1

The automata-theoretic approach is one of the most fundi@iregproaches to devel-
oping decision procedures in mathematical logics [RabB%. based on the fact that
many logics enjoy théree-model propertyif a formula in the logic is satisfiable then
it has a tree (or a tree-like) model [Var97]. To decide whethérmula in such a

logic is satisfiable, one constructs an automatgnthat accepts all (or enough) tree

Safraless Decision Procedutes

Orna Kupferman Moshe Y. Vardt
Hebrew University Rice University

December 22, 2005

Abstract

The automata-theoretic approach is one of the most fund@na@pproaches
to developing decision procedures in mathematical logits.decide whether a
formula in a logic with the tree-model property is satisfegbbne constructs an
automaton that accepts all (or enough) tree models of tmeuiarand then checks
that the language of this automaton is nonempty. The stdrajgproach trans-
lates formulas into alternating parity tree automata, Whice then translated, via
Safra’s determinization construction, into nondeterstini parity automata. This
approach is not amenable to implementation because of ffieutty of imple-
menting Safra’s construction and the nonemptiness tesidiedeterministic parity
tree automata.

In this work we offer an alternative to the standard autorthémretic ap-
proach. The crux of our approach is avoiding the use of Safrahstruction and
of nondeterministic parity tree automata. Our approachsgostead via univer-
sal co-Buchi tree automata and nondeterministic Buae ftutomata. While our
translations have the same complexity as the standard agiprthey are signifi-
cantly simpler, less difficult to implement, and have preaitadvantages like being
amenable to optimizations and a symbolic implementation.

Introduction

models ofy> and then checks that the language4yf is nonempty.

*A preliminary version of this paper appears in the Procegsliof the 46th IEEE Symposium on Foun-

dations of Computer Science.

T Address:School of Computer Science and Engineering, Mehheiversity, Jerusalem 91904, Israel.

Email: orna@cs.huji.ac.il. Supported in part by BSF gra8@@96 and by a grant from Minerva.

fAddress: Department of Computer Science, Rice Universityston, TX 77251-1892, U.S.A., Email:
vardi@cs.rice.edu. Supported in part by NSF grants CCR8328, CCR-0124077, CCR-0311326, IIS-
9908435, 11S-9978135, EIA-0086264, and ANI-0216467, byFBfant 9800096, by Texas ATP grant

003604-0058-2003, and by a grant from the Intel Corporation

The automata-theoretic approach was developed first foragiorogics over fi-
nite words [BUc60, Elg61, Tra62]. It was then extended fmite words in [Biic62],
to finite trees in [TW68], and finally generalized to infiniteeés in [Rab69]. Follow-
ing Rabin’s fundamental result, SnS, the monadic theonnfifiite trees, served for
many years as a proxy for the automata-theoretic approaohshaw decidability of
a logic one could simply demonstrate an effective reduabiotiat logic to SnS, e.g.,
[Gab72, KP84]. Unfortunately, the complexity of SnS is kmotw be nonelementary
(i.e., it cannot be bounded by a stack of exponential of a firedht) [Mey75]. Thus, in
the early 1980s, when decidability of highly expressivedsdpecame of practical inter-
estin areas such as formal verification and Al [GL94, Koz88} complexity-theoretic
considerations started to play a greater role, the origainébmata-theoretic idea was
revived; by going from various logics to automata direatlgcision procedures of ele-
mentary complexity were obtained for many logics, e.g.,.§&E5tr82, VW86].

By the mid 1980s, the focus was on using automata to obtditetigipper bounds.
This required progress in the underlying automata-thétethniques. Such break-
through progress was attained by Safra [Saf88], who desdidin optimal determiniza-
tion construction for automata on infinite words, and by Esoarand Jutla [EJ88] and
Pnueli and Rosner [PR89], who described improved algostfonparity tree automata
(the term “parity” refers to the accompanying acceptangelitmn of the automaton).
Further simplification was obtained by the introduction ikéanating automata on infi-
nite trees [EJ91, MS85]. In the now standard approach fotkdihg whether a formula
1) is satisfiable, one follows these steps: (1) construct @nradting parity tree automa-
ton A, that accepts all (or enough) tree models/of(The translation from formulas
to alternating parity tree automata is well known (c.f., [W@0]) and will not be ad-
dressed in this paper.) (2) translate this automaton to @eterministic parity tree
automatondy}, and (3) check that the language.df, is nonempty.

While the now standard automata-theoretic approach yiedmificantly improved
upper bounds (in some cases reducing the upper time boumddfttuply exponential
[Str82] to singly exponential [Var98]), it proved to be nobtamenable to implemen-
tation. First, the translation in step (2) is very complégatremoving alternation from
alternating tree automata involves determinization ofdhantomata, and Safra’s con-
struction proved quite resistant to efficient implememafTHB95]. An alternative
removal of alternation is described in [MS95]. Like Safra@nstruction, however,
this translation is very complicated [ATWO05]. Second, tlesteknown algorithms for
parity-tree-automata emptiness are exponential [JurD@]is, while highly optimized
software packages for automata on finite words and finitesthese been developed
over the last few years [EKM98], no such software has beerldped for automata
on infinite trees.

In this paper we offer an alternative to the standard autarttatoretic approach.
The crux of our approach is avoiding the use of Safra’s cocsitn and of nonde-
terministic parity tree automata. In the approach desdritere, one checks whether a
formulay is satisfiable by following these steps: (1) construct agra#iting parity tree
automatonA,, that accepts all (or enough) tree models/of(2) reducé A, to a uni-

1we use “reduced; to A", rather than “translated; to As” to indicate that4; need not be equivalent
to Ag, yet the language ofl; is empty iff the language aofl> is empty.

versal co-Buchi automatady, (3) reduceA; to an alternating weak tree automaton

+» (4) translated; to a nondeterministic Buchi tree automatds}, and (5) check
that the language ofly; is nonempty. The key is avoiding Safra’s construction, by us
ing universal co-Biichi automata instead of determinigtidty automatd&. Universal
automata have the desired property, enjoyed also by detesticiautomata but not by
nondeterministic automata, of having the ability to run roak branches of an input
tree. In addition, the co-Buichi acceptance condition i<imsimpler than the parity
condition. This enables us to solve the nonemptiness profde universal co-Buchi
tree automata by reducing them into nondeterministic Btrele automata (the reduc-
tion goes through alternating weak tree automata [MSS88i tlaere is no need for the
parity acceptance condition). The nonemptiness problemdadeterministic Biichi
tree automata is much simpler than the nonemptiness profdemondeterministic
parity tree automata and it can be solved symbolically arglisdratic time [VW86].
We also show that in some cases (in particular,réaizability and synthesigf?R89]
problems for LTL specifications), it is possible to skip tlemstruction of an alternating
parity automaton and go directly to a universal co-Buchoaaton.

Our translations and reductions are significantly simgilantthe standard approach,
making them less difficult to implement, both explicitly asginbolically. These ad-
vantages are obtained with no increase in the complexitiadt as discussed in Sec-
tion 6, our construction is amenable to several optimizatéchniques.

2 Preliminaries

Given a setD of directions, aD-treeis a setl’ C D* such that ifz - ¢ € T, where
x € D*andec € D, thenalsox € T. If T = D*, we say thafl is a full D-tree.
The elements of" are calledhodes and the empty word is theroot of T'. For every
x € T,the nodes - ¢, for c € D, are thesuccessorsf z. A pathr of a treeT’ is a set
7 C T such that € 7 and for everyr € =, eitherz is a leaf or there exists a unique
¢ € D such thatz - ¢ € 7. Given an alphabeX, aX-labeledD-treeis a pair(T’, 7)
whereT is atree and : T' — X maps each node @f to a letter inX.

A transduceliis a labeled finite graph with a designated start node, wieredges
are labeled byD and the nodes are labeled By A >-labeledD-tree isregular if
it is the unwinding of some transducer. More formally, a s@dmcer is a tupld =
(D,%, S, sin,n, L), whereD is a finite set of directions;. is a finite alphabetS is a
finite set of statess;,, € Sis aninitial statey : Sx D — Sis a deterministic transition
function, andL : S — X is a labeling function. We defing: D* — S in the standard
way: n(e) = Sin, and forez € D* andd € D, we haven(z - d) = n(n(x),d).
Intuitively, A X-labeled D-tree (D*, 7) is regular if there exists a transduc&r =
(D,%, S, sin,n, L) such that for every € D*, we haver(z) = L(n(z)). We then say
that the size of the regular tré®*, 7), denoted|||, is |.S|, the number of states &f.

2A note to readers who are discouraged by the fact our methed gia several intermediate automata:
it is possible to combine the reductions into one constouctand in fact we describe here also a direct
translation of universal co-Bichi automata into nondeteistic Biichi automata. In practice, however, it
is beneficial to have many intermediate automata, as eaehmatliate automaton undergoes optimization
constructions that are suitable for its particular type(d8r FW02, GKSV03].

For a setX, let BT(X) be the set of positive Boolean formulas ovEr (i.e.,
Boolean formulas built from elements i using A and V), where we also allow
the formulastrue (an empty conjunction) anthlse (an empty disjunction). For a
setY C X and a formul&d € BT (X), we say thal” satisfies iff assigningtrue to
elements int” and assignindalseto elements inX \ Y maked) true. AnAlternating
tree automatoiis A = (X, D, Q, ¢in, 9, @), whereX is the input alphabef) is a set of
directionsQ is a finite set of states,: Q x ¥ — BT (D x Q) is a transition function,
g¢in € @ is an initial state, and specifies the acceptance condition (a condition that
defines a subset @§; we define several types of acceptance conditions below).

The alternating automatos runs onX-labeled full D-trees. Arun of A over aX-
labeledD-tree(T, 7) is a(T x Q)-labeled N-tre€T,., r). Each node of;. corresponds
to a node off". A node inT, labeled by(x, ¢), describes a copy of the automaton that
reads the node of 7" and visits the statg. Note that many nodes @f. can correspond
to the same node df'. The labels of a node and its successors have to satisfy the
transition function. Formally(T,., r) satisfies the following:

1. e € T, andr(e) = (g, ¢in)-

2. Lety € T, with r(y) = (z,q) andd(g, 7(z)) = 6. Then there is a (possibly
empty) setS = {(007 QO), (Clv q1)a e (C’n.flv Q’nfl)} C D x Qn such thatS
satisfied), and forall0 <i <n—1,wehavey-i € T, andr(y-i) = (z-¢;, qi).

For example, if(T, 7) is a{0, 1}-tree with7(¢) = a andd(gin,a) = ((0,q1) V
(0,92)) A ((0,¢3) V (1,¢2)), then, at levell, the run(T;., r) includes a node labeled
(0,¢1) or a node labeled0, ¢2), and includes a node labeléd ¢3) or a node labeled
(1,¢2). Note that if, for somey, the transition functiod has the valuérue, theny
need not have successors. Als@an never have the valdalsein a run.

A run (T, r) is accepting if all its infinite paths satisfy the acceptaocadition.
Given a run(T,.,) and an infinite pathr C T, letinf(r) C Q be such thay €
inf(m) if and only if there are infinitely many € = for whichr(y) € T x {¢}. That
is, in f () contains exactly all the states that appear infinitely oiiten. \WWe consider
here three acceptance conditions defined as foflows

e A pathr satisfies éBuchiacceptance condition C @ if and only if inf(7) N

a # 0.

e A pathr satisfies @o-Bluchiacceptance conditiam C @ ifand only ifin f (7)N

a=10.

e A path 7 satisfies gparity acceptance condition = {Fy, Fs,..., Fi} with
Fy C F, C--- C F, = Q iff the minimal index: for whichinf(w) N F; # 0
is even. The numbeér of sets ina is called thandexof the automaton.

For the three conditions, an automaton accepts a tree ifethgists a run that
accepts it. We denote bf/(.A) the set of alb-labeled trees thatl accepts.

3In the proof of Theorem 4.3, we also refer to the Rabin andeBt@onditions, but their definition is
irrelevant for the proof.

Below we discuss some special cases of alternation autorflhéaalternating au-
tomatonA is nondeterministidf for all the formulas that appear i6, if (c1,¢1) and
(c2, q2) are conjunctively related, then # cs. (i.e., if the transition is rewritten in
disjunctive normal form, there is at most one elementdf x @, for eachc € D, in
each disjunct). The automatotis universalif all the formulas that appear if are
conjunctions of atoms i x @, and.A is deterministicif it is both nondeterministic
and universal. The automatchis aword automaton if D| = 1.

In [MSS86], Muller et al. introducalternating weak tree automatan a weak
automaton, we have a Bichi acceptance conditioh ¢ and there exists a partition
of @ into disjoint sets@1, . . ., @, such that for each s€);, either@; C «, in which
caseQ); is anaccepting setor Q; N« = 0, in which caseR); is arejecting set In
addition, there exists a partial orderon the collection of the);’s such that for every
q € Q; andq’ € @, forwhichg’ occursind(q, o), forsomes € X, we haved; < Q;.
Thus, transitions from a state @, lead to states in either the sarf¢ or a lower one.
It follows that every infinite path of a run of an alternatingak automaton ultimately
gets “trapped” within somé),. The path then satisfies the acceptance condition if and
only if Q; is an accepting set.

We denote each of the different types of automata by thraerlacronyms in
{D,N,U, A} x {B,C,P,R,S,W} x {W, T}, where the first letter describes the
branching mode of the automaton (deterministic, nonddtestic, universal, or alter-
nating), the second letter describes the acceptance aam@uichi, co-Biichi, parity,
Rabin, Streett, or weak), and the third letter describesotiject over which the au-
tomaton runs (words or trees). For example, APT are altergatarity tree automata
and UCT are universal co-Bichi tree automata.

3 From APT to NBT via UCT

UCT are a special case of APT: the transition function of a WoMtains only con-
junctions and the acceptance condition corresponds toity gandition of index 2.
UCT are indeed strictly less expressive than APT. Considleexample the language
L of {0,1}-labeled trees wherél’, 7) € L iff there is a pathm C T such that for
infinitely manyz € 7, we haver(z) = 0. It is easy to construct an APT (in fact, even
an NBT [Rab70]) that recognizes By [Rab70], however, no NBT can recognize the
complement of. Hence, by [MSS86], no UCT can recogniZe

In this section we show that though UCT are less expressareAlfP T, they are very
powerful. On the one hand, the emptiness problem for APT sdyeeeducible to the
emptiness problem for UCT. On the other hand, it is easy twstede UCT into NBT so
that emptiness is preserved (that is, the NBT is empty ifilé¥ is empty). Thus, as
discussed in Section 1, traditional decidability algariththat end up in a complicated
APT nonemptiness check, can be much simplified. We also shatCT are useful
for tasks traditionally assigned to APT. Thus, in many casespossible to skip the
construction of an APT and go directly to a UCT. This includles realizability and
synthesis problems for LTL specifications [PR89], and thabfem of translating an
LTL specification into a DPW with a minimal index. We will digss these applications
in Section 5.

3.1 From APT to UCT

Consider an APTA = (X, D, Q, ¢in, 6,). Recall that the transition functiof :
Q x X — BY(D x Q) maps a state and a letter to a formulaZdr (D x Q). A
restriction of § is a partial functiom) : Q — 2P*®. For a letters € X, we say that
a restrictionn is relevantto o if for all ¢ € @ for which §(q, o) is satisfiable (i.e.,
0(q,0) is notfalse), the setn(q) satisfiesd(q, o). If §(q,0) is not satisfiable, then
n(q) is undefined. Intuitively, by choosing the atoms that arengdb be satisfied,
1 removes the nondeterminism én Let ' be the set of restrictions @f. Note that
|F'| is exponential ind|. A running strategyof A for a ¥-labeledD-tree (T, 7) is
an F-labeled tree(T, f). We say thatT, f) is relevantto (T, 7) if for all z € T,
the restrictionf (x) is relevant tor(x). When(T,, f) is relevant to{T’,), it induces a
unique (up to the order of siblings in the run tree) (@, r ;) of Aon(T, 7): whenever
the run{(T;,ry) is in stateg as it reads a node € T, it proceeds according tf(x)(q).
Formally,(Ty, r¢) is a(T x @Q)-labeled N-tree that satisfies the following:

l.ce Tf andrf(e) = (57(]1'71)-

2. Consider a nodg € Ty with rf(y) = (x,q). Let f(z)(q) = {(co,), (c1, q),
co (n—1,qn-1)} € D x Q. Forall0 <i <n—1,wehavey-i € T, and
ri(y-1) = (x - ¢, ¢). The only children ofy in Ty are these required for the
satisfaction of the above.

We say that a running stratedy, f) is goodfor (T,) if (T, f) is relevanttoT,,)
and the runTy, r) is accepting. Note that a nodeof (7', f) may be read by several
copies ofA. All these copies proceed according to the restrictfion), regardless the
history of the run so far. Thus, the ryff;, ;) is memorylessBy [EJ91], an APTA
acceptsT, 1) iff A has a memoryless accepting run @). Hence the following
theorem.

Theorem 3.1 [EJ91] The APTA accepts(T, r) iff there exists a running strategy
(T, f) thatis good foKT, 7).

Annotating input trees with restrictions enables us togfarm an APT to a UCT
with polynomially many states: l1éf’ C ¥ x F be such that for allo,n) € ', we
have that is relevant tas. Note that since we restrict attention to pairs in whicis
relevant too, the size ofY’ is still exponential ind|. We refer to a~’-labeled tree as
(T, (7, f)), wherer and f are the projections of’ on ¥ andF, respectively.

Theorem 3.2 Let. A be an APT withn states, transition function of size, and indexa.
There is a UCTA’ with O(nh) states and alphabet of si2€ (™) such thatZ(A) #
iff L(A") #£ 0.

Proof: The UCTA’ accepts &’-labeledD-tree iff A accepts its projection on. For
that, A’ accepts atre€r’, (r, f)) iff (T, f) is good for(T, 7). By Theorem 3.1, it then
follows that.A" accepts(T,, (7, f)) iff A accept(T, 7). Note that sinc&’ contains
only pairs{c,n) for which is relevant tar, it must be thaff is relevant tor, thus. A’
only has to check that all the paths in the run t{&g, r¢) satisfy the parity acceptance

condition. Since the running strated¥, /) removes the nondeterminism & the
construction of4’ is similar to a translation of a universal parity tree auttonanto a
universal co-Buchi tree automaton, which is dual to thevkmtranslation of Rabin (or
co-parity) word automata to Biichi word automata [Cho74].

Formally, letA = (2, Q, gin, 0,) with o = {F}, Fy, ..., Fa,}, and letF, = 0.
We define the UCTA’ = (X, Q x {0,...,h — 1}, (gin, 0), /), where

e Foreveryg € Q, 0 € X, andn € F, we have

= 0'((g, 0), (0,m) = No<icn Nie,s)etmi@n(Dx o) (6 (5:5))-
— Foreveryl <i < h,we have;,«Qa Z), <Ua 77>) = /\(c,s)E(n(q)\(DXFm))(c’ <S’ Z))

o o' =Uycip(Foit1 x {i}).

The automatord’ consists ofi copies of A, with the states of theth copy being
labeled by, for0 < i < h — 1. A copy associated with indexfor0 < i < h — 1,
checks that if a path in the rufi’y, rf) visits F»; only finitely often, then the path also
visits Fy; 1 only finitely often. The run ofd’ starts at the “master copyt) x {0},
and it branches as suggested by the restriction in the irffpotn the master copy’
branches to the other copies: for each transitiotdauggested by, the automaton
A’ branches to the master copy and to all the ofher 1 copies. Onced’ moves to
a copy associated with indexit stays there forever, unless when it has to move to a
state fromFy;. The acceptance condition gf guarantees that ifl’ stays in the-th
copy forever (in which case it reaches thi copy in a suffix of a path ofZs, ;) that
has no visits td;, indicating that corresponding path visits; only finitely often), it
visits only finitely many states ifi5; ;. O]

As discussed in Section 1, APT are of special interest apassible to translate-
calculus formulas into APT. By translating other types ¢éalating tree automata into
UCT, our approach can be applied to other temporal logicsedk ¥We describe such
two cases below. The logic CTLis weaker than the-calculus and CTE formulas
can be translated into alternatihgsitantautomata [KVWO0O0]. Since the acceptance
condition of a hesitant automaton is similar to a Rabin ctoiwith a single pair, the
construction of the UCT of Theorem 3.2 in that case involvaly a linear blow-up in
the state space.

An extension of the standaydcalculus, called théull p-calculus which includes
both forward and backward modalities, is studied in [Var98]is shown there that
a full p-calculus formula can be translated intdveo-wayAPT, denoted 2APT. The
emptiness problem for 2APT is solved in [Var98] via a redmictto NPT that uses
Safra’s construction. A closer examination of the congtouncin [Var98] shows that it
proceeds in two steps: (1) Itis shown that a 2ARTan be translated into a URT
over a larger alphabet such thatA) # 0 iff L(A’) # 0; (2) The UPTA’ is translated
to an NPT using Safra’s construction. Using Theorem 3.2, s tcanslated’ into
a UCT and skip step (2). Thus, we obtain a Safraless decismregure for the full
p-calculus.

“Note that an empty conjunction evaluatedatse.

3.2 From UCT to NBT

We now describe an emptiness preserving translation of WONBT. The correctness

proof of the construction is given in Section 4. There, we alsggest to use AWT as an
intermediate step in the construction. While this adds p&t@ur chain of reductions,

it enables further optimizations of the result.

Theorem 3.3 Let.4 be a UCT withn states. There is an NBA’ over the same alpha-
bet such thar(A") # 0 iff L(A) # 0, and the number of states i/ is 20" losn),

Proof: Let A = (3, D,Q, qin, 6,), and letk = (2n!)n?"3"(n + 1)/n!. Note that
kis 20(nlegn) | et R be the set of functiong : Q — {0,...,k} in which f(q) is
even forallg € a. Forg € R, letodd(g) = {q : g(q) is odd}. We defined’ =
(3,D,Q’,q.,,0',a"), where

o Q) =29 x29 x R.
e ¢.. = {ain}, 0, g0), whereg, maps all states th.

e Forg € Q,0 € X, andc € D, leté(q,o0,¢) = §(¢q,0) N ({c} x Q). For two
functionsg andg’ in R, a lettero, and directiorc € D, we say thay’ covers
(g,0,c) if forall g andq’ in Q, if ¢’ € d(q,0,¢), theng’(¢') < g(q). Then, for
all (S,0,¢) € Q" ando € X, we define as follows.

— If O # 0, thend’((S, 0, g), o) =

A \V (6(8,0,¢),8(0,0,¢) \ odd(ge), ge).

ceD g. covers (g,0,c)

— If O =0,thend’((S,0,g),0) =

A \ (6(S,0,¢),8(S,0,¢)\ odd(g.), ge)-

ceD g, covers (g,0,c)

o o =29 x {0} x R.

3.3 Complexity

Combining Theorems 3.2 and 3.3, we get the desired reduitonthe nonemptiness
problem for APT to the nonemptiness problem for NBT:

Theorem 3.4 Let A be an APT2w2ithz states, transition function of size, and index
h. There is an NBTA’ with 20(n" " lognh) states and alphabet of si2€("™) such that
L(A) £ Diff L(A") £ 0.

We now analyze the complexity of the nonemptiness algorfinnAPT that fol-
lows.

Theorem 3.5 The nonemptiness problem for an APT wigbtzates, transition function
of sizem, and indexh can be solved in timg©@(log [Dl+m+n”h”lognh)

Proof: By Theorem 3.4, the NBT induced by the APT 128¥"°h”losnh) states and
alphabet of siz&°(™), The transitions of the NBT are such that the successors of
a certain state in a particular direction are independetitsoguccessors in other di-
rections. Thus, the transition function of the NBT specifigseach state, letter, and
direction, a set of possible states, and it is thereforezef 2 (108 |DI+m+n*h? log nh)

The nonemptiness problem for NBT can be solved in time guiedrathe size of the
transition function [VW86], so we getO(log [DI+m+n*h?lognh) O

This coincides with the known upper bound that is based oraSafonstruction.
Indeed, there, one first constructs a DPT witth)© (") states and inde® (nh). The
alphabet size of the DPT ("), Since the DPT is deterministic, the size of its
transition function is the product of its state space sifghabet size, and branching
degree, which i@0(og|P+m+nhlog(nh)) The nonemptiness problem for DPT with
transition function of sizer, state space of sizg, and indexz requires timezy© ()
[Jur00], so we gepOlog [DI+m+n*h*lognh)) which coincides with our bound. The
main advantage of our approach is the simplicity of the athor, the complexity
analysis here just serves to show that this simplicity dastsinvolve a worse upper
bound.

4 A proof of the UCT to NBT construction

Recall that runs of alternating tree automata are labetsgbstrBy merging nodes that
are roots of identical subtrees, it is possible to maintairstin graphs. In Section 4.1,
we prove a bounded-size run graphs property for UCT. In Breti2, we show how
the bounded-size property enables a simple translatiorCdf td AWT. In Section 4.3,
we translate these AWT to NBT. Combining the translatiossiits in the construction
presented in Theorem 3.3.

4.1 Useful Observations

ConsideraUCTA = (3, D, Q, gin, 6, o). Recall that a ruT,., r) of A on aX-labeled
D-tree(T, 1) is a(T x Q)-labeled tree in which a nodewith r(y) = (x,¢) stands
for a copy ofA that visits the state when it reads the node Assume thatT, 7) is
regular, and is generated by a transdufee (D, X, S, s;n,n, L). For two nodesy,
andys in T, with r(y1) = (x1,q1) andr(y2) = (x2, q2), we say that; andy, are
similariff ¢; = g2 andn(z1) = n(x2). By merging similar nodes into a single vertex,
we can represent the ruff’., r) by a finite graphG,, = (V, E), whereV = S x @
andE((s,q), (s',q')) iff there isc € D such thaic, ¢’) € 6(¢g, L(s)) andn(s,c) = s'.
We restrictG,. to vertices reachable from the vertéx.,, ¢;,). We refer toG, as the
run graph of A on7. A run graph ofA is then a run graph afl on some transducer
7. We say that7, is accepting iff every infinite path a¥,. has only finitely manyy-
vertices (vertices ity x «). SinceA is universal and is deterministic, the rugiZ., r)

is memorylesi the sense that the merging does not introdud@ t@aths that do not
existin(T,,r), and thus, it preserves acceptance. Formally, we have Hog/fog:

Lemma 4.1 Consider a UCTA. Let(T,) be a tree generated by a transdu@r The
run tree(T,., r) of A on(T,) is accepting iff the run grapty,. of .4 on7T is accepting.

Proof: We say that a path = yo,y1 - y2 - -- of (T,) corresponds to a patil =
<80, q0>, <81,ql>, <82, q2>, e OfGT iff S0 = Siny» 90 = Qin, and there isapatbb, 1,22, ...
of T, with ;11 = z; - ¢;, such that for alt > 0, we have that(y;) = («;, ¢;) and
n(s;,¢;) = siy1. Thus,n’ describes the states @f and.A that the copy of4 whose
evolution is recorded in the path visits. Clearly, 7 has infinitely many nodes;
with r(y;) € T x « iff «’ visits infinitely manya-vertices. By the definition of7,.,
each path of T, r) corresponds to a single path 6f.. Also, each pathr’ of G,
has at least one path of (T..,r) such thatr corresponds ter’. To see this, note
that since(T,) is induced byT, thenT = D* and for allx € D*, we have that
7(x) = L(n(x)). In addition, by the definition of7,., for all i > 0 there isc; € D such
that(c;, ¢i+1) € 0(qi, L(s;)) andn(s;, ¢;) = s;+1; the sequence of thesg’s induces
a pathzg, x1, 2, x3,... of T, with z; 11 = x; - ¢;. The run ofA on (T, 7) contains
a copy that reads this path and visjts¢1, g2, - - ., and the pathr of (7).,) describes
this copy. Hence(T..,) has an infinite path that visits infinitely many statesviiff
G, has an infinite path with infinitely many-vertices, and we are done.]

Note thatG,. is finite, and its size is bounded I/ x Q. We now boundS and
get a bounded-size run-graph property for UCT. The siz& dépends on the blow-up
involved in NBW determinization. By [Saf88], an NBW withstates can be translated
to an equivalent deterministic Streett word automaton (DSkth 20(legn) states.
Here, we need an exact bound, so we analyze the complexityeafdnstruction in
[Saf88] carefully:

Lemma 4.2 Given an NBW with: states, it is possible to construct an equivalent DSW
with (2n!)n?"3"(n + 1) /n! states.

Proof: By [Saf88, Saf89], the state space of the DSW is the set oé&fplr, i1, i2),
wheret is a labeled ordered tree ovemodes (a tree in which the successors of each
node are ordered)r is a permutation ofl,...,n, and1l < iy,io < n + 1. Each
node oft is labeled by a number ifil, ..., n} (the names of the node) and a color in
{0,1,2}. In addition, each node is labeled by a subsefiof...,n}, corresponding

to the subset of states of the NBW associated with the node trBest are such
that if a node is labeled with a subset containing state {1,...,n}, then so are

its ancestors. Also, the statecannot belong to the subsets labeling other nodes of
the same level. Therefore, the labeling of the nodes by ssilod€ 1, ..., n} can be
encoded by a function that maps a state {1,...,n} to the lowest leftmost node
such thati belongs to its labeled subset. Thus, the number of diffdedrels is the
product ofn™ (for the name)3"™ (for the color), andh™ (for the subsets). There are
cat(n — 1) ordered trees over nodes, whereat stands for Catalan number. The
explicitformulaforcat(n) is (2n!)/(n!(n+1)!). This, together with the”3"n" factor

for the possible labels of the nodes, and e + 1)? factor forr, i1, andiz, gives a

10

(2n!)22nloen3nnl(n 4+ 1)2/(n!(n + 1)!) bound, which equal@n!)n?"3"(n + 1) /n!.
O

Note that applying Stirling’s Approximation! ~ v/27n(n/e)", we can approxi-
mate the bound in Theorem 4.2 b{grn(2n/e)?"n?"3"(n+1)/v/27n(n/e)", which,
forn > 9, is bounded by:>"6".

We can now obtain a bounded-size run-graph property for UCT.

Theorem 4.3 A UCT A with n states is not empty iffl has an accepting run graph
with at most(2n!)n?" 13" (n + 1)/n! vertices.

Proof: Assume first that4 has an accepting run gragh, (of any size) on some
transducef . Let (T, 7) be the tree generated fy. Thus, T’ = D* and for allz € D*
we have that(xz) = L(n(z)). Consider the ruT,, r) of Aon(T,). By Lemma4.1,
(T, r) is accepting. Henced is not empty.

For the other direction, consider the UCA. By [EJ91], there is a DRTA? equiv-
alent to.A, which is constructed as follows. Let’ be an NBW that runs over a branch
of an input tree fotd and checks whethet has a rejecting path over this branch. The
NBW A’ has the same state spacedslLet A” be a DSWA" that is equivalent to
A’ (by Lemma /4.2). Now, we complemedt’ (by dualizing its acceptance condition)
and run the complementary DRW over all branches of the imeat to check that all
paths of the run tree ofl are accepting. This yields the DRAY that is equivalent to
A.

By Lemma 4.2, the DRTA? has at most’ = (2n!)n?"3"(n + 1)/n! states. By
[Eme85], an NRT withn’ states is not empty iff it accepts a regular tree generated by
a transducer withy’ states. The state space of the run grapi@n such a transducer
is then bounded byn’ = (2n!)n?"*13"(n + 1)/n!. Since the run of4 on the tree is
accepting, Lemma 4.1 implies that so is the run graph.]

We note that an improvement in the upper bound of Theorem d18diead to an
improvementin the complexity of our decision procedurefalet, as we further discuss
in Section 7, even an improvement in the width of such a ruplyould improve the
complexity of the decision procedure.

Consider a graplir C G,.. We say that a vertes, ¢) is finitein G iff all the paths
that start afs, ¢) are finite. We say that a vertéx, ¢) is a-freein G iff all the vertices
in G that are reachable frofs, ¢) are notx-vertices. Note that, in particular, anfree
vertex is not ar-vertex.

Given a run(T,,r), we define a sequened, > G; 2 Gy D ... of graphs,
subgraphs of~,, as follows.

e Gy =G,.

o Goiv1=Go \{{s,9) | (s,q) isfinite inGo; }.

o Goiro=Gat1 \ {(s,9) | (s,q) isa-free inGa;11}.
Lemma 4.4 A run graphG,. = (V, E) is accepting iff there i$ < |V| + 1 for which
G, is empty.

11

Proof: Assume first thats, is accepting. We prove that for dll> 1, the graphG;
has at mosfV'| + 1 — I vertices. In particulai7|y/|, has at mosh vertices, so there is

I < |V|+1forwhich G, is empty. The proof proceeds by an inductiori o€learly,G
has at mostl/| vertices. For the induction step, we prove that (1) fogaH 1, if Go; is
not empty, then it contains at least one finite vertex, antb2ll ¢ > 0, if G241 is not
empty, then it contains at least oa€ree vertex. It follows that the transition frot;

to G141 involves a removal of at least one vertex, and we are done t&fevgth Claim
(2). Consider the grapfis;. If G; contains only finite vertices, thehs; 1 is empty,
and we are done. We prove tha@i; contains a vertex that is not finite, then there must
be somex-free vertex inGo; 1. To see this, assume, by way of contradiction, that
contains a vertexso, go) that is not finite and no vertex i, 11 is a-free. Consider
the graphGz;11. All the vertices inG2;1 are not finite, and therefore, each of the
vertices inGs;+1 has at least one successor. Consider the vergx,) in Ga;ii1.
Since, by the assumption, it is natfree, there exists an-vertex(s;, ¢,) reachable
from (so,q0). Let (s1,q1) be a successor dfs, ¢;). By the assumption{si, q1)

is also nota-free. Hence, there exists anvertex (s}, ¢;) reachable from(sy, ¢1).
Let (s2,g2) be a successor @k, ¢;). By the assumption(ss, ¢2) is also not-free.
Thus, we can continue similarly and construct an infinitausege of verticess;, g;),
(s, q;) such that for allj, the vertex(s’, ¢}) is ana-vertex reachable frongs;, g;),
and(s;+1,¢g;+1) is a successor ak’;, ¢7). Such a sequence, however, corresponds to
a path inG, that visits« infinitely often, contradicting the assumption ti@ is an
accepting run graph.

It is left to prove Claim (1). Assume by way of contradictidrat there isi > 1
such thatGGs; is not empty and yet it contains no finite vertex. Théh, .1 = Go;.
Recall that7,; is obtained fromGs; 1 by removing all thex-free vertices. Therefore,
G»; contains na-free vertex. Hencéry;, 1 contains nax-free either, contradicting
Claim (2).

Assume now that7,. is rejecting. Then(&,. contains an infinite path with in-
finitely manya-vertices. We prove that for all > 0, all the verticeqs, ¢) in = are in
G4;. The proof proceeds by induction eanThe vertices inr are clearly members of
Gy. Also, if all the vertices inr are members of7y;, it must be that they are neither
finite nora-free inGa;11, SO they stay if7o;4o. O

Let G, be an accepting run graph. Given a vertexg) in G, therankof (s, ¢},
denotedrank(s, q), is defined as follows:

24 If (s, q) is finite in Go;.

rank(s,q) = 2i+1 If (s,q) isa-free inGoy1.

By Lemma 4.4, there i5< |V |+ 1 for which G, is empty, Therefore, every vertex
gets a well-defined rank, smaller thgn|.
Lemma 4.5 Consider a run grapl@z,. = (V, E).

1. Forevery verteXs, ¢) in G, andi < |V|, we haves, q) & G, iff rank(s,q) < i.

2. For every two verticess, ¢) # (s',¢') in G, if (s/, ¢’} is reachable frons, q),
thenrank(s’,q") < rank(s, q).

12

Proof: We start with Claim (1): for every vertefs, ¢) in G, andi < |V|, we have
(s,q) & G, iff rank(s,q) <.

We first prove that ifrank (s, ¢) < i then(s, ¢) € G;. Letrank(s,q) = j. By the
definition of ranks,(s, ¢) is finite ora-free inG,;. Hence,s,q) ¢ G,+1. Hence, as
i>7,also(s,q) ¢ G;.

For the other direction, we proceed by an inductioniorSinceGy = G, the
case wheré = 0 is immediate. For the induction step, considet |V | and assume
the lemma holds for alf < i. Consider a vertexs,q) ¢ G;. If (s,q) & G;_1, the
lemma’s requirement follows from the induction hypothe€i¢herwise|s, ¢) € G;_1
and we distinguish between two cases.i 6 even, then(s, ¢) is a-free in G;_1.
Accordingly, rank(s,q) = i — 1, and we are done. Ifis odd, then(s, ¢) is finite in
G;—1. Accordingly,rank(s, q) =i — 1, and we are done too.

We now prove Claim (2): for every two verticés, ¢) # (s’,¢’') in G, if (s', ¢’} is
reachable frongs, ¢), thenrank(s’, ¢’) < rank(s, q).

If rank(s,q) = iis odd, then(s, ¢) is a-free inG;. Hence, eithe(z’, ¢’) is not in
G, in which case, by Claim (1), its rank is strictly smallerthaor (z/, ¢’} is in G;,
in which case, being reachable frdm ¢), it must bya-free inG; and have rank.

If rank(s,q) = i is even, ther(s, ¢) is finite in G;. Hence, eithe(z’, ¢') is not in
G;, in which case, by Claim (1), its rank is strictly smallerthaor (z’, ¢') is in G,
in which case, being reachable frdm g), it must be finite inG; and have rank. [J

Note that nax-vertex gets an odd rank. Hence, by Lemma 4.5, we have tranfoll
ing.
Lemma 4.6 In every infinite path in an accepting run gragh., there exists a vertex

(s, ¢) with an odd rank such that all the verticés, ¢’) on the path that are reachable
from (s, q) haverank(s', q') = rank(s, q).

4.2 From UCT to AWT

For an integek, let [k] = {0,...,k}, and let[k]*v*" and[k]°? be the restriction of
[k] to its even and odd members, respectively.

Theorem 4.7 Let A be a UCT withn states. There is an AWA’ over the same alpha-
bet such that’(A’) # () iff L(A) # 0, and the number of states i/ is 20(1ogn),

Proof: Let A = (X,D,Q,qin,d,a), and letk = (2n!)n?"*t13"%(n + 1)/n!. The
AWT A’ accepts all the regular tre€f, 7) € L(.A) that are generated by a transducer
T = (D,%, S, sin,n, L) with at most(2n!)n?"*13"(n + 1)/n! states. Note that the
run graph ofA on such{T', 7) is accepting and is of size mdst By Theorem 4.3, we
have thatC(A’) # 0 iff £L(A) # 0. We defined’ = (3, D, Q’, q.,,,d', o), where

e Q' = Q x [k]. Intuitively, whenA’ is in state(q, i) as it reads the nodec T, it
guesses that the rank of the vertexz), ¢) of G, isi. An exception is the initial
stateq/,, explained below.

e ¢, = {qin, k). Thatis,q;, is paired withk, which is an upper bound on the rank
of (n(e). ¢in)-

13

e We defined’ by means of a function
release : BY (D x Q) x [k] — BY(D x Q).

Given aformul@d € BT (D x Q), and arank € [k], the formularelease(0, 1) is
obtained fromd by replacing an aton, ¢) by the disjunction\/,, . (c, (¢,7")).
For examplerelease((1,q) A (2,5),2) = ((1,{g,2)) V (1, {q,1)) vV (1,{g,0))) A
((2,(5,2)) V (2, (5,1)) V (2, {5, 0))).

Now, §’ : Q' x ¥ — BT(D x Q') is defined, for a statéy, i) € Q' ando € ¥,
as follows.

' _ | release(d(g,0),i) If ¢ & acoriiseven.
0({a,1),0) = false If ¢ € a andi is odd.

That is, if the current guessed rankiithen, by employingelease, the run can
move in its successors to every rank that is smaller thanualeq:. If, however,
g € « and the current guessed rank is odd, then, by the definitisardés, the
current guessed rank is wrong, and the run is rejecting.

e o/ = Q x [k]°?. That s, infinitely many guessed ranks along each path ghoul
be odd.

It is easy to see thatl’ is weak: each rank € [k] induces the sef); = @ x {i} in
the partition. The acceptance conditiahthen requires the run to get stuck in a set
associated with an odd rank.

We prove thatd’ accepts all the regular tre€%’,) € L(.A) that are generated
by a transduce? = (D, 3, S, sin,n, L) with at most(2n!)n?"t13"(n + 1) /n! states.
Note that the run graph oft on such(T, 7) is accepting and is of size mokt By
Theorem 4.3, we then have thatA’) # 0 iff £(A) # 0.

We first prove that.(A’) C L(A). Consider a tre€T, 7) accepted byd’. Let
(T}, r") be the accepting run od’ on (T, 7). Consider the’ x Q-labeled tre€T,,r)
where for ally € T, with ' (y) = (z, {q,i)), we haver(y) = (z,q). Thus,(T;,7)
projects out thdk] element of the labels ofT,.,r’). It is easy to see thafl.,r) is
arun of 4 on (T, 7). Indeed, the transitions od’ only annotate transitions od by
ranks. We show thatT., r) is an accepting run. Sincd’,,r’) is accepting, then, by
the definition ofe’, each infinite path ofT,., ') gets trapped in a s€) x {i} for some
oddi. By the definition of§’, no accepting run can visit a staig) with an odd: and
q € a. Hence, the infinite path actually gets trapped in the sufd@éet «) x {i} of
Q@ x {i}. Consequently, iqT,,r), all the paths visits states im only finitely often,
and we are done.

It is left to prove that if7 = (D,X, S, sin,n, L) is a transducer with at most
(2n!n2"3"(n+1)/n! states and the run graph.dfon7 is accepting, then!’ accepts
the regular tree generated y. Let 7 be as above and I&f,. be the accepting run
graph of A on7. Consider théT x Q’)-labeled N-tregT", r’) defined as follows.

e c T’ andr' () = (e, (qin, k).

14

e Lety € T/ be such that’(y) = (z, (g,4)). By the definition of(T,r") so far,
(n(x),q) is a vertex inG,. . Letd(q,7(x)) = {{c1,q1),---,{(Cm,qm)}. By the
definition of G,., the vertex(n(z), ¢) has successofs:,¢1), . .., (Sm, gm) SUCh
that for all1 < i < m, we have that)(n(x),¢;) = s;. Then, foralll <i <m,
we havey -i € T/, andr’(y - i) = (x - ¢4, (g, rank (n(z;), ¢;)))-

We claim that(T/, ') is an accepting run oft’ on (T, 7). We first prove that7, ")

is a legal run. Since;,, = (gin, k), the root ofI is labeled legally. We now consider
the other nodes of;. Let{(s1,q1),- .., (sm,qm)} be the successors @f, ¢;,) in G,
with s; = n(sin,c;). As k is the maximal rank that a vertex can get, each succes-
sor(s;, q;) hasrank(s;,q;) < k. Thus, ask is even, the sef(c1, (g1, rank(z1,q1))),
o (Cms (@m rank(Tm, qm)))} satisfiesd’ ((gin, k), 7(¢)). Hence, the first level of
T! is labeled legally. For the other levels, consider a ngde T such thaty # «.
Letr'(y) = (z,{q,j)). By the definition of(T, '), we have tha{n(z), q) is a ver-
tex of G, with rank(n(z),q) = j. Let{(s1,q1), .., (Sm,qm)} be the successors of
(n(z),q) In G, with s; = n(sin,c;). By Lemma 4.5, for alll < i < m, we have
rank(s;, q;) < j. Also, by the definition of ranks, it cannot be that « and; is odd.
Therefore, the seft(c1, (g1, rank(n(z1),q1))), - - - (cms {(Gm, Tank(n(Tm), gm))) } Sat-
isfiesd’((g, 7), 7(x)). Hence, the treéT,, r') is a legal run ofd’ on (T, 7’). Finally,

by Lemma 4.6, each infinite path ¢f"/, ') gets trapped in a set with an odd index,
thus(T,r") is accepting. U

4.3 From AWT to NBT

In [MH84], Miyano and Hayashi describe a translation of AB&/NBW. In Theo-
rem 4.8 below (see also [Mos84]), we present (a technicénbof) their translation,
adapted to tree automata,

Theorem 4.8 Let A be an ABT withn states. There is an NBR’ with 29(") states,
such thatC(A") = L(A).

Proof: The automatomd’ guesses a subset construction applied to a rud.of\t a
given noder of a run of 4’, it keeps in its memory the set of states in which the various
copies ofA visit nodez in the guessed run. In order to make sure that every infinite pa
visits states inv infinitely often, A’ keeps track of states that “owe” a visit o Let
A= (2,D,Q, gin, 0,). Thend’ = (£, D, 29 x 22 ({gin},0),8,29 x {0}), where
¢’ is defined as follows. We first need the following notationr &EsetS C @ and a
lettero € ¥, let sat(S, o) be the set of subsets & x @ that satisfy/\ ¢ d(q,).
Also, for two setsO C S C @ and a letterc € X, let pair_sat(S, O, o) be such
that (S",0’) € pair_sat(S, O, o) iff S € sat(S,0), O' C 5, andO’ € sat(0, o).
Finally, for a directionc € D, we haveS., = {s: (¢,s) € S’} andO. = {0 : (c,0) €
O'}.

Now, § is defined, for al(S, O) € 29 x 2% ando € ¥, as follows.

e If O # (), then

5((5.0),0)= '\ N\ (. (S, 00\ a)).

(s!,0"ye ceD
pair_sat(S,0,0)

15

Thus, A’ sends to directior the setS’, of states that are sent to directiorin
different copies) in the guessed run. Each sfitlis paired with a subse?’, of
S! of the states that still owe a visit te.

e If O = (), then
§((s,0),0) = \/ N (c(S.5.\a)).

S’esat(S,0) ceD

Thus, when no state owes a visitdpthe requirement to visit is reinforced on
all the states irb’.

O

4.4 Complexity

Combining Theorems 4.7 and 4.8, one can reduce the nonegsptimoblem for UCT
to the nonemptiness problem for NBT. Consider a UZWith n states. If we translate
A to an NBT by going through the AWT we have obtained in Theoref we end

up with an NBT with22°" **" states, as the AWT ha?("1°s) states. In order to
complete the proof of Theorem 3.3, we now exploit the spestiaicture of the AWT

in order to get an NBT with onlg® ("’ 18 ™) states.

Theorem 4.9 Let A be a UCT withn states. There is an NBA’ over the same alpha-
bet such that(A’) # 0 iff £L(A) # 0, and the number of states i/ is 20" leen),

Proof: LetA = (%, D,Q, ¢in, 5,) with |Q| = n. Letk = (2n!)n?" 13" (n+1)/n!
Consider a statéS, O) of the NBT constructed fromil as described above. Each of the
setsS andO is a subset of) x [k]. We say thata seé® C @ x [k] is consistentff for
every two statesq, i) and(q¢’, ') in P, if ¢ = ¢’ theni = ¢’. We claim the following:
(1) Restricting the states of the NBT to pajs O) for which .S is a consistent subset of
Q x [k] is allowable; that is, the resulting NBT is equivalent. (2)fe are0(n*logn)
consistent subsets 6f x [k].

In order to prove Claim (1), recall that the AWT visiting at&téy, <) when reading
anoder € T corresponds to a guess that the rank of the veréx), ¢) of an accepting
run graphG.,. isi. Since every vertex id7,. has a unique rank, the copies of AWT that
are generated in an accepting run that corresponds,tare consistent, in the sense
that the different copies that read the same nodgree on the rank that(z), ¢) has
in G,.. When the NBT visits a state5, O), all the states irt correspond to copies of
the AWT that read the same node. Hence, a st&t©) for which S is inconsistent
corresponds to a node in the run of the AWT whose copies ammsistent. Hence, the
NBT can ignore state§S, O) with inconsistentS.

In order to prove Claim (2), observe that we can character@ensistent set by the
projection of its pairs o), augmented by an assignmehi @ — [k]. Since there are
2™ such projections ankl™ = 20(n*logn) gch assignments, we are done.

By the two claims, ag) is always a subset df, we can restrict the state space of
the NBT t020("* 1081 states. The construction that follows is described in troopr
of Theorem 3.3. U

16

5 More Applications

In Section 3, we show how UCT can help in solving the emptipesblem for APT.
One immediate application is the decidability problem gecalculus, which is easily
reduced to APT emptiness [EJ91, KVWO0O0]. Another immedigipliaation is the
language-containmengroblem for NPT: given two NPTA; and.As, we can check
whether((.A;) is contained inC(Az) by checking the nonemptiness of the intersection
of A; with the complement ofds. Since it is easy to complemedt, by dualizing it
[MS87], it is easy to define this intersection as an APT.

In this section we describe more, less immediate, apptinatof our approach. In
particular, we show that UCT are often useful for tasks tiadally assigned to APT.
Thus, in many cases it is possible to skip the constructicenoAPT and go directly
to a UCT. We demonstrate this below with the realizabilitd agnthesis problems for
LTL, and the problem of translating LTL formulas into deténistic parity automata
of a minimal index (in particular, translating LTL formulasto DBW). We note that
these problems involve both a decision problem (namelizd$darmula realizable? can
the formula be translated into a DPW with a given index?) ak &gea construction
problem (namely, construct a realizing strategy; consteucequivalent DPW). As
discussed in Section 6.2, while our Safraless approachlifiespthe algorithms and
improves the complexity of the decidability problems, taetfit uses a simplified class
of automata (that is, co-Buchi rather than parity) causesbnstructions to have more
states than these constructed by the traditional algorithm

5.1 LTL Realizability and Synthesis

Given an LTL formulay) over the setd and O of input and output signals, the-
alizability problemfor ¢ is to decide whether there isstrategy f : (27)* — 29,
generated by a transduéesuch that all the computations of the system generated
by f satisfy+) [PR89]. Formally, a computatiop € (2/Y°)« is generated by if
p= (iQUOO), (il UOl), (ig UOQ), ...and forallj >1,we havenj = f(io'il cee ij_l).
The traditional algorithm for solving the realizabilitygislem translates the LTL
formula into an NBW, applies Safra’s construction in ordeiget a DPWA,; for it,
expandsA4, to a DPT Ay, that accepts all the trees all of whose branches satisfy
and then checks the nonemptiness4of, with respect to/-exhaustive!“©-labeled
21-trees, namelp’-©-labeled2’ -trees that contain, for each worde (27)“, at least
one path whose projection dH is w [PR89]. Thus, the algorithm applies Safra’s
determinization construction, and has to solve the nonieregd problem for DPT. For
¢ of lengthn, the DPW.A,, has22”"**"’ states and index°(™). This is also the size
of the DPT Ay, making the overall complexity doubly-exponential, whitlatches
the lower bound in [R0s92]. We now show how UCW can be use@ausof DPW.
Intuitively, universal automata have the desired propemyoyed also by deterministic
automata but not by nondeterministic automata, of haviegathility to run over all
branches of an input tree. In addition, since complemeartadf LTL is trivial, the

S1tis known that if some transducer that generatasists, then there is also a finite-state transducer.

17

known translations of LTL into NBW can be used in order to fiate LTL into UCW.
Formally, we have the following.

Theorem 5.1 The realizability problem for an LTL formula can be reducedthe
nonemptiness problem for a UCT with exponentially manstat

Proof: A strategyf : (27)* — 2° can be viewed as 2C-labeled2 -tree. We define
a UCTS,, such thatS,, accepts 2°-labeled2’-tree (T, 7) iff 7 is a good strategy for

.

Let Ay = (21Y9.Q, ¢in, 6,) be an NBW for—p [VW94]. Thus,.A-,, accepts
exactly all the words if2/Y?)« that do not satisfy). Then Sy, = (29,21, Q, ¢in, &', a),
where forevery; € Q ando € 29, we havey'(¢,0) = A;cor Ayes(q.ivo (- ¢)- Thus,
from statey, reading the output assignmengt 29, the automatos,, branches to each
directioni € 27, with all the stateg’ to whichd branches when it readsJ o in state
g. Itis not hard to see tha,, accepts 2°-labeled2!-tree (T 7) iff for all the paths
{6, 10,20 " 21,20 * 11 * 12, . - } of T, the infinite Word(io UT(E)), (Zl UT(io)), (ZQ UT(iO .
i1)), ... Is not accepted byl-,; thus all the computations generatedbgatisfy .
Since the size ofd,, is exponential in the length af, so isS,,, and we are done []

For an LTL formula of lengthn, the size of the automatasy, is 2°("), making
the overall complexity doubly-exponential, matching tlenplexity of the traditional
algorithm , as well as the lower bound [Ros92].

Thesynthesis problerfor an LTL formulay is to find a a transducer that generates
a strategy realizing). Known algorithms for the nonemptiness problem can beeasil
extended to return a transducer [Rab70]. The algorithm vesgnt here also enjoys
this property, thus it can be used to solved not only the zahllity problem but also
the synthesis problem.

In the supervisory-controproblem, one has to disable some of the controllable
transitions of a given system in order for it to satisfy a gigpecification [RW89]. The
problem is similar to the synthesis problem: in both protdehe goal is to synthesize
a correct system, where in supervisory control, some in&iom about the system is
already given. Formally, the system, also callgdant, is a nondeterminstic transducer
T = (21,29,8,S;,,n, L), with S;,, € S andn : S x 2/ — 25, Note thatT may
have several possible computations on a given sequencewsinA control strategy
for 7 is a functionf : (29)* — 27 that maps the sequence of outputs the system has
generated so far to an input enabled by the environment. Wehsd a computation
over I and O of is consistentwith f and7 if the inputs follow f and the outputs
follow 7. Formally. a computatiop € (2/V°)« is consistent withf and7 if p =
(i0Uog), (i1 Uor), (ia Uoa), . .. is such that there is a sequengesi, s, . . . of states
of 7 such thatsg € Sin, 50 = f(€), andoy = L(sp), and for allj > 1, we have
S5 € 7’](8.7'_1,2.]'_1), ij = f(Oo c01 - 'Oj_l), andoj = L(Sj)

Our Safraless solution to the synthesis problem, which s&idleed in the proof of
Theorem 5.1, can be adjusted to solve also the supervisoryrat problem. Essen-
tially, rather than definingS,, to branch to all the directions i’ and read letters

8For an application of these properties in the area of infigitmes, see [ATM03].

18

in 29, we define it to run over an unwinding of the system, and hagsiralpha-
bet information about whether particular inputs are disdbdr enabled. Formally,
Sy = (21,298 x Q, Sin x {qin}, ',), where for everys € S, ¢ € Q, andi € 27,
we have

6/(<57Q>1i) = /\ /\ /\ (07 <S/7q/>)'

0€20 s'en(s,i):L(s")=o0 q'€5(q,iUL(s))

Thus, from statés, ¢), reading the input assignmeng 27, the automatos,, branches
to each directiom € 29 with all the stategs’, ¢’) such thatZ may branch tos’ from
s when it reads, the output ins’ is o, andd branches tg’ when it reads U L(s) in
stateg.

The synthesis problem often arise in a setting in which trstesy hasncomplete
informationabout the environment. As described in [KVO00], the solutmthe synthe-
sis problem with incomplete information for branching tesrgd logic can be reduced
to the nonemptiness problem of APT, thus our Safraless proedfor the latter is of
use also in this context.

5.2 Translation of LTL formulas to DBW

DBW form a strict subset of NBW [Lan69]. For an LTL formula we say that)

is in DBW if the language of words satisfying can be recognized by a DBW. Not
all LTL formulas are in DBW. For example, while there is no DBWf the language
of all words over the alphabdt, b} that contains only finitely many’s, it is easy
to specify this language with the LTL formuldaG—a (“eventually always not”). It
turned out that an LTL formula is in DBW iff ¢y has an equivalent alternation-free
p-calculus formula [KVV98a]. Current methods for decidingetirer an LTL formula
1) is in DBW start with a construction of an NBW f@r [VW94], then determinize it to
a DPW using Safra’s determinization construction, and ttteeck whether the DPW
has an equivalent DBW [KPB94]. In this section we describ& bilCW can be used
instead of DPW.

Theorem 5.2 The problem of deciding whether an LTL formula is in DBW can be
reduced to the nonemptiness problem of a UCT with exporgntiany states.

Proof: By [Lan69], anw-regular languagel C X“ is in DBW iff there is some
regular languagé& C ¥* such thatC = limR; i.e.,w € L iff w has infinitely many
prefixes inR. A regular languagd? can be represented by{a, 1}-labeledX-tree
(X*, fr) where for allz € ¥*, we havefr(w) = 1iff x € R. For an LTL formula
1 over AP, we say that 0, 1}-labeled(247)-tree ((247)*, f) is aDBW witnesgor
¢ if for all pathsw C (247)«, we have thaty satisfiesy iff there are infinitely many
x € wwith f(z) = 1. By [Lan69],% can be recognized by a DBW iff it has a DBW
witness. We construct a UCT ovéd, 1}-labeled(247)-trees that accepts exactly all
the DBW witnesses of.

Let AT = (247,Q%, ¢, 0%, at) and A~ = (247, Q7 ,q;,,6~,a~) be NBWs

19

for ¢ and —), respectively [VW94]. Thus, AT accepts exactly all the words in
(247« that satisfyy), and. A~ complements it. We define an NBJ, over the alpha-
bet24” x {0,1}. For awordw € 247 x {0, 1}, we usew|[1] andw[2] in order to refer
to the projection ofv on 247 and{0, 1}, respectively. The NBW5,, accepts a word
w if one of the following holds.

e w[1] satisfies) andw[2] has only finitely manyt’s, or
e w[1] does not satisfy> andw(2] has infinitely manyl’s.

It is easy to define,, as a union of two NBWs, the first obtained by intersecti4ig
with an NBW for “finitely many1's”, and the second obtained by intersectifig with

an NBW for “infinitely many1's”. By dualizingS,,, we get a UCV\L§‘¢ that accepts
exactly all the wordsy € 247 x {0, 1} for whichw([1] satisfies) iff w[2] has infinitely
many1’s. We can run§w on {0, 1}-labeled2“”-trees so that it accepts exactly all the
DBW witnesses for). Formally, ifSw = (247 % {0,1},Q, gin, 5, @), then the UCT
isWy = ({0,1},247,Q, gin, 5, @) where for allg € Q andr € {0, 1}, we have

CESEA N (o9

o0€24P s€8(q,(0,7))

O

Now, suppose thap is in DBW andW,, is not empty. Then, by [Rab70], the
nonemptiness test of its equivalent NBT returns a transdiicgith edges labeled by
24P and states labeled by, 1}. Note that7 is deterministic. By defining the states
of 7 with label 1 to be accepting, we get a DBW equivalentito Thus, when our
test returns a positive answer, it can also translate thefbfitnula into an equivalent
DBW.

5.3 Translating LTL formulas to DPW

While DPW are not less expressive than NPW, fixing the indea &PW does re-
sult in a strict subset of NPW. In fact, if we denote the set 8VMDwith indexh by
DPWIR], then DPWh| form a strict subset of DPY + 1] [Kam85]. Since it is pos-
sible to specify the languages described in [Kam85] by LTinfalas, the above strict
hierarchy remains valid when we restrict attention to leagps that are generated by
LTL formulas. Recall that the Biichi acceptance condit®a special case of the parity
acceptance condition. Indeed, a Biichi conditois equivalent to a parity condition
{0, o, @} of index 3. In this section we extend the reasoning descrih&egction 5.2
to parity automata with a fixed index. For an LTL formubaand an integeh > 2, we
say thaty is of indexh if the language of words satisfying can be recognized by a
DPW[h]. Current methods for deciding whether an LTL formulas of indexh start
with a construction of an NBW foty [VW94], then determinize it to a DPW using

7Using the construction in [VW94], the NBW4*+ and. A~ differ only in their sets of initial states. Our
construction, however, does not make a use of this fact,#1asnd.A~ can be optimized, and we assume,
for simplicity, that each of them has a single initial state.

20

Safra’s determinization construction, and then check hérethe DPW has an equiv-
alent DPWh] [KPB95, KPBV95]. In this section we describe how UCW can bedus
instead of DPW. In case the LTL formula has an equivalent [YR\Wour procedure
returns it without first constructing a DPW of a larger index.

Theorem 5.3 The problem of deciding the minimal index of an LTL formula ba
reduced to the nonemptiness problem of a UCT with exporgntiany states.

Proof: For an LTL formulay over AP, we say that a reguldfl, 2, ..., h}-labeled
(247)-tree((247)*, f) is aDPW[h] witnesgor v if for all pathsw C (247)*, we have
thatw satisfieg) iff the minimal letterc such that infinitely many: € w havef(z) = ¢
is even. Itis easy to see that a DIA)for ¢ induces a DPW:| witness. Indeed, ifA
is a DPWh] with « = {Fy, F>, ..., F,,} for ¢ and the single run afl on a wordw €
(247)* leads to a state ift;, we definef (w) to bei. Also, since we restrict attention
to regular trees, a DPYK] witness induces a DPW| for ¢). We construct a UCT over
{1,..., h}-labeled(247)-trees that accepts exactly all the DFMwitnesses of).

Let AT = (247,Q%, ¢, 07, at) and A~ = (247, Q7 ,q;,,6~,a~) be NBWs
for ¢ and—, respectively [VW94]. Thus4d+ accepts exactly all the words {847)«
that satisfy:), and A~ complements it. We define an NB\W,, over the alphabet
24P 5 {1,...,h}. Forawordw € 247 x {1,..., h}, we usew[1] andw(2] in order to
refer to the projection ofv on24% and{1, ..., h}, respectively. The NBWS,, accepts
a wordw if one of the following holds.

—_

.u}[

od

] satisfiesyy and the minimum letter that appears infinitely ofteruif®] is
, or

o

e w[1] does not satisfy) and the minimum letter that appears infinitely often in
wl2] is even.

It is easy to defineS, as a union of two NBWSs, the first obtained by intersecting
AT with an NBW for “the minimum letter that appears infinitelyterd is odd”, and
the second obtained by intersectidg with an NBW for “the minimum letter that
appears infinitely often is even”. By dualizir§),, we get a UCWSw that accepts
exactly all the wordsy € 247 x {1,. .., h} for whichw[1] satisfies iff the minimum
letter that appears infinitely often in[2] is even. We can rus,, on{1, ..., h}-labeled
24P trees so that it accepts exactly all the DRNMitnesses fory. Formally, ifS‘w =
(24P % {1,...,h},Q, Gin, 5, @), thenthe UCT i8Vy, = ({1,...,h},247,Q, qin, 0, @)
where for allg € @ andr € {0, 1}, we have

dar) = N N (@9
0c€24P s€6(q,(o,T))
O
As in the case of DBW, when the NBT equivalentdg is not empty, its empti-
ness test returns a regular transducer with edges lalfeléd) and states labeled

{1,2,...,h}, and hence a DPW] for ¢». For of lengthn, Safra’s determiniza-
tion construction results in a DP\M,, of index2°(™. Thus, all LTL formulas can

21

be translated to a DPW with an exponential index. This sugge$Safraless deter-
minization construction for LTL formulas. Moreover, it sygsts a Safraless optimized
determinization construction, where one starts with a qagss for the index ofy
and increase the guess when necessary.

We note that in all the three applications described in tbctien, we used the fact
that we are able, given a specificatign to construct an NBW for) of size expo-
nential in|y)|. Wheng is given in terms of an LTL formula, this exponential blow-up
is similar to the exponential blow-up in the translatiomyofo an NBW, making our
bounds similar, and even better, than known bounds to thagms. While it is possi-
ble to apply our constructions to a specificatiothat is given in terms of an NBW, the
exponential blow-up in that case is not acceptable. Indgiede going from an LTL
formula to a DPW involves a doubly-exponential blow-up wder going from NBW
to DPW involves only an exponential blow-up, the traditibs@utions that use Safra’s
determinization construction perform exponentially befor ¢ that is given in terms
of an NBW. It is an open problem whether a Safraless solutiorttfe applications
described in this section exists also for specificationsdhagiven in terms of NBW.
A positive answer applies to the realizability problem. éed, given an NBWA, the
system has a strategy: (27)x — 2° that realizes iff the environment does not have
astrategy; : (29)* — 27 that realizes the complementdf Now, the complement of
A is a UCW, for which the construction we describe does appiysT realizability of
NBW specifications can be reduced to realizabilty of UCW #jmtions.

Another point that is joint to the three applications has dowdth the size of the
generated transducer, in case the decision procedurasaygositive answer. We will
get back to this point in Section 6.

6 In Practice

As discussed in Section 1, the intricacy of current consioas, which use Safra’s de-
terminization, is reflected in the fact there is no implenag¢ioh for them. The lack
of a simple implementation is not due to a lack of need: im@etations of realiz-
ability algorithms exist, but they have to either restrige tspecification to one that
generates “easy to determinize” automata [ST03, WMBSV05jiee up complete-
ness [HRSO05]. As we argue in this section, the simplicity wf @onstruction not only
makes it amenable to implementation, but also enables iapguractical advantages
over the existing algorithms.

6.1 A symbolic implementation

Safra’s determinization construction involves complechtiata structures: each state
in the deterministic automaton is associated with a labetddred tree. Consequently,
even though recent work describes a symbolic algorithmhfemionemptiness problem
for NPT [BKV04], there is no symbolic implementation of dgioin procedures that are
based on Safra’s determinization and NPT. Our constructinthe other hand, can be
implemented symbolically. Indeed, the state space of th& B@hstructed in Theo-
rem 3.3 consists of sets of states and a ranking functioanitoe encoded by Boolean

22

variables, and the NBT's transitions can be encoded byioelaton these variables
and a primed version of them. The fixpoint solution for the exmptiness problem of
NBT (c.f., [VW86]) then yields a symbolic solution to the gimal UCT nonemptiness
problem. Moreover, when applied for the solution of the iEsdility problem, the
BDDs that are generated by the symbolic decision procedurde used to generate a
symbolic witness strategy. The Boolean nature of BDDs thakewn it very easy to go
from this BDD to a sequential circuit for the strategy. It isdkvn that a BDD can be
viewed as an expression (in DAG form) that uses the “if thee'ehs a single ternary
operator. Thus, a BDD can be viewed as a circuit built frothén-else gates. More
advantages of the symbolic approach are described in [HR®8@5mentioned above,
[HRSO05] also suggests a symbolic solution for the LTL systh@roblem. However,
the need to circumvent Safra’s determinization causeslgogithm in [HRS05] to be
complete only for a subset of LTL. Our approach circumverf&s determinization
without giving up completeness.

6.2 Anincremental approach

Recall that our construction is based on the fact we can bthandhaximal rank that

a vertex ofGG,. can get byk — the bound on the size of the run graphsbfve con-
sider. Often, the sequenc¢k, G1, Gs, . .. of graphs converges to the empty graph very
quickly, making the bound on the maximal rank much smallee (\KSVO03] for an
analysis and experimental results for the case of UCW). Alingly, we suggest to
regardk as a parameter in the construction, start with a small patemend increase

it if necessary. Let us describe the incremental algorithat follows in more detail.

Consider the combined construction described in Theoredn Starting with a
UCT A with state spac€), we constructed an NBA’ with state spacg® x 2¢ x R,
whereR is the set of functiong : Q@ — [k] in which f(q) is even for ally € a. For
I < k, let R[l] be the restriction ofR to functions with rangél], and letA’[l] be the
NBT A" with k£ being replaced by. Recall that the NBTA'[l] is empty iff all the run
graphs ofA of size at most are not accepting. Thus, coming to check the emptiness
of A, a possible heuristic would be to proceed as follows: stéh & small! and
check the nonemptiness df|[l]. If A’[l] is not empty, thed is not empty, and we can
terminate with a “nonempty” output. Otherwise, incredsand repeat the procedure.
When! = k and A’[[] is still empty, we can terminate with an “empty” output.

It is important to note that it is possible to take advantaighe work done during
the emptiness test of’[l;], when testing emptiness of [I5], for > > [;. To see this,
note that the state space.df[lz] consists of the union df? x 29 x R[] (the state
space ofd'[l;]) with 2¢ x 2@ x (R[l2] \ R[l1]) (states whos¢ € R[l»] has a state
that is mapped to a rank greater thaih Also, since ranks can only decrease, once
the NBT .A'[l5] reaches a state of'[l4], it stays in such states forever. So, if we have
already checked the nonemptiness4sfi;] and have recorded the classification of its
states to empty and nonempty, the additional work needdtkimbnemptiness test of
A'[l2] concerns only states 2f x 29 x (R[l2] \ R[l1])-

The incremental approach circumvents the fact thaktfed blow-up that is intro-
duced in the translation of a UCT to an AWT occurs for all UCTitiV¢he incremental
algorithm, thek-fold blow occurs only in the worst case. As shown in [GKSV,03]

23

experimental results show that in the case of word autorhat@anstruction ends up
with a smallk. A point in favor of the Safrafull approach has to do with thmuhd
on the size of a “nonemptiness witness” in case the APT (olJ@#&) is not empty.
Known algorithms for the nonemptiness problem of nondeit@stic tree automata can
be easily extended to return a witness to the automatonsmptiness. Such a witness
is a transducer that generates a tree accepted by the aotomladse nonemptiness is
checked (in the case of realizability, the witness is a sgsitted strategy; in the case of
LTL determinization, the witness is a DBW or a DPW equivalkerthe LTL formula).
The size of the witness is linear in the state space of thenzattin. Both the Safrafull
and the Safraless approaches reduce the original probléme ttonemptiness problem
of a nondeterministic automaton. The Safraless approagidsathe parity condition
and uses instead the Biichi condition. This makes the notieesp test easier. Indeed,
the nonemptiness algorithm for NPT is exponential in theindf the NPT, while the
nonemptiness algorithm for NBT is quadratic. On the otherchaf we restrict atten-
tion to the bound on the size of the state space of the autonfaal thus, the size of a
witness), then the parity condition has an advantage: thral8as approach translates
a UCT withn states to an NBT witO(»” o) states, whereas the Safrafull approach
results in an NPT witl2@(*1oe ") states. Such a Safraless bound on the size of a small
witness is still an open problem. With the incremental aitpon, however, we expect
the NBT whose emptiness we check to be much smaller than archi®tructed with
no optimizations.

7 Discussion

In [KV01], we used alternating co-Biichi word automata iml@rto avoid Safra’s
construction in complementation of Buchi word automata h&re, the approach in
[KV01] involves an analysis of ranks. Alternating word am@ta are closely related
to nondeterministic tree automata and the analysis in [JV@lre proven to be use-
ful also for solving the nonemptiness problem for nondeteistic parity tree automata
[KV98b]. By now, the simple construction in [KV01] has becethe standard comple-
mentation construction [Tho98], has been implemented [&&X Mer00], has led to
tighter and new Safraless complementation constructionsdher types of automata
on infinite words [FKV04, KV04], and has led to further implentations of alternat-
ing automata [Fin01].

Since the bounded-width property trivially holds for runisveord automata, the
analysis in [KV98b, KV01] is much simpler than the one reqdifor alternating tree
automata, and indeed the problem of a Safraless decisiaeguoe for them was left
open. In this work we solved this problem and showed how usaleco-Biichi au-
tomata can be used in order to circumvent Safra’s detertioiz and the parity ac-
ceptance condition. Below we discuss a related theorgiwmat that is still open.

Our construction avoids the complicated determinizationstruction of Safra,
but its correctness proof makes use of the bounded-size naphgoroperty, which
in turn makes use of Safra’s determinization. It is an opeblam whether we can
have a Safraless proof, and whether such a proof can imphavednstruction fur-
ther. Consider an infinite run tre@’,,) of a UCT. We say that two nodeg and

24

yo of T, aresimilar if r(y1) = r(y2). Thus, similar nodes correspond to differ-
ent copies of the UCT, possibly with a different past, buttmtthe same present: if
r(y1) = r(y2) = {(x, ¢), then both copies have to accept the subtree with xdadm
the state;. Runs of UCT are memoryless in the sense that two copies ad@iethat
read similar nodes have the same future. Thus, by merginggsimodes on the run
tree, one gets a runaG G, of the UCT, which is accepting iffT,., r) is accepting.
Recall that the bounded-size run graph property enablesbsund the maximal rank
that a vertex can get. The rionG G, is infinite, but we can also show (see [KV01]
for the case of words) that bounding its width (the numberifiécent vertices in each
level) by an integek leads to a ranking function in which the maximal ranRis In
order to get a bounded-widttaG property, we need not bound the width of all run
DAGS—we only need to show that if the UCT is not empty then it hascapting run
DAG of width at mostk. We conjecture that a UCT is not empty iff it accepts a tree in
which nodes that are visited by the same set of states (tbeakach node of the input
tree may be visited by several copies of the UCT) are rootdeftical subtrees. Our
conjecture leads to am2™ bound on the width, for a UCT with states. Proving the
conjuncture will not only make the proof Safraless, but \@iBo reduce the maximal
rank that a vertex can get, and thus improves the construftiither.

AcknowledgementWe thank Nir Piterman for helpful discussions and comments o
an early draft of this paper.

References

[ATMO3] R. Alur, S. La Torre, and P. Madhusudan. Modular sgies for infinite games on
recursive game graphs. @omputer-Aided Verification, Proc. 15th International
ConferenceLecture Notes in Computer Science. Springer-Verlag,iBg2003.

[ATWO5] C. Schulte Althoff, W. Thomas, and N. Wallmeier. Gpgations on determiniza-
tion of Buchi automata. IRroc. 10th International Conference on the Implemen-
tation and Application of Automat2005.

[BKVO04] D. Bustan, O. Kupferman, and M.Y. Vardi. A measuradllapse of the modal
u-calculus alternation hierarchy. Proc. 21st Symp. on Theoretical Aspects of
Computer Sciengevolume 2996 ofLecture Notes in Computer Sciengages
522-533. Springer-Verlag, 2004.

[Buc60] J.R. Biichi. Weak second-order arithmetic anddiautomataZeit. Math. Logik
und Grundl. Math.6:66-92, 1960.
[Buc62] J.R. Bichi. On a decision method in restrictedosecorder arithmetic. In

Proc. International Congress on Logic, Method, and Phifdgpof Science. 1960
pages 1-12, Stanford, 1962. Stanford University Press.

[Cho74] Y. Choueka. Theories of automatawettapes: A simplified approacidournal of
Computer and System Sciencg@417-141, 1974.
[EJ88] E.A. Emerson and C. Jutla. The complexity of tree enatim and logics of pro-

grams. InProc. 29th IEEE Symp. on Foundations of Computer Sciepages
328-337, White Plains, October 1988.

25

[EJ91] E.A. Emerson and C. Jutla. Tree automatagalculus and determinacy. In
Proc. 32nd IEEE Symp. on Foundations of Computer Scjepages 368—377,
San Juan, October 1991.

[EKMO8] J. Elgaard, N. Klarlund, and A. Moller. Mona 1.x:weechniques for WS1S and
WS2S. InComputer Aided Verification, Proc. 10th International Cenehce
volume 1427 ofLecture Notes in Computer Sciengages 516-520. Springer-
Verlag, Berlin, 1998.

[Elg61] C. Elgot. Decision problems of finite-automata desand related arithmetics.
Trans. Amer. Math. Soc98:21-51, 1961.
[Eme85] E.A. Emerson. Automata, tableaux, and temporat$ogn Proc. Workshop on

Logic of Programs volume 193 ofLecture Notes in Computer Sciengeages
79-87. Springer-Verlag, 1985.

[Fin01] B. Finkbeiner. Symbolic refinement checking withndeterministic BDDs. In
Tools and algorithms for the construction and analysis stemsLecture Notes
in Computer Science. Springer-Verlag, 2001.

[FKV04] E. Friedgut, O. Kupferman, and M.Y. Vardi. Biichi mplementation made
tighter. In2nd International Symposium on Automated Technology fdfi-Ve
cation and Analysisvolume 3299 ol ecture Notes in Computer Sciengages
64-78. Springer-Verlag, 2004.

[Fri03] C. Fritz. Constructing Biichi automata from ling@mporal logic using simu-
lation relations for alternating bchi automata. Pnoc. 8th Intl. Conference on
Implementation and Application of Automataumber 2759 in Lecture Notes in
Computer Science, pages 35-48. Springer-Verlag, 2003.

[FWO02] C. Fritz and T. Wilke. State space reductions for ralééing Biichi automata:
Quotienting by simulation equivalences. Pnoc. 22th Conference on the Foun-
dations of Software Technology and Theoretical Computen8e volume 2556
of Lecture Notes in Computer Scienpages 157-169, December 2002.

[Gab72] D.M. Gabbay. Applications of trees to intermediatgics i. J. Symbolic Logic
37:135-138, 1972.

[GKSV03] S. Gurumurthy, O. Kupferman, F. Somenzi, and M.&rdi. On complementing
nondeterministic Blichi automata. Ir2th Advanced Research Working Confer-
ence on Correct Hardware Design and Verification Methodslume 2860 of
Lecture Notes in Computer Scienpages 96-110. Springer-Verlag, 2003.

[GL94] G. De Giacomo and M. Lenzerini. Concept language$ witmber restrictions
and fixpoints, and its relationship wiglxcalculus. InProc. 11th European Con-
ference on Artificial Intelligence (ECAI-94pages 411-415. John Wiley and
Sons, 1994.

[HRSO05] A. Harding, M. Ryan, and P. Schobbens. A new algorifbr strategy synthesis
in Itl games. Inllth International Conference on Tools and algorithms fog t
construction and analysis of systenaslume 3440 of_ecture Notes in Computer
Sciencepages 477-492. Springer-Verlag, 2005.

[Jur00] M. Jurdzinski. Small progress measures for solgadty games. Ii7th Annual
Symposium on Theoretical Aspects of Computer Scienteme 1770 of.ecture
Notes in Computer Scienggages 290-301. Springer-Verlag, 2000.

[Kam85] M. Kaminski. A classification of-regular languages.Theoretical Computer
Science36:217-229, 1985.

26

[Koz83]

[KP84]

[KPBY4]

[KPBY5]

[KPBV95]

[KV98a]

[KV98b]

[KVO0O]

[KV01]

[KV04]

[KVWO0]

[Lan69]

[Mer00Q]

[Mey75]

[MH84]

[Mos84]

D. Kozen. Results on the propositionakalculus. Theoretical Computer Sci-
ence 27:333-354, 1983.

D. Kozen and R. Parikh. A decision procedure for theppsitionalu-calculus.
In Logics of Programsvolume 164 olecture Notes in Computer Scienpages
313-325. Springer-Verlag, 1984.

S.C. Krishnan, A. Puri, and R.K. Brayton. Deterrstit w-automata vis-a-vis
deterministic Buchi automata. Wlgorithms and Computationsolume 834 of
Lecture Notes in Computer Scienpages 378-386. Springer-Verlag, 1994.

S.C. Krishnan, A. Puri, and R.K. Brayton. Structuwamplexity of w-automata.
In Symposium on Theoretical Aspects of Computer Scieobeme 900 of_ec-
ture Notes in Computer Scienc®pringer-Verlag, 1995.

S.C. Krishnan, A. Puri, R.K. Brayton, and P.P. \fgea The Rabin index and chain
automata, with applications to automata and game€omputer Aided Verifica-
tion, Proc. 7th International Conferencpages 253—-266, Liege, July 1995.

O. Kupferman and M.Y. Vardi. Freedom, weakness, daterminism: from
linear-time to branching-time. IRroc. 13th IEEE Symp. on Logic in Computer
Sciencepages 81-92, June 1998.

O. Kupferman and M.Y. Vardi. Weak alternating aut@ia and tree automata
emptiness. IProc. 30th ACM Symp. on Theory of Computipgges 224-233,
Dallas, 1998.

O. Kupferman and M.Y. Vardi. Synthesis with incomgenformation. InAd-
vances in Temporal Logipages 109-127. Kluwer Academic Publishers, January
2000.

O. Kupferman and M.Y. Vardi. Weak alternating autdmare not that weak.
ACM Trans. on Computational Logi2(2):408-429, July 2001.

O. Kupferman and M.Y. Vardi. Complementation constions for nondetermin-
istic automata on infinite words. Ihlth International Conference on Tools and
algorithms for the construction and analysis of systevotume 3440 of_ecture
Notes in Computer Scienggages 206—-221. Springer-Verlag, 2004.

O. Kupferman, M.Y. Vardi, and P. Wolper. An automdteeoretic approach to
branching-time model checkingJournal of the ACM 47(2):312-360, March
2000.

L.H. Landweber. Decision problems far-automata. Mathematical Systems
Theory 3:376-384, 1969.

S. Merz. Weak alternating automata in Isabelle/H@LJ. Harrison and M. Aa-
gaard, editorsTheorem Proving in Higher Order Logics: 13th Internatio@dn-
ference volume 1869 ofLecture Notes in Computer Sciengeges 423-440.
Springer-Verlag, 2000.

A. R. Meyer. Weak monadic second order theory of sssor is not elementary
recursive. InProc. Logic Colloquiumvolume 453 ofLecture Notes in Mathe-
matics pages 132—-154. Springer-Verlag, 1975.

S. Miyano and T. Hayashi. Alternating finite automataw-words. Theoretical
Computer Scien¢e2:321-330, 1984.

A.W. Mostowski. Regular expressions for infinitee¢s and a standard form of
automata. InComputation Theoryvolume 208 ofLecture Notes in Computer
Sciencepages 157-168. Springer-Verlag, 1984.

27

[MS85]

[MS87]

[MS95]

[MSS86]

[MSS88]

[PR89]

[Rab69]
[Rab70]
[Ros92]
[RW89]
[Safss]
[Safsg]

[SE84]

[STO3]

[Str82]

[THBY5]

D.E. Muller and P.E. Schupp. Alternating automatardimite trees. InAutomata
on Infinite Wordsvolume 192, pages 100-107. Lecture Notes in Computer Sci-
ence, Springer-Verlag, 1985.

D.E. Muller and P.E. Schupp. Alternating automatardimite trees.Theoretical
Computer Scienc®4:267-276, 1987.

D.E. Muller and P.E. Schupp. Simulating alternatinge automata by nonde-
terministic automata: New results and new proofs of thesr@mRabin, Mc-
Naughton and Safral heoretical Computer Scienc#41:69-107, 1995.

D.E. Muller, A. Saoudi, and P.E. Schupp. Alterngtiautomata, the weak
monadic theory of the tree and its complexity.Rroc. 13th International Collo-

quium on Automata, Languages and Programmirgjume 226 olecture Notes

in Computer Science&Springer-Verlag, 1986.

D.E. Muller, A. Saoudi, and P. E. Schupp. Weak alitny automata give a
simple explanation of why most temporal and dynamic logiesdecidable in
exponential time. IfProceedings 3rd IEEE Symp. on Logic in Computer Science
pages 422—-427, Edinburgh, July 1988.

A. Pnueli and R. Rosner. On the synthesis of a reantivdule. InProc. 16th
ACM Symp. on Principles of Programming Languagesges 179-190, Austin,
January 1989.

M.O. Rabin. Decidability of second order theoried automata on infinite trees.
Transaction of the AMSL41:1-35, 1969.

M.O. Rabin. Weakly definable relations and speaiébmata. InProc. Symp.
Math. Logic and Foundations of Set Theopages 1-23. North Holland, 1970.

R. RosneModular Synthesis of Reactive SystefdBD thesis, Weizmann Insti-
tute of Science, Rehovot, Israel, 1992.

P.J.G. Ramadge and W.M. Wonham. The control of disaeent systemsEEE
Transactions on Control Theory7:81-98, 1989.

S. Safra. On the complexity efautomata. IrProc. 29th IEEE Symp. on Foun-
dations of Computer Sciengeages 319-327, White Plains, October 1988.

S. Safra. Complexity of automata on infinite object$hD thesis, Weizmann
Institute of Science, Rehovot, Israel, 1989.

R.S. Street and E.A. Emerson. An elementary decipiocedure for theu-
calculus. InProc. 11th International Colloquium on Automata, Languaged
Programming volume 172, pages 465—-472. Lecture Notes in Computer &gjen
Springer-Verlag, July 1984.

R. Sebastiani and S. Tonetta. “more determinist&™gmaller” biichi automata
for efficient Itl model checking. 112th Advanced Research Working Conference
on Correct Hardware Design and Verification Methopgslume 2860 ot ecture
Notes in Computer Scienggages 126—140. Springer-Verlag, 2003.

R.S. Streett. Propositional dynamic logic of langpiand converselnformation
and Contro] 54:121-141, 1982.

S. Tasiran, R. Hojati, and R.K. Brayton. Language&tathnment using non-
deterministic omega-automata. Rroc. of 8th CHARME: Advanced Research
Working Conference on Correct Hardware Design and VeriiiwaMethodsvol-
ume 987 of_ecture Notes in Computer Scienpages 261-277, Frankfurt, Octo-
ber 1995. Springer-Verlag.

28

[Tho98]

[Tra62]

[TW68]

[Var97]

[Var98]

[VW86]

[VwWo4]

[WMBSV05]

W. Thomas. Complementation of Blichi automatasiésil. Jewels are Forever,
Contributions on Theoretical Computer Science in Honormé Salomaapages
109-122, 1998.

B.A. Trakhtenbrot. Finite automata and monadicoselcorder logic. Siberian
Math. J 3:101-131, 1962. Russian; English translation in: AMSn$ta59
(1966), 23-55.

J.W. Thatcher and J.B. Wright. Generalized finiteomuata theory with an appli-
cation to a decision problem of second-order logiiathematical System Theory
2:57-81, 1968.

M.Y. Vardi. What makes modal logic so robustly deatide? In N. Immerman and
Ph.G. Kolaitis, editorsPescriptive Complexity and Finite Modelpages 149—
183. American Mathematical Society, 1997.

M.Y. Vardi. Reasoning about the past with two-wayt@mnata. InProc. 25th
International Coll. on Automata, Languages, and Programgnvolume 1443 of
Lecture Notes in Computer Scienpages 628—641. Springer-Verlag, Berlin, July
1998.

M.Y. Vardi and P. Wolper. Automata-theoretic techaes for modal logics of
programs.Journal of Computer and System Scier@®(2):182-221, April 1986.

M.Y. Vardi and P. Wolper. Reasoning about infinite qmuitations. Information
and Computation115(1):1-37, November 1994.

G. Wang, A. Mishchenko, R. Brayton, and A. Sangiowi-Vincentelli. Synthe-
sizing FSMs according to co-Bliichi properties. Technieglort, UC Berkeley,
2005.

29

