related decisions based on

data analysis. As a simplified example, to discover which

genes may be related to diabetes, we can formulate the

decision-making problem in terms of hypotheses that take

the form “gene X is not associated with diabetes,” for many

different genes X, and test for which of these null hypothe-

ses can be confidently rejected by the data. As first identified

by Tukey in a seminal 1953 manuscript (1953), the central

difficulty when testing a large number of null hypotheses

is that several of them may appear to be false, purely by

chance. Arguably, we would like the set of rejected null hy-

potheses R to have high precision, so that most discovered

genes are indeed truly correlated with diabetes and further

investigations are not fruitless. Unfortunately, separately

controlling the false positive rate for each individual test ac-

tually does not provide any guarantee on the precision. This

motivated the development of procedures that can provide

guarantees on an error metric called the false discovery rate

(FDR) (Benjamini & Hochberg, 1995), defined as:

FDR ≡ E [FDP(R)] = E

[
|H0 ∩R|

|R|

]
,

where H0 is the unknown set of truly null hypotheses, and

0/0 ≡ 0. Here the FDP represents the ratio of falsely re-

jected nulls to the total number of rejected nulls, and since

the set of discoveries R is data-dependent, the FDR takes

an expectation over the underlying randomness. The evi-

dence from a hypothesis test can typically be summarized

in terms of a p-value, and so offline multiple testing algo-

rithms take a set of p-values {Pi} as their input, and a target

FDR level α ∈ (0, 1), and produce a rejected set R that is

guaranteed to have FDR ≤ α. Of course, one also desires

a high recall, or equivalently a low false negative rate, but

without assumptions on many uncontrollable factors like the

frequency and strength of signals, additional guarantees on

the recall are impossible.

While the offline paradigm previously described is the classi-

cal setting for multiple decision-making, the corresponding

online problem is emerging as a major area of its own. For

example, large information technology companies run thou-
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sands of A/B tests every week of the year, and decisions

about whether or not to reject the corresponding null hy-

pothesis must be made without knowing the outcomes of

future tests; indeed, future null hypotheses may depend on

the outcome of the current test. The current standard of

setting all thresholds αk to a fixed quantity such as 0.05
does not provide any control of the FDR. Hence, the follow-

ing hypothetical scenario is entirely plausible: a company

conducts 1000 tests in one week, each with a target false

positive rate of 0.05; it happens to make 80 discoveries in

total of which 50 are accidental false discoveries, ending up

with an FDP of 5/8. Such uncontrolled error rates can have

severe financial and social consequences.

The first method for online control of the FDR was the

alpha-investing algorithm of Foster and Stine (2008), later

extended to generalized alpha-investing (GAI) algorithms

by Aharoni and Rosset (2014). Recently, Javanmard and

Montanari (2017) proposed variants of GAI algorithms that

control the FDR (as opposed to the modified FDR controlled

in the original paper (Foster & Stine, 2008)), including a new

algorithm called LORD. The GAI++ algorithms by Ramdas

et al. (2017) improved the earlier GAI algorithms (uni-

formly), and the improved LORD++ (henceforth LORD)

method arguably represents the current state-of-the-art in

online multiple hypothesis testing.

The current paper’s central contribution is the derivation

and analysis of a powerful new class of online FDR algo-

rithms called “SAFFRON” (Serial estimate of the Alpha

Fraction that is Futilely Rationed On true Null hypothe-

ses). As an instance of the GAI framework, the SAFFRON

method starts off with an error budget, referred to as alpha-

wealth, that it allocates to different tests over time, earning

back some alpha-wealth whenever it makes a new discovery.

However, unlike earlier work in the online setting, SAF-

FRON is an adaptive method, meaning that it is based on

an estimate of the proportion of true nulls. In the offline

setting, adaptive methods were proposed by Storey (2002;

2004), who showed that they are more powerful than the

Benjamini-Hochberg (BH) procedure (1995) under indepen-

dence assumptions; this advantage usually increases with

the proportion of non-nulls and the signal strength. Thus,

the SAFFRON method can be viewed as an online analogue

of Storey’s adaptive version of the BH procedure. As shown

in Figure 1, our simulations show that SAFFRON demon-

strates the same types of advantages over its non-adaptive

counterparts, such as LORD and alpha-investing. Further-

more, the ideas behind SAFFRON’s derivation can provide

a natural template for the design and analysis of a suite of

other adaptive online methods.

The rest of this paper is organized as follows. In Section 2,

we derive the SAFFRON algorithm from first principles,

leaving the precise statement and the proof of a central tech-
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Figure 1. Statistical power and FDR versus fraction of non-null

hypotheses π1 for SAFFRON, LORD and alpha-investing at target

FDR level α = 0.05. The p-values are drawn as Pi = Φ(−Zi),
where Φ is the standard Gaussian CDF, and Zi ∼ N(µi, 1), where

nulls have µi = 0 and non-nulls have µi ∼ N(3, 1).

nical lemma for Section 3. In Section 4, we investigate the

practical choice of tuning parameters, and demonstrate the

effectiveness of our recommended choice using simulations.

We end with a summary in Section 5.

2. Deriving the SAFFRON Algorithm

Before deriving the SAFFRON algorithm, it is useful to

recap a few concepts. By definition of a p-value, if the

hypothesis Hi is truly null, then the corresponding p-value

is stochastically larger than the uniform distribution (“super-

uniformly distributed,” for short), meaning that:

If the null hypothesis Hi is true, then

Pr{Pi ≤ u} ≤ u for all u ∈ [0, 1].
(1)

For any online FDR procedure, let the rejected set after t
steps be denoted by R(t). More precisely, this set consists

of all p-values among the first t ones for which the indicator

for rejection is equal to 1; i.e., Rj : = 1 {Pj ≤ αj} = 1,

for all j ≤ t. While we have already defined the classical

FDP and FDR in the introduction, several authors, including

Foster and Stine (2008), have considered a modified FDR,

defined as:

mFDR(t) : =
E
[
|H0 ∩R(t)|

]

E [|R(t)|]
. (2)

In the sequel, we provide guarantees for both mFDR and

FDR. Our guarantees on mFDR hold under the follow-

ing weakening of (1). Define the filtration formed by the

sequence of sigma-fields F t : = σ(R1, . . . , Rt), and let

αt : = ft(R1, . . . , Rt−1), where ft is an arbitrary function

of the first t−1 indicators for rejection. Then, we say that the

null p-values are conditionally super-uniformly distributed

if the following holds:

If the null hypothesis Ht is true, then

Pr
{
Pt ≤ αt

∣∣ F t−1
}
≤ αt.

(3)
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2.1. An Oracle FDP Estimate and a Naive Overestimate

To understand the motivation behind the new procedure, it

is necessary to expand on an perspective on existing online

FDR procedures, recently suggested by Ramdas et al. (2017).

We begin by defining an oracle estimate of the FDP as:

FDP∗(t) : =

∑
j≤t,j∈H0

αj

|R(t)|
.

The word oracle indicates that FDP∗ cannot be calculated

by the scientist, since H0 is unknown. Intuitively, the nu-

merator
∑

j≤t,j∈H0 αj overestimates the number of false

discoveries, and FDP∗(t) overestimates the FDP, as formal-

ized in the claim below:

Proposition 1. If the null p-values are conditionally super-

uniformly distributed (3), then we have:

(a) E

[
∑

j≤t,j∈H0

αj

]
≥ E

[
|H0 ∩R(t)|

]
;

(b) If FDP∗(t) ≤ α for all t ∈ N, then mFDR(t) ≤ α for

all t ∈ N.

Further, if the null p-values are independent of each other

and of the non-nulls, and {αt} is a monotone function of

past rejections, then:

(c) E [FDP∗(t)] ≥ E [FDP(t)] ≡ FDR(t) for all t ∈ N;

(d) The condition FDP∗(t) ≤ α for all t ∈ N implies that

FDR(t) ≤ α for all t ∈ N.

To clarify, the word monotone means that αt is a coordinate-

wise non-decreasing function of the vector R1, . . . , Rt−1.

Proposition 1 follows from the results of Ramdas et al.

(2017), and we prove it in Subsection 3.1 for complete-

ness. Even though FDP∗(t) cannot be directly calculated

and used, Proposition 1 is a useful way to identify what

would be ideally possible.

One natural way to convert FDP∗(t) to a truly empirical

overestimate of FDP(t) is to define:

F̂DPLORD(t) : =

∑
j≤t αj

|R(t)|
.

Since it is trivially true that F̂DPLORD(t) ≥ FDP∗(t),
we immediately obtain that Proposition 1 also holds with

FDP∗(t) replaced by F̂DPLORD(t). The subscript LORD

is used because Ramdas et al. (2017) point out that their

variant of the LORD algorithm of Javanmard and Montanari

(2017) can be derived by simply assigning αj in an online

fashion to ensure that the condition F̂DPLORD(t) ≤ α is

met for all times t.

2.2. A Better Estimate of the Alpha-Wealth Spent on

Testing Nulls

The main drawback of F̂DPLORD is that if the underlying

(unknown) truth is such that the proportion of non-nulls

(true signals) is non-negligible, then F̂DPLORD(t) is a very

crude and overly conservative overestimate of FDP∗(t), and

hence also of the true unknown FDP. With this drawback

in mind, and knowing that we would expect non-nulls to

typically have smaller p-values, we propose the following

novel estimator:

F̂DPSAFFRON(λ)(t) ≡ F̂DPλ(t) : =

∑
j≤t αj

1{Pj>λj}
1−λj

|R(t)|
,

where {λj}
∞
j=1 is a predictable sequence of user-chosen

parameters in the interval (0, 1). Here the term predictable

means that λj is a deterministic function of the information

available from time 1 to j − 1, which will be formalized

later. For simplicity, when λj is chosen to be a constant for

all j, we will drop the subscript and just write λ, and we

will consider λ = 1/2 as our default choice. SAFFRON

is based on the idea that the numerator of F̂DPλ is a much

better estimator of the quantity
∑

j≤t,j∈H0 αj than LORD’s

naive estimate
∑

j≤t αj .

So as to provide some intuition for why we expect F̂DPλ

to be a fairly tight estimate of FDP∗, note that
1{Pj>λj}

1−λj

has a unit expectation whenever Pj is uniformly distributed

(null), but would typically have a much smaller expectation

whenever Pj is stochastically much smaller than uniform

(non-null). The following theorem shows that, even though

F̂DPλ(t) is not necessarily always larger than FDP∗(t), a

direct analog of Proposition 1 is nonetheless valid. In order

to state this claim formally, we need to slightly modify the

assumption (3). As before, denote by Rj : = 1 {Pj ≤ αj}
the indicator for rejection, and let Cj := 1 {Pj ≤ λj} be

the indicator for candidacy. Accordingly, we refer to the

p-values for which Cj = 1 as candidates. Moreover, we

let αt : = ft(R1, . . . , Rt−1, C1, . . . , Ct−1), where ft de-

notes an arbitrary function of the first t − 1 indicators for

rejection and candidacy, and define the filtration generated

from sigma-fields F t : = σ(R1, . . . , Rt, C1, . . . , Ct). With

respect to this filtration, we introduce a conditional super-

uniformity condition on the null p-values similar to (3):

If the null hypothesis Ht is true, then

Pr
{
Pt ≤ αt

∣∣ F t−1
}
≤ αt,

(4)

which can be rephrased as:

E

[
1 {Pt > αt}

1− αt
························

∣∣∣∣ F t−1

]
≥ 1 ≥ E

[
1 {Pt ≤ αt}

αt
························

∣∣∣∣ F t−1

]
.

Note that again marginal super-uniformity (1) implies this

condition, provided that the p-values are independent.
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Theorem 1. If the null p-values are conditionally super-

uniformly distributed (4), then we have:

(a) E

[
∑

j≤t,j∈H0

αj
1{Pj>λj}

1−λj

]
≥ E

[
|H0 ∩R(t)|

]
;

(b) The condition F̂DPλ(t) ≤ α for all t ∈ N implies that

mFDR(t) ≤ α for all t ∈ N.

Further, if the null p-values are independent of each other

and of the non-nulls, and {αt} is a monotone function of

the vector R1, ..., Rt−1, C1, ..., Ct−1, then we additionally

have:

(c) E

[
F̂DPλ(t)

]
≥ E [FDP(t)] ≡ FDR(t) for all t ∈ N;

(d) The condition F̂DPλ(t) ≤ α for all t ∈ N implies that

FDR(t) ≤ α for all t ∈ N.

The proof of this theorem is given in Section 3.2, and is

based on a “reverse super-uniformity lemma” that is dis-

cussed in the next section. This lemma, though of a tech-

nical nature, may be of independent interest in deriving

new algorithms. The statements on mFDR control allow

SAFFRON to be used in place of LORD in applications in

which p-values are not independent, but are conditionally

super-uniformly distributed, such as the MAB-FDR frame-

work (based on multi-armed bandits) proposed by Yang et

al. (2017).

2.3. The SAFFRON Algorithm for Constant λ

We now present the SAFFRON algorithm at a high level.

For simplicity, we consider the constant λ setting, which

performs well in experiments, though it may be a useful

direction for future work to construct good heuristics for

time-varying sequences {λj}
∞
j=1.

1. Given a target FDR level α, the user first picks a con-

stant λ ∈ (0, 1), an initial wealth W0 < (1− λ)α, and

a positive non-increasing sequence {γj}
∞
j=1 of sum-

ming to one. For example, given a parameter s > 1,

we might pick γj ∝ j−s for some s > 1.

2. We use the term “candidates” to refer to p-values

smaller than λ, since SAFFRON will never reject a

p-value larger than λ. Recalling the indicator for can-

didacy Ct : = 1 {Pt ≤ λ}, and denoting by τj be the

time of the j-th rejection (and setting τ0 = 0), de-

fine the candidates after the j-th rejection as Cj+ =

Cj+(t) =
∑t−1

i=τj+1 Ci.

3. SAFFRON begins by allocation α1 = min{γ1W0, λ},

and then at time t = 2, 3, . . ., it allocates:

αt : = min{λ, α̃t}, where α̃t : = W0γt−C0+
+

((1− λ)α−W0)γt−τ1−C1+
+
∑

j≥2

(1− λ)αγt−τj−Cj+
.

In words, SAFFRON starts off with an alpha-wealth W0 <
(1−λ)α, never loses wealth when testing candidate p-values,

gains wealth of (1− λ)α on every rejection except the first.

If there is a significant fraction of non-nulls, and the signals

are fairly strong, then SAFFRON may make more rejections

than LORD.

To clarify, SAFFRON guarantees FDR control for any

λ ∈ (0, 1) and any chosen sequence {γj}
∞
j=1, but the al-

gorithm’s power, or ability to detect signals, varies as a

function of these parameters. Given the minimal nature of

our assumptions, there is no universally optimal constant

or sequence: specifically, we do not make assumptions on

the frequency of true signals, or on how strong they are, or

on their order, all of which are factors that affect the power.

We discuss reasonable default choices in the experimental

section.

2.4. Relationship to Other Procedures

Here, we compare SAFFRON to existing procedures in the

literature, emphasizing commonalities that allow us to give

a unified view of seemingly disparate algorithms.

Alpha-investing. Even though the motivation that we

have presented for SAFFRON relates it to the LORD algo-

rithm, we find it interesting that the original alpha-investing

algorithm of Foster and Stine (2008) is recovered by choos-

ing λj = αj in F̂DPλ, and attempting to ensure that

F̂DPλ(t) ≤ α for all times t ∈ N. In order to see this

fact, first note that with this choice of λj , the indicator

1 {Pj > λj} simply indicates when the j-th hypothesis

is not rejected. Consequently, the numerator of F̂DPλ

reads as
∑

j≤t
αj

1−αj
1 {j /∈ R(t)}. Hence, ensuring that

F̂DPλ(t) ≤ α at all times t ∈ N, is equivalent to ensuring

that
∑

j≤t
αj

1−αj
1 {j /∈ R(t)} never exceeds α(|R(t)| ∨ 1),

which, in the language of alpha-investing, is equivalent to

ensuring that the algorithm’s wealth never becomes nega-

tive.1 Just as Ramdas et al. (2017) were able to reinterpret

and rederive LORD in terms of a particular estimate of the

FDP, the current work allows us to reinterpret and rederive

alpha-investing in terms of SAFFRON’s FDP. However, our

simulations demonstrate that despite this similarity, SAF-

FRON with λj = 1/2 is typically a more powerful algo-

rithm than both LORD and alpha-investing.

1Recall that the alpha-investing algorithm starts off with an
alpha-wealth of α, reduces its alpha-wealth by

αj

1−αj
after tests

that fail to reject, and increase the wealth by α on rejections.
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Storey-BH. In offline multiple testing, where all n p-

values are immediately available, the Benjamini-Hochberg

(BH) procedure (1995) is a classical method for guarantee-

ing FDR control. BH estimates the FDP of the rejection set

R(s) := {i : Pi ≤ s} by F̂DPBH(s) : = n·s
|R(s)| , which is

a conservative estimate of the oracle FDP∗
BH(s) : =

|H0|·s
|R(s)|

(details in Supplementary Material). For independent p-

values, Storey et al. (2002; 2004) improved the BH method,

by picking a constant λ ∈ (0, 1), and calculating:

F̂DPStBH(s) : =
n · s · π̂0

|R(s)|
,

where π̂0 is an estimate of the unknown proportion of nulls

π0 = |H0|/n computed as:

π̂0 : =
1 +

∑n
i=1 1 {Pi > λ}

n(1− λ)
.

Then, this procedure, which we refer to as “Storey-BH,” cal-

culates ŝStBH : = max{s : F̂DPStBH(s) ≤ α} and rejects

the set R(ŝStBH) which satisfies the bound FDR ≤ α. Pro-

cedures such as Storey-BH are known in the multiple testing

literature as adaptive procedures, since they automatically

adapt to the unknown proportion of nulls.

Returning to the setting of online FDR, what matters is not

the proportion of nulls π0, but instead a running estimate

of the amount of alpha-wealth that was spent testing nulls

thus far; this difference arises because, unlike the offline

setting where all p-values are compared to the same level

ŝ, different p-values have to pass different thresholds αi.

In light of the above discussion, it should be apparent that

Storey-BH is to BH as SAFFRON is to LORD. In the offline

context, Storey-BH is called an “adaptive method” (it is

adaptive to the unknown null proportion) and in this sense,

SAFFRON can be seen as an adaptive online FDR method.

Accumulation tests. Note that E [2I(P > 1/2)] ≥ 1 for

null p-values (with equality when they are exactly uniformly

distributed, simply because
∫ 1

0
2I(p > 1/2)dp = 1). One

may actually use any non-decreasing function h such that∫ 1

0
h(p)dp in the formula for F̂DPλ. Such accumulation

functions were studied (Li & Barber, 2017) in the (offline)

context of ordered testing, and may seamlessly be trans-

ferred to the online setting considered here, yielding mFDR

control using the same proof. In initial experiments, the use

of other functions does not seem to yield any advantage, and

under some additional assumptions in the offline ordered

testing setting, the aforementioned authors argued that the

step function (1− λ)−1I(I > λ) is asymptotically optimal

for power. In this light, SAFFRON can also be seen as an

online analog of adaptive SeqStep (Lei & Fithian, 2016),

which is a variant of selective SeqStep (Barber & Candès,

2015) and SeqStep (Li & Barber, 2017).

3. Proof of Theorem 1 Using a Reverse

Super-Uniformity Lemma

In this section, we present a lemma that is central to the

proof of FDR control for SAFFRON. We then use this

lemma to prove Proposition 1 and Theorem 1. Let us

first recall and set up some preliminary notation. In what

follows, αt, λt are random variables in (0, 1) that always

satisfy αt ≤ λt. We denote the indicator for rejection

at the t-th step by Rt : = 1 {Pt ≤ αt}, and recall that

since only p-values smaller than λt are candidates for re-

jection, we had earlier defined the indicator for candidacy

as Ct : = 1 {Pt ≤ λt}. If we denote C̄t = 1 − Ct, then

it is clear that RtC̄t = 0, since Rt = 1 implies C̄t = 0
and C̄t = 1 implies Rt = 0, and it is also possible for Rt

and C̄t to both equal 0. Also let R1:t : = {R1, . . . , Rt} and

C1:t : = {C1, . . . , Ct}. As before, we consider the filtration

F t : = σ(R1:t, C1:t). In what follows, we insist that the

sequences {αt}
∞
t=1 and {λt}

∞
t=1 are predictable, meaning

that they are functions of the information available from

time 1 to t − 1 only; specifically, we insist that αt, λt are

measurable with respect to the sigma-field F t−1. We will

also require that the {αt} sequence is monotone, meaning

that αt = ft(R1:t−1, C1:t−1) for some coordinatewise non-

decreasing function ft : {0, 1}
2(t−1) → [0, λt]. The proof

that SAFFRON as described in Subsection 2.3 satisfies this

requirement is given in the Supplementary Material.

Recall the definition (4) of conditional super-uniformity,

as well as its equivalent rephrased form in the line after

definition (4). Lemma 1 guarantees that for independent

p-values, this statement holds true more generally.

Lemma 1. Assume that the p-values P1, P2, . . . are inde-

pendent and let g : {0, 1}T → R be any coordinatewise

non-decreasing function. Then, for any index t ≤ T such

that Ht ∈ H0, we have:

E

[
ft(R1:t−1, C1:t−1)1 {Pt > λt}

(1− λt)g(R1:T )

∣∣∣∣ F t−1

]

≥ E

[
ft(R1:t−1, C1:t−1)

g(R1:T )

∣∣∣∣ F t−1

]

≥ E

[
1 {Pt ≤ ft(R1:t−1, C1:t−1)}

g(R1:T )

∣∣∣∣ F t−1

]
.

Proof. The second inequality is a consequence of super-

uniformity lemmas from past work (Ramdas et al., 2017;

Javanmard & Montanari, 2017), so we only prove the first

inequality. At a high level, the proof strategy is inverted,

and we will hallucinate a vector with one element being set

to 1, instead of being set to 0 in the aforementioned works.

Letting P1:T = (P1, . . . , PT ) be the original vector of

p-values, we define a “hallucinated” vector of p-values

P̃ t→1
1:T : = (P̃1, . . . , P̃T ) that equals P1:T , except that the
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t-th component is set to one:

P̃i =

{
1 if i = t

Pi if i 6= t.

Define hallucinated candidate and rejection in-

dicators as C̃i = 1

{
P̃i ≤ λi

}
and R̃i =

1

{
P̃i ≤ fi(R̃1:i−1, C̃1:i−1)

}
respectively. Let

R1:T = (R1, . . . , RT ) and R̃t→1
1:T = (R̃1, . . . , R̃T )

denote the vector of rejections using P1:T and P̃ t→1
1:T ,

respectively. Similarly, let C1:T = (C1, . . . , CT ) and

C̃t→1
1:T = (C̃1, . . . , C̃T ) denote the vector of candidates

using P1:T and P̃ t→1
1:T , respectively.

By construction, we have the following properties:

1. R̃i = Ri and C̃i = Ci for all i < t, hence

fi(R1:i−1, C1:i−1) = fi(R̃1:i−1, C̃1:i−1) for all i ≤ t.

2. R̃t = C̃t = 0, and hence R̃i ≤ Ri for all i ≥ t, due to

monotonicity of the functions fi.

Hence, on the event {Pt > λt}, we have Rt = R̃t = 0 and

Ct = C̃t = 0, and hence also R1:T = R̃t→1
1:T . This allows

us to conclude that:

ft(R1:t−1, C1:t−1)1 {Pt > λt}

(1− λt)g(R1:T )
=

ft(R1:t−1, C1:t−1)1 {Pt > λt}

(1− λt)g(R̃t→1
1:T )

.

Since R̃t→1
1:T is independent of Pt, we may take conditional

expectations to obtain:

E

[
ft(R1:t−1, C1:t−1)1 {Pt > λt}

(1− λt)g(R1:T )

∣∣∣∣ F t−1

]

= E

[
ft(R1:t−1, C1:t−1)1 {Pt > λt}

(1− λt)g(R̃t→1
1:T )

∣∣∣∣∣ F
t−1

]

(i)

≥ E

[
ft(R1:t−1, C1:t−1)

g(R̃t→1
1:T )

∣∣∣∣∣ F
t−1

]

(ii)

≥ E

[
ft(R1:t−1, C1:t−1)

g(R1:T )

∣∣∣∣ F t−1

]
,

where inequality (i) follows by taking an expectation only

with respect to Pt by invoking the conditional super-

uniformity property (4); and inequality (ii) follows because

g(R1:T ) ≥ g(R̃t→1
1:T ) since Ri ≥ R̃i for all i by monotonic-

ity of the online FDR rule. This concludes the proof of the

lemma.

We now proceed to using the above lemma to prove Propo-

sition 1 and Theorem 1.

3.1. Proof of Proposition 1

Statement (a) is proved by noting that for any time t ∈ N,

we have:

E
[
|H0 ∩R(t)|

]
=

∑

j≤t,j∈H0

E [1 {Pj ≤ αj}]

≤
∑

j≤t,j∈H0

E [αj ] ,

where the inequality follows after taking iterated expec-

tations by conditioning on Fj−1, and then applying the

conditional super-uniformity property (3).

If we have FDP∗(t) : = 1
|R(t)|

∑
j≤t,j∈H0

αj ≤ α, as assumed

in statement (b), then it follows that:

∑

j≤t,j∈H0

E [αj ] = E


 ∑

j≤t,j∈H0

αj




≤ αE [|R(t)|] ,

using linearity of expectation and the assumption on

FDP∗(t). Using part (a) and rearranging yields the inequal-

ity mFDR(t) : =
E[|H0∩R(t)|]

E[|R(t)|] ≤ α, which concludes the

proof of part (b).

If, in addition, the null p-values are independent of each

other and of the non-nulls and the sequence {αt} is mono-

tone, we can use the following argument to prove claims (c)

and (d). These claims establish that the procedure controls

the FDR at any time t ∈ N. Still assuming the inequality

FDP∗(t) ≤ α, we have:

FDR(t) = E

[
|H0 ∩R(t)|

|R(t)|

]

=
∑

j≤t,j∈H0

E

[
1 {Pj ≤ αj}

|R(t)|
························

]

≤
∑

j≤t,j∈H0

E

[ αj

|R(t)|
············

]

= E [FDP∗(t)]

≤ α,

where the first inequality follows after taking iterated ex-

pectations by conditioning on Fj−1, and then applying

the super-uniformity lemma (Ramdas et al., 2017), the fol-

lowing equality uses linearity of expectation, and the final

inequality follows by the assumption on FDP∗(t). This

concludes the proof of both statements (c) and (d).
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3.2. Proof of Theorem 1

First note that, for any time t ∈ N, we have:

E
[
|H0 ∩R(t)|

]
=

∑

j≤t,j∈H0

E [1 {Pj ≤ αj}]

(i)

≤
∑

j≤t,j∈H0

E [αj ]

(ii)

≤ E


 ∑

j≤t,j∈H0

αj
1 {Pj > λj}

1− λj


 ,

where inequality (i) first uses the law of iterated expectations

by conditioning on Fj−1, and then both (i) and (ii) apply the

conditional super-uniformity property (4), which concludes

the proof of part (a). To prove part (b), we drop the condition

j ∈ H0 from the last expectation, and use the assumption

that F̂DPλ(t) : =

∑
j≤t

αj

1{Pj>λj}
1−λj

|R(t)| ≤ α to obtain:

E


 ∑

j≤t,j∈H0

αj
1 {Pj > λj}

1− λj


 ≤ αE [|R(t)|] .

Combining this inequality with the result of part (a),

and rearranging the terms, we reach the conclusion that

mFDR(t) ≤ α, as desired. Under the independence and

monotonicity assumptions of parts (c, d), we have

FDR(t) = E

[
|H0 ∩R(t)|

|R(t)|

]

=
∑

j≤t,j∈H0

E

[
1 {Pj ≤ αj}

|R(t)|
························

]

(iii)

≤
∑

j≤t,j∈H0

E

[ αj

|R(t)|
············

]

(iv)

≤
∑

j≤t,j∈H0

E

[
αj1 {Pj > λj}

(1− λj)|R(t)|
·····························

]
,

where inequality (iii) first uses iterated expectations by

conditioning on Fj−1, and then both (iii) and (iv) apply

Lemma 1. Assuming that the inequality F̂DPλ(t) ≤ α
holds, it follows that:

∑

j≤t,j∈H0

E

[
αj1 {Pj > λj}

(1− λj)|R(t)|
·····························

]
(v)

≤ E

[∑
j≤t αj1 {Pj > λj}

(1− λj)|R(t)|
········································

]

(vi)
= E

[
F̂DPλ(t)

]

(vii)

≤ α,

where inequality (v) follows by linearity of expectation and

summing over a larger set of indices; equality (vi) simply

uses the definition of F̂DPλ(t), and inequality (vii) follows

by the assumption, hence proving parts (c,d).

4. Numerical Simulations

In this section, we provide the results of some numerical

experiments that compare the performance of SAFFRON

with current state-of-the-art algorithms for online FDR con-

trol, namely the aforementioned LORD and alpha-investing

procedures.2 For each method, we provide empirical eval-

uations of its power while ensuring that the FDR remains

below a chosen value. We only run simulations since for

real data, we would not know the ground truth and hence

which discoveries are true or false.

The following two subsections separately analyze two exper-

imental settings - one in which the p-values are computed

from Gaussian observations, and another in which the p-

values under the alternative are drawn from a beta distribu-

tion. In both cases, SAFFRON outperforms the competing

algorithms, with the exact level of performance depending

on the choice of sequence {γj}. All experiments use a target

FDR of α = 0.05 and estimate the FDR and power by aver-

aging over 200 independent trials. As previously mentioned,

the constant sequence λj = 1/2 for all j was found to be

particularly successful, so this is our default choice, and we

drop the index for simplicity.

4.1. Testing with Gaussian Observations

We use the simple experimental setup of testing the mean of

a Gaussian distribution with T = 1000 components. More

precisely, for each index i ∈ {1, . . . , T}, the null hypothesis

takes the form Hi : µi = 0. The observations consist

of independent Gaussian variates Zi ∼ N(µi, 1), which

are converted into one-sided p-values using the transform

Pi = Φ(−Zi), where Φ is the standard Gaussian CDF.

The motivation for one-sided conversion lies in A/B testing,

where one wishes to detect larger effects, not smaller. The

parameter µi is chosen according to a mixture model:

µi =

{
0 with probability 1− π1

F1 with probability π1,

where the random variable F1 is of the form N(µc, 1) for

some constant µc. We ran simulations for µc ∈ {2, 3}, thus

seeing how changing the distance of the alternative mean to

the null mean affects the performance of SAFFRON.

In what follows, we compare SAFFRON’s achieved power

and FDR to those of LORD and alpha-investing. The con-

stant infinite sequence γj ∝
log(j∨2)

je
√

log j
, where the proportion-

ality constant is determined so that the sequence sums to one,

was shown to be asymptotically optimal for testing Gaussian

means via the LORD method in the paper (Javanmard &

Montanari, 2017). Since SAFFRON loses wealth only when

2The code for all simulations described in this section is avail-
able at: https://github.com/tijana-zrnic/SAFFRONcode
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testing non-candidates whereas LORD loses wealth at every

step, it is expected to behave more conservatively and not

use up its wealth at the same rate, conditioned on both using

the same sequence {γj}. For this reason, informally speak-

ing, it can reuse this leftover wealth, hence the sequence

{γj} chosen for SAFFRON is more aggressive, in the sense

that more wealth is concentrated around the beginning of

the sequence. In particular, we choose sequences of the

form γj ∝ j−s, where the parameter s > 1 controls the

aggressiveness of the procedure; the greater the constant s,

the more wealth is concentrated around small values of j.

We also consider these sequences for LORD, thus observing

the difference in performance resulting from using a more

aggressive sequence in the regime of a finite sequence of p-

values. Figures showing the power and FDR of SAFFRON

and LORD by varying the aggressiveness of sequence {γj}
are in the Supplementary Material.

In Figure 2 we consider F1 = N(2, 1), and compare the

level of performance of alpha-investing, SAFFRON and

LORD, the latter two using the highest performing sequence

chosen among six possible sequences. Figure 1 demon-

strates the same comparison for a similar but somewhat

easier testing problem, with F1 = N(3, 1). Experiments

indicate that increasing the fraction of non-null hypothe-

ses allows SAFFRON to achieve a faster increase of power

than LORD, thus performing considerably better than both

LORD and the alpha-investing procedure in settings with a

great number of non-null observations.
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Figure 2. Statistical power and FDR versus fraction of non-null

hypotheses π1 for SAFFRON, LORD and alpha-investing, the first

two using the sequence {γj} which achieves the highest power for

each of them (chosen over six sequences of varying aggressive-

ness). The observations under the alternative are Gaussian with

µi ∼ N(2, 1) and standard deviation 1, and are converted into

one-sided p-values as Pi = Φ(−Zi).

4.2. Testing with Beta Alternatives

In this setting we generate the p-value sequence according

to the following model:

Pi ∼

{
Unif[0, 1], with probability 1− π1

Beta(m,n), with probability π1,

where i ∈ [T ] and T = 1000, as before. Again we compare

the performance of SAFFRON, alpha-investing and LORD

in terms of the achieved power with the FDR controlled

under a chosen level. For LORD, the asymptotically op-

timal sequence {γj} was derived in the paper (Javanmard

& Montanari, 2017) and is of the form γj ∝ ( 1j log j)
1/m

for m < 1 and n ≥ 1. As in the Gaussian case, for SAF-

FRON and additionally for LORD we consider the sequence

γj ∝ j−s with varying s, which, unlike the aforementioned

sequence, does not depend on the parameters of the distribu-

tion. Please refer to the Supplementary Material for plots of

achieved power and FDR of SAFFRON and LORD obtained

by varying the sequence. For the particular distribution of

the observed p-values we choose m = 0.5 and n = 5.

Figure 3 compares the performance of SAFFRON, LORD

and alpha-investing, the first two using the highest perform-

ing sequence {γj} chosen among six considered sequences,

as in the setting with Gaussian tests. Although simulations

show SAFFRON performing similarly to LORD and alpha-

investing for small fractions of non-null hypotheses, it sig-

nificantly outperforms its competitors in terms of power and

using up available wealth with a higher number of signals.
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Figure 3. Statistical power and FDR versus fraction of non-null

hypotheses π1 for SAFFRON, LORD and alpha-investing, the first

two using the sequence {γj} which achieves the highest power for

each of them (chosen over six sequences of varying aggressive-

ness). Alternative p-values are distributed as Beta(0.5, 5).

5. Summary

This paper introduces SAFFRON, a new algorithmic frame-

work for online mFDR and FDR control. We show em-

pirically that SAFFRON is more powerful than existing

algorithms. SAFFRON is based on a novel reverse super-

uniformity lemma that allows us to estimate the fraction

of alpha-wealth that an algorithm spends on testing null

hypotheses. One may interpret SAFFRON as an adaptive

version of LORD, just as Storey-BH is an adaptive version

of the Benjamini-Hochberg algorithm. Lastly, the derivation

of SAFFRON is rather different from that of earlier general-

ized alpha-investing (GAI) algorithms, and as such provides

a template for the derivation of new algorithms.
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