
Safraless Decision Procedures∗

Orna Kupferman†

Hebrew University
Moshe Y. Vardi‡

Rice University

December 22, 2005

Abstract

The automata-theoretic approach is one of the most fundamental approaches
to developing decision procedures in mathematical logics.To decide whether a
formula in a logic with the tree-model property is satisfiable, one constructs an
automaton that accepts all (or enough) tree models of the formula and then checks
that the language of this automaton is nonempty. The standard approach trans-
lates formulas into alternating parity tree automata, which are then translated, via
Safra’s determinization construction, into nondeterministic parity automata. This
approach is not amenable to implementation because of the difficulty of imple-
menting Safra’s construction and the nonemptiness test fornondeterministic parity
tree automata.

In this work we offer an alternative to the standard automata-theoretic ap-
proach. The crux of our approach is avoiding the use of Safra’s construction and
of nondeterministic parity tree automata. Our approach goes instead via univer-
sal co-Büchi tree automata and nondeterministic Büchi tree automata. While our
translations have the same complexity as the standard approach, they are signifi-
cantly simpler, less difficult to implement, and have practical advantages like being
amenable to optimizations and a symbolic implementation.

1 Introduction

The automata-theoretic approach is one of the most fundamental approaches to devel-
oping decision procedures in mathematical logics [Rab69].It is based on the fact that
many logics enjoy thetree-model property; if a formula in the logic is satisfiable then
it has a tree (or a tree-like) model [Var97]. To decide whether a formulaψ in such a
logic is satisfiable, one constructs an automatonAψ that accepts all (or enough) tree
models ofψ and then checks that the language ofAψ is nonempty.

∗A preliminary version of this paper appears in the Proceedings of the 46th IEEE Symposium on Foun-
dations of Computer Science.

†Address:School of Computer Science and Engineering, Hebrew University, Jerusalem 91904, Israel.
Email: orna@cs.huji.ac.il. Supported in part by BSF grant 9800096 and by a grant from Minerva.

‡Address: Department of Computer Science, Rice University,Houston, TX 77251-1892, U.S.A., Email:
vardi@cs.rice.edu. Supported in part by NSF grants CCR-9988322, CCR-0124077, CCR-0311326, IIS-
9908435, IIS-9978135, EIA-0086264, and ANI-0216467, by BSF grant 9800096, by Texas ATP grant
003604-0058-2003, and by a grant from the Intel Corporation.

1

The automata-theoretic approach was developed first for monadic logics over fi-
nite words [Büc60, Elg61, Tra62]. It was then extended to infinite words in [Büc62],
to finite trees in [TW68], and finally generalized to infinite trees in [Rab69]. Follow-
ing Rabin’s fundamental result, SnS, the monadic theory of infinite trees, served for
many years as a proxy for the automata-theoretic approach – to show decidability of
a logic one could simply demonstrate an effective reductionof that logic to SnS, e.g.,
[Gab72, KP84]. Unfortunately, the complexity of SnS is known to be nonelementary
(i.e., it cannot be bounded by a stack of exponential of a fixedheight) [Mey75]. Thus, in
the early 1980s, when decidability of highly expressive logics became of practical inter-
est in areas such as formal verification and AI [GL94, Koz83],and complexity-theoretic
considerations started to play a greater role, the originalautomata-theoretic idea was
revived; by going from various logics to automata directly,decision procedures of ele-
mentary complexity were obtained for many logics, e.g., [SE84, Str82, VW86].

By the mid 1980s, the focus was on using automata to obtain tighter upper bounds.
This required progress in the underlying automata-theoretic techniques. Such break-
through progress was attained by Safra [Saf88], who described an optimal determiniza-
tion construction for automata on infinite words, and by Emerson and Jutla [EJ88] and
Pnueli and Rosner [PR89], who described improved algorithms for parity tree automata
(the term “parity” refers to the accompanying acceptance condition of the automaton).
Further simplification was obtained by the introduction of alternating automata on infi-
nite trees [EJ91, MS85]. In the now standard approach for checking whether a formula
ψ is satisfiable, one follows these steps: (1) construct an alternating parity tree automa-
tonAψ that accepts all (or enough) tree models ofψ, (The translation from formulas
to alternating parity tree automata is well known (c.f., [KVW00]) and will not be ad-
dressed in this paper.) (2) translate this automaton to a nondeterministic parity tree
automatonAn

ψ, and (3) check that the language ofAn
ψ is nonempty.

While the now standard automata-theoretic approach yielded significantly improved
upper bounds (in some cases reducing the upper time bound from octuply exponential
[Str82] to singly exponential [Var98]), it proved to be not too amenable to implemen-
tation. First, the translation in step (2) is very complicated: removing alternation from
alternating tree automata involves determinization of word automata, and Safra’s con-
struction proved quite resistant to efficient implementation [THB95]. An alternative
removal of alternation is described in [MS95]. Like Safra’sconstruction, however,
this translation is very complicated [ATW05]. Second, the best-known algorithms for
parity-tree-automata emptiness are exponential [Jur00].Thus, while highly optimized
software packages for automata on finite words and finite trees have been developed
over the last few years [EKM98], no such software has been developed for automata
on infinite trees.

In this paper we offer an alternative to the standard automata-theoretic approach.
The crux of our approach is avoiding the use of Safra’s construction and of nonde-
terministic parity tree automata. In the approach described here, one checks whether a
formulaψ is satisfiable by following these steps: (1) construct an alternating parity tree
automatonAψ that accepts all (or enough) tree models ofψ, (2) reduce1 Aψ to a uni-

1We use “reduceA1 to A2”, rather than “translateA1 to A2” to indicate thatA1 need not be equivalent
to A2, yet the language ofA1 is empty iff the language ofA2 is empty.

2

versal co-Büchi automatonAc
ψ, (3) reduceAc

ψ to an alternating weak tree automaton
Aw
ψ , (4) translateAw

ψ to a nondeterministic Büchi tree automatonAn
ψ , and (5) check

that the language ofAn
ψ is nonempty. The key is avoiding Safra’s construction, by us-

ing universal co-Büchi automata instead of deterministicparity automata.2 Universal
automata have the desired property, enjoyed also by deterministic automata but not by
nondeterministic automata, of having the ability to run over all branches of an input
tree. In addition, the co-Büchi acceptance condition is much simpler than the parity
condition. This enables us to solve the nonemptiness problem for universal co-Büchi
tree automata by reducing them into nondeterministic Büchi tree automata (the reduc-
tion goes through alternating weak tree automata [MSS88], and there is no need for the
parity acceptance condition). The nonemptiness problem for nondeterministic Büchi
tree automata is much simpler than the nonemptiness problemfor nondeterministic
parity tree automata and it can be solved symbolically and inquadratic time [VW86].
We also show that in some cases (in particular, therealizability and synthesis[PR89]
problems for LTL specifications), it is possible to skip the construction of an alternating
parity automaton and go directly to a universal co-Büchi automaton.

Our translations and reductions are significantly simpler than the standard approach,
making them less difficult to implement, both explicitly andsymbolically. These ad-
vantages are obtained with no increase in the complexity. Infact, as discussed in Sec-
tion 6, our construction is amenable to several optimization techniques.

2 Preliminaries

Given a setD of directions, aD-tree is a setT ⊆ D∗ such that ifx · c ∈ T , where
x ∈ D∗ andc ∈ D, then alsox ∈ T . If T = D∗, we say thatT is a full D-tree.
The elements ofT are callednodes, and the empty wordε is theroot of T . For every
x ∈ T , the nodesx · c, for c ∈ D, are thesuccessorsof x. A pathπ of a treeT is a set
π ⊆ T such thatε ∈ π and for everyx ∈ π, eitherx is a leaf or there exists a unique
c ∈ D such thatx · c ∈ π. Given an alphabetΣ, a Σ-labeledD-tree is a pair〈T, τ〉
whereT is a tree andτ : T → Σ maps each node ofT to a letter inΣ.

A transduceris a labeled finite graph with a designated start node, where the edges
are labeled byD and the nodes are labeled byΣ. A Σ-labeledD-tree isregular if
it is the unwinding of some transducer. More formally, a transducer is a tupleT =
〈D,Σ, S, sin, η, L〉, whereD is a finite set of directions,Σ is a finite alphabet,S is a
finite set of states,sin ∈ S is an initial state,η : S×D → S is a deterministic transition
function, andL : S → Σ is a labeling function. We defineη : D∗ → S in the standard
way: η(ε) = sin, and forx ∈ D∗ andd ∈ D, we haveη(x · d) = η(η(x), d).
Intuitively, A Σ-labeledD-tree 〈D∗, τ〉 is regular if there exists a transducerT =
〈D,Σ, S, sin, η, L〉 such that for everyx ∈ D∗, we haveτ(x) = L(η(x)). We then say
that the size of the regular tree〈D∗, τ〉, denoted‖τ‖, is |S|, the number of states ofT .

2A note to readers who are discouraged by the fact our method goes via several intermediate automata:
it is possible to combine the reductions into one construction, and in fact we describe here also a direct
translation of universal co-Büchi automata into nondeterministic Büchi automata. In practice, however, it
is beneficial to have many intermediate automata, as each intermediate automaton undergoes optimization
constructions that are suitable for its particular type [Fri03, FW02, GKSV03].

3

For a setX , let B+(X) be the set of positive Boolean formulas overX (i.e.,
Boolean formulas built from elements inX using∧ and∨), where we also allow
the formulastrue (an empty conjunction) andfalse (an empty disjunction). For a
setY ⊆ X and a formulaθ ∈ B+(X), we say thatY satisfiesθ iff assigningtrue to
elements inY and assigningfalse to elements inX \ Y makesθ true. AnAlternating
tree automatonisA = 〈Σ, D,Q, qin, δ, α〉, whereΣ is the input alphabet,D is a set of
directions,Q is a finite set of states,δ : Q× Σ → B+(D×Q) is a transition function,
qin ∈ Q is an initial state, andα specifies the acceptance condition (a condition that
defines a subset ofQω; we define several types of acceptance conditions below).

The alternating automatonA runs onΣ-labeled fullD-trees. Arun of A over aΣ-
labeledD-tree〈T, τ〉 is a(T×Q)-labeled IN-tree〈Tr, r〉. Each node ofTr corresponds
to a node ofT . A node inTr, labeled by(x, q), describes a copy of the automaton that
reads the nodex of T and visits the stateq. Note that many nodes ofTr can correspond
to the same node ofT . The labels of a node and its successors have to satisfy the
transition function. Formally,〈Tr, r〉 satisfies the following:

1. ε ∈ Tr andr(ε) = 〈ε, qin〉.

2. Let y ∈ Tr with r(y) = 〈x, q〉 andδ(q, τ(x)) = θ. Then there is a (possibly
empty) setS = {(c0, q0), (c1, q1), . . . , (cn−1, qn−1)} ⊆ D × Q, such thatS
satisfiesθ, and for all0 ≤ i ≤ n−1, we havey · i ∈ Tr andr(y · i) = 〈x · ci, qi〉.

For example, if〈T, τ〉 is a {0, 1}-tree withτ(ε) = a andδ(qin, a) = ((0, q1) ∨
(0, q2)) ∧ ((0, q3) ∨ (1, q2)), then, at level1, the run〈Tr, r〉 includes a node labeled
(0, q1) or a node labeled(0, q2), and includes a node labeled(0, q3) or a node labeled
(1, q2). Note that if, for somey, the transition functionδ has the valuetrue, theny
need not have successors. Also,δ can never have the valuefalse in a run.

A run 〈Tr, r〉 is accepting if all its infinite paths satisfy the acceptancecondition.
Given a run〈Tr, r〉 and an infinite pathπ ⊆ Tr, let inf(π) ⊆ Q be such thatq ∈
inf(π) if and only if there are infinitely manyy ∈ π for which r(y) ∈ T × {q}. That
is, inf(π) contains exactly all the states that appear infinitely oftenin π. We consider
here three acceptance conditions defined as follows3

• A pathπ satisfies aBüchi acceptance conditionα ⊆ Q if and only if inf(π) ∩
α 6= ∅.

• A pathπ satisfies aco-Büchiacceptance conditionα ⊆ Q if and only if inf(π)∩
α = ∅.

• A path π satisfies aparity acceptance conditionα = {F1, F2, . . . , Fh} with
F1 ⊆ F2 ⊆ · · · ⊆ Fh = Q iff the minimal indexi for which inf(π) ∩ Fi 6= ∅
is even. The numberh of sets inα is called theindexof the automaton.

For the three conditions, an automaton accepts a tree iff there exists a run that
accepts it. We denote byL(A) the set of allΣ-labeled trees thatA accepts.

3In the proof of Theorem 4.3, we also refer to the Rabin and Streett conditions, but their definition is
irrelevant for the proof.

4

Below we discuss some special cases of alternation automata. The alternating au-
tomatonA is nondeterministicif for all the formulas that appear inδ, if (c1, q1) and
(c2, q2) are conjunctively related, thenc1 6= c2. (i.e., if the transition is rewritten in
disjunctive normal form, there is at most one element of{c} × Q, for eachc ∈ D, in
each disjunct). The automatonA is universalif all the formulas that appear inδ are
conjunctions of atoms inD × Q, andA is deterministicif it is both nondeterministic
and universal. The automatonA is aword automaton if|D| = 1.

In [MSS86], Muller et al. introducealternating weak tree automata. In a weak
automaton, we have a Büchi acceptance conditionα ⊆ Q and there exists a partition
ofQ into disjoint sets,Q1, . . . , Qm, such that for each setQi, eitherQi ⊆ α, in which
caseQi is anaccepting set, or Qi ∩ α = ∅, in which caseQi is a rejecting set. In
addition, there exists a partial order≤ on the collection of theQi’s such that for every
q ∈ Qi andq′ ∈ Qj for whichq′ occurs inδ(q, σ), for someσ ∈ Σ, we haveQj ≤ Qi.
Thus, transitions from a state inQi lead to states in either the sameQi or a lower one.
It follows that every infinite path of a run of an alternating weak automaton ultimately
gets “trapped” within someQi. The path then satisfies the acceptance condition if and
only if Qi is an accepting set.

We denote each of the different types of automata by three letter acronyms in
{D,N,U,A} × {B,C, P,R, S,W} × {W,T }, where the first letter describes the
branching mode of the automaton (deterministic, nondeterministic, universal, or alter-
nating), the second letter describes the acceptance condition (Büchi, co-Büchi, parity,
Rabin, Streett, or weak), and the third letter describes theobject over which the au-
tomaton runs (words or trees). For example, APT are alternating parity tree automata
and UCT are universal co-Büchi tree automata.

3 From APT to NBT via UCT

UCT are a special case of APT: the transition function of a UCTcontains only con-
junctions and the acceptance condition corresponds to a parity condition of index 2.
UCT are indeed strictly less expressive than APT. Consider for example the language
L of {0, 1}-labeled trees where〈T, τ〉 ∈ L iff there is a pathπ ⊆ T such that for
infinitely manyx ∈ π, we haveτ(x) = 0. It is easy to construct an APT (in fact, even
an NBT [Rab70]) that recognizesL. By [Rab70], however, no NBT can recognize the
complement ofL. Hence, by [MSS86], no UCT can recognizeL.

In this section we show that though UCT are less expressive than APT, they are very
powerful. On the one hand, the emptiness problem for APT is easily reducible to the
emptiness problem for UCT. On the other hand, it is easy to translate UCT into NBT so
that emptiness is preserved (that is, the NBT is empty iff theUCT is empty). Thus, as
discussed in Section 1, traditional decidability algorithms that end up in a complicated
APT nonemptiness check, can be much simplified. We also show that UCT are useful
for tasks traditionally assigned to APT. Thus, in many casesit is possible to skip the
construction of an APT and go directly to a UCT. This includesthe realizability and
synthesis problems for LTL specifications [PR89], and the problem of translating an
LTL specification into a DPW with a minimal index. We will discuss these applications
in Section 5.

5

3.1 From APT to UCT

Consider an APTA = 〈Σ, D,Q, qin, δ, α〉. Recall that the transition functionδ :
Q × Σ → B+(D × Q) maps a state and a letter to a formula inB+(D × Q). A
restriction of δ is a partial functionη : Q → 2D×Q. For a letterσ ∈ Σ, we say that
a restrictionη is relevantto σ if for all q ∈ Q for which δ(q, σ) is satisfiable (i.e.,
δ(q, σ) is not false), the setη(q) satisfiesδ(q, σ). If δ(q, σ) is not satisfiable, then
η(q) is undefined. Intuitively, by choosing the atoms that are going to be satisfied,
η removes the nondeterminism inδ. Let F be the set of restrictions ofδ. Note that
|F | is exponential in|δ|. A running strategyof A for a Σ-labeledD-tree 〈T, τ〉 is
anF -labeled tree〈T, f〉. We say that〈T, f〉 is relevantto 〈T, τ〉 if for all x ∈ T ,
the restrictionf(x) is relevant toτ(x). When〈T, f〉 is relevant to〈T, τ〉, it induces a
unique (up to the order of siblings in the run tree) run〈Tf , rf 〉 of A on〈T, τ〉: whenever
the run〈Tf , rf 〉 is in stateq as it reads a nodex ∈ T , it proceeds according tof(x)(q).
Formally,〈Tf , rf 〉 is a(T ×Q)-labeled IN-tree that satisfies the following:

1. ε ∈ Tf andrf (ε) = (ε, qin).

2. Consider a nodey ∈ Tf with rf (y) = (x, q). Let f(x)(q) = {(c0, q0), (c1, q1),
. . ., (cn−1, qn−1)} ⊆ D × Q. For all 0 ≤ i ≤ n − 1, we havey · i ∈ Tr and
rf (y · i) = 〈x · ci, qi〉. The only children ofy in Tf are these required for the
satisfaction of the above.

We say that a running strategy〈T, f〉 is goodfor 〈T, τ〉 if 〈T, f〉 is relevant to〈T, τ〉
and the run〈Tf , rf 〉 is accepting. Note that a nodex of 〈T, f〉 may be read by several
copies ofA. All these copies proceed according to the restrictionf(x), regardless the
history of the run so far. Thus, the run〈Tf , rf 〉 is memoryless. By [EJ91], an APTA
accepts〈T, τ〉 iff A has a memoryless accepting run on〈T, τ〉. Hence the following
theorem.

Theorem 3.1 [EJ91] The APTA accepts〈T, τ〉 iff there exists a running strategy
〈T, f〉 that is good for〈T, τ〉.

Annotating input trees with restrictions enables us to transform an APT to a UCT
with polynomially many states: letΣ′ ⊆ Σ × F be such that for all〈σ, η〉 ∈ Σ′, we
have thatη is relevant toσ. Note that since we restrict attention to pairs in whichη is
relevant toσ, the size ofΣ′ is still exponential in|δ|. We refer to aΣ′-labeled tree as
〈T, (τ, f)〉, whereτ andf are the projections ofΣ′ onΣ andF , respectively.

Theorem 3.2 LetA be an APT withn states, transition function of sizem, and indexh.
There is a UCTA′ withO(nh) states and alphabet of size2O(m) such thatL(A) 6= ∅
iff L(A′) 6= ∅.

Proof: The UCTA′ accepts aΣ′-labeledD-tree iffA accepts its projection onΣ. For
that,A′ accepts a tree〈T, (τ, f)〉 iff 〈T, f〉 is good for〈T, τ〉. By Theorem 3.1, it then
follows thatA′ accepts〈T, (τ, f)〉 iff A accepts〈T, τ〉. Note that sinceΣ′ contains
only pairs〈σ, η〉 for whichη is relevant toσ, it must be thatf is relevant toτ , thusA′

only has to check that all the paths in the run tree〈Tf , rf 〉 satisfy the parity acceptance

6

condition. Since the running strategy〈T, f〉 removes the nondeterminism inδ, the
construction ofA′ is similar to a translation of a universal parity tree automaton into a
universal co-Büchi tree automaton, which is dual to the known translation of Rabin (or
co-parity) word automata to Büchi word automata [Cho74].

Formally, letA = 〈Σ, Q, qin, δ, α〉 with α = {F1, F2, . . . , F2h}, and letF0 = ∅.
We define the UCTA′ = 〈Σ′, Q× {0, . . . , h− 1}, δ′, 〈qin, 0〉, α′〉, where4

• For everyq ∈ Q, σ ∈ Σ, andη ∈ F , we have

– δ′(〈q, 0〉, 〈σ, η〉) =
∧

0≤i<h

∧

(c,s)∈(η(q)\(D×F2i))
(c, 〈s, i〉).

– For every1 ≤ i < h, we haveδ′(〈q, i〉, 〈σ, η〉) =
∧

(c,s)∈(η(q)\(D×F2i))
(c, 〈s, i〉).

• α′ =
⋃

0≤i<h(F2i+1 × {i}).

The automatonA′ consists ofh copies ofA, with the states of thei-th copy being
labeled byi, for 0 ≤ i ≤ h − 1. A copy associated with indexi, for 0 ≤ i ≤ h − 1,
checks that if a path in the run〈Tf , rf 〉 visitsF2i only finitely often, then the path also
visits F2i+1 only finitely often. The run ofA′ starts at the “master copy”,Q × {0},
and it branches as suggested by the restriction in the input.From the master copy,A′

branches to the other copies: for each transition ofA suggested byη, the automaton
A′ branches to the master copy and to all the otherh − 1 copies. OnceA′ moves to
a copy associated with indexi, it stays there forever, unless when it has to move to a
state fromF2i. The acceptance condition ofA′ guarantees that ifA′ stays in thei-th
copy forever (in which case it reaches thei-th copy in a suffix of a path of〈Tf , rf 〉 that
has no visits toF2i, indicating that corresponding path visitsF2i only finitely often), it
visits only finitely many states inF2i+1.

As discussed in Section 1, APT are of special interest as it ispossible to translateµ-
calculus formulas into APT. By translating other types of alternating tree automata into
UCT, our approach can be applied to other temporal logics as well. We describe such
two cases below. The logic CTL⋆ is weaker than theµ-calculus and CTL⋆ formulas
can be translated into alternatinghesitantautomata [KVW00]. Since the acceptance
condition of a hesitant automaton is similar to a Rabin condition with a single pair, the
construction of the UCT of Theorem 3.2 in that case involves only a linear blow-up in
the state space.

An extension of the standardµ-calculus, called thefull µ-calculus, which includes
both forward and backward modalities, is studied in [Var98]. It is shown there that
a full µ-calculus formula can be translated into atwo-wayAPT, denoted 2APT. The
emptiness problem for 2APT is solved in [Var98] via a reduction to NPT that uses
Safra’s construction. A closer examination of the construction in [Var98] shows that it
proceeds in two steps: (1) It is shown that a 2APTA can be translated into a UPTA′

over a larger alphabet such thatL(A) 6= ∅ iff L(A′) 6= ∅; (2) The UPTA′ is translated
to an NPT using Safra’s construction. Using Theorem 3.2, we can translateA′ into
a UCT and skip step (2). Thus, we obtain a Safraless decision procedure for the full
µ-calculus.

4Note that an empty conjunction evaluates tofalse.

7

3.2 From UCT to NBT

We now describe an emptiness preserving translation of UCT to NBT. The correctness
proof of the construction is given in Section 4. There, we also suggest to use AWT as an
intermediate step in the construction. While this adds a step to our chain of reductions,
it enables further optimizations of the result.

Theorem 3.3 LetA be a UCT withn states. There is an NBTA′ over the same alpha-
bet such thatL(A′) 6= ∅ iff L(A) 6= ∅, and the number of states inA′ is 2O(n2 logn).

Proof: Let A = 〈Σ, D,Q, qin, δ, α〉, and letk = (2n!)n2n3n(n + 1)/n!. Note that
k is 2O(n logn). Let R be the set of functionsf : Q → {0, . . . , k} in which f(q) is
even for allq ∈ α. For g ∈ R, let odd(g) = {q : g(q) is odd}. We defineA′ =
〈Σ, D,Q′, q′in, δ

′, α′〉, where

• Q′ = 2Q × 2Q ×R.

• q′in = 〈{qin}, ∅, g0〉, whereg0 maps all states tok.

• For q ∈ Q, σ ∈ Σ, andc ∈ D, let δ(q, σ, c) = δ(q, σ) ∩ ({c} × Q). For two
functionsg andg′ in R, a letterσ, and directionc ∈ D, we say thatg′ covers
〈g, σ, c〉 if for all q andq′ in Q, if q′ ∈ δ(q, σ, c), theng′(q′) ≤ g(q). Then, for
all 〈S,O, g〉 ∈ Q′ andσ ∈ Σ, we defineδ as follows.

– If O 6= ∅, thenδ′(〈S,O, g〉, σ) =

∧

c∈D

∨

gc covers 〈g,σ,c〉

〈δ(S, σ, c), δ(O, σ, c) \ odd(gc), gc〉.

– If O = ∅, thenδ′(〈S,O, g〉, σ) =

∧

c∈D

∨

gc covers 〈g,σ,c〉

〈δ(S, σ, c), δ(S, σ, c) \ odd(gc), gc〉.

• α′ = 2Q × {∅} ×R.

3.3 Complexity

Combining Theorems 3.2 and 3.3, we get the desired reductionfrom the nonemptiness
problem for APT to the nonemptiness problem for NBT:

Theorem 3.4 LetA be an APT withn states, transition function of sizem, and index
h. There is an NBTA′ with 2O(n2h2 log nh) states and alphabet of size2O(m) such that
L(A) 6= ∅ iff L(A′) 6= ∅.

We now analyze the complexity of the nonemptiness algorithmfor APT that fol-
lows.

8

Theorem 3.5 The nonemptiness problem for an APT withn states, transition function
of sizem, and indexh can be solved in time2O(log |D|+m+n2h2 lognh).

Proof: By Theorem 3.4, the NBT induced by the APT has2O(n2h2 lognh) states and
alphabet of size2O(m). The transitions of the NBT are such that the successors of
a certain state in a particular direction are independent ofits successors in other di-
rections. Thus, the transition function of the NBT specifiesfor each state, letter, and
direction, a set of possible states, and it is therefore of size2O(log |D|+m+n2h2 lognh).
The nonemptiness problem for NBT can be solved in time quadratic in the size of the
transition function [VW86], so we get2O(log |D|+m+n2h2 log nh).

This coincides with the known upper bound that is based on Safra’s construction.
Indeed, there, one first constructs a DPT with(nh)O(nh) states and indexO(nh). The
alphabet size of the DPT is2O(m). Since the DPT is deterministic, the size of its
transition function is the product of its state space size, alphabet size, and branching
degree, which is2O(log |D|+m+nh log(nh)) The nonemptiness problem for DPT with
transition function of sizex, state space of sizey, and indexz requires timexyO(z)

[Jur00], so we get2O(log |D|+m+n2h2 lognh)), which coincides with our bound. The
main advantage of our approach is the simplicity of the algorithm; the complexity
analysis here just serves to show that this simplicity does not involve a worse upper
bound.

4 A proof of the UCT to NBT construction

Recall that runs of alternating tree automata are labeled trees. By merging nodes that
are roots of identical subtrees, it is possible to maintain runs in graphs. In Section 4.1,
we prove a bounded-size run graphs property for UCT. In Section 4.2, we show how
the bounded-size property enables a simple translation of UCT to AWT. In Section 4.3,
we translate these AWT to NBT. Combining the translations results in the construction
presented in Theorem 3.3.

4.1 Useful Observations

Consider a UCTA = 〈Σ, D,Q, qin, δ, α〉. Recall that a run〈Tr, r〉 of A on aΣ-labeled
D-tree〈T, τ〉 is a (T × Q)-labeled tree in which a nodey with r(y) = 〈x, q〉 stands
for a copy ofA that visits the stateq when it reads the nodex. Assume that〈T, τ〉 is
regular, and is generated by a transducerT = 〈D,Σ, S, sin, η, L〉. For two nodesy1
andy2 in Tr, with r(y1) = 〈x1, q1〉 andr(y2) = 〈x2, q2〉, we say thaty1 andy2 are
similar iff q1 = q2 andη(x1) = η(x2). By merging similar nodes into a single vertex,
we can represent the run〈Tr, r〉 by a finite graphGr = 〈V,E〉, whereV = S × Q
andE(〈s, q〉, 〈s′, q′〉) iff there isc ∈ D such that(c, q′) ∈ δ(q, L(s)) andη(s, c) = s′.
We restrictGr to vertices reachable from the vertex〈sin, qin〉. We refer toGr as the
run graph ofA onT . A run graph ofA is then a run graph ofA on some transducer
T . We say thatGr is accepting iff every infinite path ofGr has only finitely manyα-
vertices (vertices inS×α). SinceA is universal andT is deterministic, the run〈Tr, r〉

9

is memorylessin the sense that the merging does not introduce toGr paths that do not
exist in〈Tr, r〉, and thus, it preserves acceptance. Formally, we have the following:

Lemma 4.1 Consider a UCTA. Let〈T, τ〉 be a tree generated by a transducerT . The
run tree〈Tr, r〉 ofA on〈T, τ〉 is accepting iff the run graphGr ofA onT is accepting.

Proof: We say that a pathπ = y0, y1 · y2 · · · of 〈Tr, r〉 corresponds to a pathπ′ =
〈s0, q0〉, 〈s1, q1〉, 〈s2, q2〉, . . . ofGr iff s0 = sin, q0 = qin, and there is a pathx0, x1, x2, . . .
of T , with xi+1 = xi · ci, such that for alli ≥ 0, we have thatr(yi) = 〈xi, qi〉 and
η(si, ci) = si+1. Thus,π′ describes the states ofT andA that the copy ofA whose
evolution is recorded in the pathπ visits. Clearly,π has infinitely many nodesyi
with r(yi) ∈ T × α iff π′ visits infinitely manyα-vertices. By the definition ofGr,
each path of〈Tr, r〉 corresponds to a single path ofGr. Also, each pathπ′ of Gr
has at least one pathπ of 〈Tr, r〉 such thatπ corresponds toπ′. To see this, note
that since〈T, τ〉 is induced byT , thenT = D∗ and for allx ∈ D∗, we have that
τ(x) = L(η(x)). In addition, by the definition ofGr, for all i ≥ 0 there isci ∈ D such
that(ci, qi+1) ∈ δ(qi, L(si)) andη(si, ci) = si+1; the sequence of thesexi’s induces
a pathx0, x1, x2, x3, . . . of T , with xi+1 = xi · ci. The run ofA on 〈T, τ〉 contains
a copy that reads this path and visitsq0, q1, q2, . . ., and the pathπ of 〈Tr, r〉 describes
this copy. Hence,〈Tr, r〉 has an infinite path that visits infinitely many states inα iff
Gr has an infinite path with infinitely manyα-vertices, and we are done.

Note thatGr is finite, and its size is bounded byS × Q. We now boundS and
get a bounded-size run-graph property for UCT. The size ofS depends on the blow-up
involved in NBW determinization. By [Saf88], an NBW withn states can be translated
to an equivalent deterministic Streett word automaton (DSW) with 2O(n logn) states.
Here, we need an exact bound, so we analyze the complexity of the construction in
[Saf88] carefully:

Lemma 4.2 Given an NBW withn states, it is possible to construct an equivalent DSW
with (2n!)n2n3n(n+ 1)/n! states.

Proof: By [Saf88, Saf89], the state space of the DSW is the set of tuples〈t, π, i1, i2〉,
wheret is a labeled ordered tree overn nodes (a tree in which the successors of each
node are ordered),π is a permutation of1, . . . , n, and1 ≤ i1, i2 ≤ n + 1. Each
node oft is labeled by a number in{1, . . . , n} (the names of the node) and a color in
{0, 1, 2}. In addition, each node is labeled by a subset of{1, . . . , n}, corresponding
to the subset of states of the NBW associated with the node. The treest are such
that if a node is labeled with a subset containing statei ∈ {1, . . . , n}, then so are
its ancestors. Also, the statei cannot belong to the subsets labeling other nodes of
the same level. Therefore, the labeling of the nodes by subsets of {1, . . . , n} can be
encoded by a function that maps a statei ∈ {1, . . . , n} to the lowest leftmost node
such thati belongs to its labeled subset. Thus, the number of differentlabels is the
product ofnn (for the name),3n (for the color), andnn (for the subsets). There are
cat(n − 1) ordered trees overn nodes, wherecat stands for Catalan number. The
explicit formula forcat(n) is (2n!)/(n!(n+1)!). This, together with thenn3nnn factor
for the possible labels of the nodes, and then!(n+ 1)2 factor forπ, i1, andi2, gives a

10

(2n!)22n logn3nn!(n+ 1)2/(n!(n+ 1)!) bound, which equals(2n!)n2n3n(n+ 1)/n!.

Note that applying Stirling’s Approximationn! ≈
√

2πn(n/e)n, we can approxi-
mate the bound in Theorem 4.2 by

√
4πn(2n/e)2nn2n3n(n+1)/

√
2πn(n/e)n, which,

for n ≥ 9, is bounded byn3n6n.
We can now obtain a bounded-size run-graph property for UCT.

Theorem 4.3 A UCTA with n states is not empty iffA has an accepting run graph
with at most(2n!)n2n+13n(n+ 1)/n! vertices.

Proof: Assume first thatA has an accepting run graphGr (of any size) on some
transducerT . Let 〈T, τ〉 be the tree generated byT . Thus,T = D∗ and for allx ∈ D∗

we have thatτ(x) = L(η(x)). Consider the run〈Tr, r〉 of A on〈T, τ〉. By Lemma 4.1,
〈Tr, r〉 is accepting. Hence,A is not empty.

For the other direction, consider the UCTA. By [EJ91], there is a DRTAd equiv-
alent toA, which is constructed as follows. LetA′ be an NBW that runs over a branch
of an input tree forA and checks whetherA has a rejecting path over this branch. The
NBW A′ has the same state space asA. Let A′′ be a DSWA′′ that is equivalent to
A′ (by Lemma /4.2). Now, we complementA′′ (by dualizing its acceptance condition)
and run the complementary DRW over all branches of the input tree to check that all
paths of the run tree ofA are accepting. This yields the DRTAd that is equivalent to
A.

By Lemma 4.2, the DRTAd has at mostn′ = (2n!)n2n3n(n + 1)/n! states. By
[Eme85], an NRT withn′ states is not empty iff it accepts a regular tree generated by
a transducer withn′ states. The state space of the run graph ofA on such a transducer
is then bounded bynn′ = (2n!)n2n+13n(n+ 1)/n!. Since the run ofA on the tree is
accepting, Lemma 4.1 implies that so is the run graph.

We note that an improvement in the upper bound of Theorem 4.3 would lead to an
improvement in the complexity of our decision procedure. Infact, as we further discuss
in Section 7, even an improvement in the width of such a run graph would improve the
complexity of the decision procedure.

Consider a graphG ⊆ Gr. We say that a vertex〈s, q〉 is finite in G iff all the paths
that start at〈s, q〉 are finite. We say that a vertex〈s, q〉 is α-free in G iff all the vertices
inG that are reachable from〈s, q〉 are notα-vertices. Note that, in particular, anα-free
vertex is not anα-vertex.

Given a run〈Tr, r〉, we define a sequenceG0 ⊇ G1 ⊇ G2 ⊇ . . . of graphs,
subgraphs ofGr, as follows.

• G0 = Gr.

• G2i+1 = G2i \ {〈s, q〉 | 〈s, q〉 is finite inG2i}.

• G2i+2 = G2i+1 \ {〈s, q〉 | 〈s, q〉 is α-free inG2i+1}.

Lemma 4.4 A run graphGr = 〈V,E〉 is accepting iff there isl ≤ |V | + 1 for which
Gl is empty.

11

Proof: Assume first thatGr is accepting. We prove that for alll ≥ 1, the graphGl
has at most|V |+1− l vertices. In particular,G|V |+1 has at most0 vertices, so there is
l ≤ |V |+1 for whichGl is empty. The proof proceeds by an induction onl. Clearly,G1

has at most|V | vertices. For the induction step, we prove that (1) for alli ≥ 1, if G2i is
not empty, then it contains at least one finite vertex, and (2)for all i ≥ 0, if G2i+1 is not
empty, then it contains at least oneα-free vertex. It follows that the transition fromGl
toGl+1 involves a removal of at least one vertex, and we are done. We start with Claim
(2). Consider the graphG2i. If G2i contains only finite vertices, thenG2i+1 is empty,
and we are done. We prove that ifG2i contains a vertex that is not finite, then there must
be someα-free vertex inG2i+1. To see this, assume, by way of contradiction, thatG2i

contains a vertex〈s0, q0〉 that is not finite and no vertex inG2i+1 is α-free. Consider
the graphG2i+1. All the vertices inG2i+1 are not finite, and therefore, each of the
vertices inG2i+1 has at least one successor. Consider the vertex〈s0, q0〉 in G2i+1.
Since, by the assumption, it is notα-free, there exists anα-vertex〈s′0, q′0〉 reachable
from 〈s0, q0〉. Let 〈s1, q1〉 be a successor of〈s′0, q′0〉. By the assumption,〈s1, q1〉
is also notα-free. Hence, there exists anα-vertex 〈s′1, q′1〉 reachable from〈s1, q1〉.
Let 〈s2, q2〉 be a successor of〈s′1, q′1〉. By the assumption,〈s2, q2〉 is also notα-free.
Thus, we can continue similarly and construct an infinite sequence of vertices〈sj , qj〉,
〈s′j , q′j〉 such that for allj, the vertex〈s′j , q′j〉 is anα-vertex reachable from〈sj , qj〉,
and〈sj+1, qj+1〉 is a successor of〈s′j , q′j〉. Such a sequence, however, corresponds to
a path inGr that visitsα infinitely often, contradicting the assumption thatGr is an
accepting run graph.

It is left to prove Claim (1). Assume by way of contradiction that there isi ≥ 1
such thatG2i is not empty and yet it contains no finite vertex. Then,G2i+1 = G2i.
Recall thatG2i is obtained fromG2i−1 by removing all theα-free vertices. Therefore,
G2i contains noα-free vertex. HenceG2i+1 contains noα-free either, contradicting
Claim (2).

Assume now thatGr is rejecting. Then,Gr contains an infinite pathπ with in-
finitely manyα-vertices. We prove that for alli ≥ 0, all the vertices〈s, q〉 in π are in
G2i. The proof proceeds by induction oni. The vertices inπ are clearly members of
G0. Also, if all the vertices inπ are members ofG2i, it must be that they are neither
finite norα-free inG2i+1, so they stay inG2i+2.

LetGr be an accepting run graph. Given a vertex〈s, q〉 in Gr, therank of 〈s, q〉,
denotedrank(s, q), is defined as follows:

rank(s, q) =

[

2i If 〈s, q〉 is finite inG2i.
2i+ 1 If 〈s, q〉 is α-free inG2i+1.

By Lemma 4.4, there isl ≤ |V |+ 1 for whichGl is empty, Therefore, every vertex
gets a well-defined rank, smaller than|V |.

Lemma 4.5 Consider a run graphGr = 〈V,E〉.
1. For every vertex〈s, q〉 inGr andi ≤ |V |, we have〈s, q〉 6∈ Gi iff rank(s, q) < i.

2. For every two vertices〈s, q〉 6= 〈s′, q′〉 in Gr, if 〈s′, q′〉 is reachable from〈s, q〉,
thenrank(s′, q′) ≤ rank(s, q).

12

Proof: We start with Claim (1): for every vertex〈s, q〉 in Gr andi ≤ |V |, we have
〈s, q〉 6∈ Gi iff rank(s, q) < i.

We first prove that ifrank(s, q) < i then〈s, q〉 6∈ Gi. Let rank(s, q) = j. By the
definition of ranks,〈s, q〉 is finite orα-free inGj . Hence,〈s, q〉 6∈ Gj+1. Hence, as
i > j, also〈s, q〉 6∈ Gi.

For the other direction, we proceed by an induction oni. SinceG0 = Gr, the
case wherei = 0 is immediate. For the induction step, consideri ≤ |V | and assume
the lemma holds for allj < i. Consider a vertex〈s, q〉 6∈ Gi. If 〈s, q〉 6∈ Gi−1, the
lemma’s requirement follows from the induction hypothesis. Otherwise,〈s, q〉 ∈ Gi−1

and we distinguish between two cases. Ifi is even, then〈s, q〉 is α-free in Gi−1.
Accordingly,rank(s, q) = i − 1, and we are done. Ifi is odd, then〈s, q〉 is finite in
Gi−1. Accordingly,rank(s, q) = i− 1, and we are done too.

We now prove Claim (2): for every two vertices〈s, q〉 6= 〈s′, q′〉 in Gr, if 〈s′, q′〉 is
reachable from〈s, q〉, thenrank(s′, q′) ≤ rank(s, q).

If rank(s, q) = i is odd, then〈s, q〉 is α-free inGi. Hence, either〈x′, q′〉 is not in
Gi, in which case, by Claim (1), its rank is strictly smaller than i, or 〈x′, q′〉 is inGi,
in which case, being reachable from〈s, q〉, it must byα-free inGi and have ranki.

If rank(s, q) = i is even, then〈s, q〉 is finite inGi. Hence, either〈x′, q′〉 is not in
Gi, in which case, by Claim (1), its rank is strictly smaller than i, or 〈x′, q′〉 is inGi,
in which case, being reachable from〈s, q〉, it must be finite inGi and have ranki.

Note that noα-vertex gets an odd rank. Hence, by Lemma 4.5, we have the follow-
ing.

Lemma 4.6 In every infinite path in an accepting run graphGr, there exists a vertex
〈s, q〉 with an odd rank such that all the vertices〈s′, q′〉 on the path that are reachable
from 〈s, q〉 haverank(s′, q′) = rank(s, q).

4.2 From UCT to AWT

For an integerk, let [k] = {0, . . . , k}, and let[k]even and[k]odd be the restriction of
[k] to its even and odd members, respectively.

Theorem 4.7 LetA be a UCT withn states. There is an AWTA′ over the same alpha-
bet such thatL(A′) 6= ∅ iff L(A) 6= ∅, and the number of states inA′ is 2O(n log n).

Proof: Let A = 〈Σ, D,Q, qin, δ, α〉, and letk = (2n!)n2n+13n(n + 1)/n!. The
AWT A′ accepts all the regular trees〈T, τ〉 ∈ L(A) that are generated by a transducer
T = 〈D,Σ, S, sin, η, L〉 with at most(2n!)n2n+13n(n + 1)/n! states. Note that the
run graph ofA on such〈T, τ〉 is accepting and is of size mostk. By Theorem 4.3, we
have thatL(A′) 6= ∅ iff L(A) 6= ∅. We defineA′ = 〈Σ, D,Q′, q′in, δ

′, α′〉, where

• Q′ = Q× [k]. Intuitively, whenA′ is in state〈q, i〉 as it reads the nodex ∈ T , it
guesses that the rank of the vertex〈η(x), q〉 ofGr is i. An exception is the initial
stateq′in explained below.

• q′in = 〈qin, k〉. That is,qin is paired withk, which is an upper bound on the rank
of 〈η(ε), qin〉.

13

• We defineδ′ by means of a function

release : B+(D ×Q) × [k] → B+(D ×Q′).

Given a formulaθ ∈ B+(D×Q), and a ranki ∈ [k], the formularelease(θ, i) is
obtained fromθ by replacing an atom(c, q) by the disjunction

∨

i′≤i(c, 〈q, i′〉).
For example,release((1, q)∧ (2, s), 2) = ((1, 〈q, 2〉)∨ (1, 〈q, 1〉)∨ (1, 〈q, 0〉))∧
((2, 〈s, 2〉) ∨ (2, 〈s, 1〉) ∨ (2, 〈s, 0〉)).
Now, δ′ : Q′ × Σ → B+(D ×Q′) is defined, for a state〈q, i〉 ∈ Q′ andσ ∈ Σ,
as follows.

δ′(〈q, i〉, σ) =

[

release(δ(q, σ), i) If q 6∈ α or i is even.
false If q ∈ α andi is odd.

That is, if the current guessed rank isi then, by employingrelease, the run can
move in its successors to every rank that is smaller than or equal toi. If, however,
q ∈ α and the current guessed rank is odd, then, by the definition ofranks, the
current guessed rank is wrong, and the run is rejecting.

• α′ = Q× [k]odd . That is, infinitely many guessed ranks along each path should
be odd.

It is easy to see thatA′ is weak: each ranki ∈ [k] induces the setQi = Q × {i} in
the partition. The acceptance conditionα′ then requires the run to get stuck in a set
associated with an odd rank.

We prove thatA′ accepts all the regular trees〈T, τ〉 ∈ L(A) that are generated
by a transducerT = 〈D,Σ, S, sin, η, L〉 with at most(2n!)n2n+13n(n+ 1)/n! states.
Note that the run graph ofA on such〈T, τ〉 is accepting and is of size mostk. By
Theorem 4.3, we then have thatL(A′) 6= ∅ iff L(A) 6= ∅.

We first prove thatL(A′) ⊆ L(A). Consider a tree〈T, τ〉 accepted byA′. Let
〈Tr, r′〉 be the accepting run ofA′ on 〈T, τ〉. Consider theT ×Q-labeled tree〈Tr, r〉
where for ally ∈ Tr with r′(y) = (x, 〈q, i〉), we haver(y) = (x, q). Thus,〈Tr, r〉
projects out the[k] element of the labels of〈Tr, r′〉. It is easy to see that〈Tr, r〉 is
a run ofA on 〈T, τ〉. Indeed, the transitions ofA′ only annotate transitions ofA by
ranks. We show that〈Tr, r〉 is an accepting run. Since〈Tr, r′〉 is accepting, then, by
the definition ofα′, each infinite path of〈Tr, r′〉 gets trapped in a setQ×{i} for some
oddi. By the definition ofδ′, no accepting run can visit a state〈q, i〉 with an oddi and
q ∈ α. Hence, the infinite path actually gets trapped in the subset(Q \ α) × {i} of
Q × {i}. Consequently, in〈Tr, r〉, all the paths visits states inα only finitely often,
and we are done.

It is left to prove that ifT = 〈D,Σ, S, sin, η, L〉 is a transducer with at most
(2n!)n2n3n(n+1)/n! states and the run graph ofA onT is accepting, thenA′ accepts
the regular tree generated byT . Let T be as above and letGr be the accepting run
graph ofA onT . Consider the(T ×Q′)-labeled IN-tree〈T ′

r, r
′〉 defined as follows.

• ε ∈ T ′
r andr′(ε) = (ǫ, 〈qin, k〉).

14

• Let y ∈ T ′
r be such thatr′(y) = (x, 〈q, i〉). By the definition of〈T ′

r, r
′〉 so far,

〈η(x), q〉 is a vertex inGr . Let δ(q, τ(x)) = {〈c1, q1〉, . . . , 〈cm, qm〉}. By the
definition ofGr, the vertex〈η(x), q〉 has successors〈s1, q1〉, . . . , 〈sm, qm〉 such
that for all1 ≤ i ≤ m, we have thatη(η(x), ci) = si. Then, for all1 ≤ i ≤ m,
we havey · i ∈ T ′

r, andr′(y · i) = (x · ci, 〈qi, rank(η(xi), qi)〉).
We claim that〈T ′

r, r
′〉 is an accepting run ofA′ on 〈T, τ ′〉. We first prove that〈T ′

r, r
′〉

is a legal run. Sinceq′in = 〈qin, k〉, the root ofT ′
r is labeled legally. We now consider

the other nodes ofT ′
r. Let{(s1, q1), . . . , (sm, qm)} be the successors of(ε, qin) in Gr,

with si = η(sin, ci). As k is the maximal rank that a vertex can get, each succes-
sor(si, qi) hasrank(si, qi) ≤ k. Thus, ask is even, the set{(c1, 〈q1, rank(x1, q1)〉),
. . ., (cm, 〈qm, rank(xm, qm)〉)} satisfiesδ′(〈qin, k〉, τ(ε)). Hence, the first level of
T ′
r is labeled legally. For the other levels, consider a nodey ∈ T ′

r such thaty 6= ε.
Let r′(y) = (x, 〈q, j〉). By the definition of〈T ′

r, r
′〉, we have that(η(x), q) is a ver-

tex ofGr with rank(η(x), q) = j. Let {(s1, q1), . . . , (sm, qm)} be the successors of
(η(x), q) in Gr with si = η(sin, ci). By Lemma 4.5, for all1 ≤ i ≤ m, we have
rank(si, qi) ≤ j. Also, by the definition of ranks, it cannot be thatq ∈ α andj is odd.
Therefore, the set{(c1, 〈q1, rank(η(x1), q1)〉), . . ., (cm, 〈qm, rank(η(xm), qm)〉)} sat-
isfiesδ′(〈q, j〉, τ(x)). Hence, the tree〈T ′

r, r
′〉 is a legal run ofA′ on 〈T, τ ′〉. Finally,

by Lemma 4.6, each infinite path of〈T ′
r, r

′〉 gets trapped in a set with an odd index,
thus〈T ′

r, r
′〉 is accepting.

4.3 From AWT to NBT

In [MH84], Miyano and Hayashi describe a translation of ABW to NBW. In Theo-
rem 4.8 below (see also [Mos84]), we present (a technical variant of) their translation,
adapted to tree automata,

Theorem 4.8 LetA be an ABT withn states. There is an NBTA′ with 2O(n) states,
such thatL(A′) = L(A).

Proof: The automatonA′ guesses a subset construction applied to a run ofA. At a
given nodex of a run ofA′, it keeps in its memory the set of states in which the various
copies ofA visit nodex in the guessed run. In order to make sure that every infinite path
visits states inα infinitely often,A′ keeps track of states that “owe” a visit toα. Let
A = 〈Σ, D,Q, qin, δ, α〉. ThenA′ = 〈Σ, D, 2Q×2Q, 〈{qin}, ∅〉, δ′, 2Q×{∅}〉, where
δ′ is defined as follows. We first need the following notation. For a setS ⊆ Q and a
letterσ ∈ Σ, let sat(S, σ) be the set of subsets ofD × Q that satisfy

∧

q∈S δ(q, σ).
Also, for two setsO ⊆ S ⊆ Q and a letterσ ∈ Σ, let pair sat(S,O, σ) be such
that 〈S′, O′〉 ∈ pair sat(S,O, σ) iff S′ ∈ sat(S, σ), O′ ⊆ S′, andO′ ∈ sat(O, σ).
Finally, for a directionc ∈ D, we haveS′

c = {s : (c, s) ∈ S′} andOc = {o : (c, o) ∈
O′}.

Now, δ is defined, for all〈S,O〉 ∈ 2Q × 2Q andσ ∈ Σ, as follows.

• If O 6= ∅, then

δ′(〈S,O〉, σ) =
∨

〈S′,O′〉∈

pair sat(S,O,σ)

∧

c∈D

(c, 〈S′
c, O

′
c \ α〉).

15

Thus,A′ sends to directionc the setS′
c of states that are sent to directionc (in

different copies) in the guessed run. Each suchS′
c is paired with a subsetO′

c of
S′
c of the states that still owe a visit toα.

• If O = ∅, then

δ′(〈S,O〉, σ) =
∨

S′∈sat(S,σ)

∧

c∈D

(c, 〈S′
c, S

′
c \ α〉).

Thus, when no state owes a visit toα, the requirement to visitα is reinforced on
all the states inS′

c.

4.4 Complexity

Combining Theorems 4.7 and 4.8, one can reduce the nonemptiness problem for UCT
to the nonemptiness problem for NBT. Consider a UCTA with n states. If we translate
A to an NBT by going through the AWT we have obtained in Theorem 4.7, we end
up with an NBT with22O(n log n)

states, as the AWT has2O(n logn) states. In order to
complete the proof of Theorem 3.3, we now exploit the specialstructure of the AWT
in order to get an NBT with only2O(n2 logn) states.

Theorem 4.9 LetA be a UCT withn states. There is an NBTA′ over the same alpha-
bet such thatL(A′) 6= ∅ iff L(A) 6= ∅, and the number of states inA′ is 2O(n2 logn).

Proof: LetA = 〈Σ, D,Q, qin, δ, α〉 with |Q| = n. Letk = (2n!)n2n+13n(n+1)/n!
Consider a state〈S,O〉 of the NBT constructed fromA as described above. Each of the
setsS andO is a subset ofQ× [k]. We say that a setP ⊆ Q× [k] is consistentiff for
every two states〈q, i〉 and〈q′, i′〉 in P , if q = q′ theni = i′. We claim the following:
(1) Restricting the states of the NBT to pairs〈S,O〉 for whichS is a consistent subset of
Q× [k] is allowable; that is, the resulting NBT is equivalent. (2) There are2O(n2 logn)

consistent subsets ofQ× [k].
In order to prove Claim (1), recall that the AWT visiting a state 〈q, i〉 when reading

a nodex ∈ T corresponds to a guess that the rank of the vertex〈η(x), q〉 of an accepting
run graphGr is i. Since every vertex inGr has a unique rank, the copies of AWT that
are generated in an accepting run that corresponds toGr are consistent, in the sense
that the different copies that read the same nodex agree on the rank that〈η(x), q〉 has
in Gr . When the NBT visits a state〈S,O〉, all the states inS correspond to copies of
the AWT that read the same node. Hence, a state〈S,O〉 for which S is inconsistent
corresponds to a node in the run of the AWT whose copies are inconsistent. Hence, the
NBT can ignore states〈S,O〉 with inconsistentS.

In order to prove Claim (2), observe that we can characterizea consistent set by the
projection of its pairs onQ, augmented by an assignmentf : Q→ [k]. Since there are
2n such projections andkn = 2O(n2 logn) such assignments, we are done.

By the two claims, asO is always a subset ofS, we can restrict the state space of
the NBT to2O(n2 log n) states. The construction that follows is described in the proof
of Theorem 3.3.

16

5 More Applications

In Section 3, we show how UCT can help in solving the emptinessproblem for APT.
One immediate application is the decidability problem forµ-calculus, which is easily
reduced to APT emptiness [EJ91, KVW00]. Another immediate application is the
language-containmentproblem for NPT: given two NPTA1 andA2, we can check
whetherL(A1) is contained inL(A2) by checking the nonemptiness of the intersection
of A1 with the complement ofA2. Since it is easy to complementA2 by dualizing it
[MS87], it is easy to define this intersection as an APT.

In this section we describe more, less immediate, applications of our approach. In
particular, we show that UCT are often useful for tasks traditionally assigned to APT.
Thus, in many cases it is possible to skip the construction ofan APT and go directly
to a UCT. We demonstrate this below with the realizability and synthesis problems for
LTL, and the problem of translating LTL formulas into deterministic parity automata
of a minimal index (in particular, translating LTL formulasinto DBW). We note that
these problems involve both a decision problem (namely, is the formula realizable? can
the formula be translated into a DPW with a given index?) as well as a construction
problem (namely, construct a realizing strategy; construct an equivalent DPW). As
discussed in Section 6.2, while our Safraless approach simplifies the algorithms and
improves the complexity of the decidability problems, the fact it uses a simplified class
of automata (that is, co-Büchi rather than parity) causes the constructions to have more
states than these constructed by the traditional algorithm.

5.1 LTL Realizability and Synthesis

Given an LTL formulaψ over the setsI andO of input and output signals, there-
alizability problemfor ψ is to decide whether there is astrategyf : (2I)∗ → 2O,
generated by a transducer5 such that all the computations of the system generated
by f satisfyψ [PR89]. Formally, a computationρ ∈ (2I∪O)ω is generated byf if
ρ = (i0∪o0), (i1∪o1), (i2∪o2), . . . and for allj ≥ 1, we haveoj = f(i0 · i1 · · · ij−1).

The traditional algorithm for solving the realizability problem translates the LTL
formula into an NBW, applies Safra’s construction in order to get a DPWAψ for it,
expandsAψ to a DPTA∀ψ that accepts all the trees all of whose branches satisfyψ,
and then checks the nonemptiness ofA∀ψ with respect toI-exhaustive2I∪O-labeled
2I-trees, namely2I∪O-labeled2I-trees that contain, for each wordw ∈ (2I)ω, at least
one path whose projection on2I is w [PR89]. Thus, the algorithm applies Safra’s
determinization construction, and has to solve the nonemptiness problem for DPT. For
ψ of lengthn, the DPWAψ has22O(n log n)

states and index2O(n). This is also the size
of the DPTA∀ψ, making the overall complexity doubly-exponential, whichmatches
the lower bound in [Ros92]. We now show how UCW can be used instead of DPW.
Intuitively, universal automata have the desired property, enjoyed also by deterministic
automata but not by nondeterministic automata, of having the ability to run over all
branches of an input tree. In addition, since complementation of LTL is trivial, the

5It is known that if some transducer that generatesf exists, then there is also a finite-state transducer.

17

known translations of LTL into NBW can be used in order to translate LTL into UCW6.
Formally, we have the following.

Theorem 5.1 The realizability problem for an LTL formula can be reduced to the
nonemptiness problem for a UCT with exponentially many states.

Proof: A strategyf : (2I)∗ → 2O can be viewed as a2O-labeled2I -tree. We define
a UCTSψ such thatSψ accepts a2O-labeled2I-tree〈T, τ〉 iff τ is a good strategy for
ψ.

Let A¬ψ = 〈2I∪O, Q, qin, δ, α〉 be an NBW for¬ψ [VW94]. Thus,A¬ψ accepts
exactly all the words in(2I∪O)ω that do not satisfyψ. Then,Sψ = 〈2O, 2I , Q, qin, δ′, α〉,
where for everyq ∈ Q ando ∈ 2O, we haveδ′(q, o) =

∧

i∈2I

∧

q′∈δ(q,i∪o)(i, q
′). Thus,

from stateq, reading the output assignmento ∈ 2O, the automatonSψ branches to each
directioni ∈ 2I , with all the statesq′ to whichδ branches when it readsi ∪ o in state
q. It is not hard to see thatSψ accepts a2O-labeled2I-tree〈T, τ〉 iff for all the paths
{ε, i0, i0 · i1, i0 · i1 · i2, . . .} of T , the infinite word(i0 ∪ τ(ε)), (i1 ∪ τ(i0)), (i2 ∪ τ(i0 ·
i1)), . . . is not accepted byA¬ψ; thus all the computations generated byτ satisfyψ.
Since the size ofA¬ψ is exponential in the length ofψ, so isSψ, and we are done.

For an LTL formula of lengthn, the size of the automatonSψ is 2O(n), making
the overall complexity doubly-exponential, matching the complexity of the traditional
algorithm , as well as the lower bound [Ros92].

Thesynthesis problemfor an LTL formulaψ is to find a a transducer that generates
a strategy realizingψ. Known algorithms for the nonemptiness problem can be easily
extended to return a transducer [Rab70]. The algorithm we present here also enjoys
this property, thus it can be used to solved not only the realizability problem but also
the synthesis problem.

In the supervisory-controlproblem, one has to disable some of the controllable
transitions of a given system in order for it to satisfy a given specification [RW89]. The
problem is similar to the synthesis problem: in both problems the goal is to synthesize
a correct system, where in supervisory control, some information about the system is
already given. Formally, the system, also called aplant, is a nondeterminstic transducer
T = 〈2I , 2O, S, Sin, η, L〉, with Sin ⊆ S andη : S × 2I → 2S . Note thatT may
have several possible computations on a given sequence of inputs. A control strategy
for T is a functionf : (2O)∗ → 2I that maps the sequence of outputs the system has
generated so far to an input enabled by the environment. We say that a computation
over I andO of is consistentwith f andT if the inputs followf and the outputs
follow T . Formally. a computationρ ∈ (2I∪O)ω is consistent withf andT if ρ =
(i0 ∪ o0), (i1 ∪ o1), (i2 ∪ o2), . . . is such that there is a sequences0, s1, s2, . . . of states
of T such thats0 ∈ Sin, i0 = f(ǫ), ando0 = L(s0), and for allj ≥ 1, we have
sj ∈ η(sj−1, ij−1), ij = f(o0 · o1 · · · oj−1), andoj = L(sj).

Our Safraless solution to the synthesis problem, which is described in the proof of
Theorem 5.1, can be adjusted to solve also the supervisory-control problem. Essen-
tially, rather than definingSψ to branch to all the directions in2I and read letters

6For an application of these properties in the area of infinitegames, see [ATM03].

18

in 2O, we define it to run over an unwinding of the system, and has in its alpha-
bet information about whether particular inputs are disabled or enabled. Formally,
Sψ = 〈2I , 2O, S ×Q,Sin × {qin}, δ′, α〉, where for everys ∈ S, q ∈ Q, andi ∈ 2I ,
we have

δ′(〈s, q〉, i) =
∧

o∈2O

∧

s′∈η(s,i):L(s′)=o

∧

q′∈δ(q,i∪L(s))

(o, 〈s′, q′〉).

Thus, from state〈s, q〉, reading the input assignmenti ∈ 2I , the automatonSψ branches
to each directiono ∈ 2O with all the states〈s′, q′〉 such thatT may branch tos′ from
s when it readsi, the output ins′ is o, andδ branches toq′ when it readsi ∪ L(s) in
stateq.

The synthesis problem often arise in a setting in which the system hasincomplete
informationabout the environment. As described in [KV00], the solutionto the synthe-
sis problem with incomplete information for branching temporal logic can be reduced
to the nonemptiness problem of APT, thus our Safraless procedure for the latter is of
use also in this context.

5.2 Translation of LTL formulas to DBW

DBW form a strict subset of NBW [Lan69]. For an LTL formulaψ, we say thatψ
is in DBW if the language of words satisfyingψ can be recognized by a DBW. Not
all LTL formulas are in DBW. For example, while there is no DBWfor the language
of all words over the alphabet{a, b} that contains only finitely manya’s, it is easy
to specify this language with the LTL formulaFG¬a (“eventually always nota”). It
turned out that an LTL formulaψ is in DBW iff ψ has an equivalent alternation-free
µ-calculus formula [KV98a]. Current methods for deciding whether an LTL formula
ψ is in DBW start with a construction of an NBW forψ [VW94], then determinize it to
a DPW using Safra’s determinization construction, and thencheck whether the DPW
has an equivalent DBW [KPB94]. In this section we describe how UCW can be used
instead of DPW.

Theorem 5.2 The problem of deciding whether an LTL formula is in DBW can be
reduced to the nonemptiness problem of a UCT with exponentially many states.

Proof: By [Lan69], anω-regular languageL ⊆ Σω is in DBW iff there is some
regular languageR ⊆ Σ∗ such thatL = limR; i.e.,w ∈ L iff w has infinitely many
prefixes inR. A regular languageR can be represented by a{0, 1}-labeledΣ-tree
〈Σ∗, fR〉 where for allx ∈ Σ∗, we havefR(w) = 1 iff x ∈ R. For an LTL formula
ψ overAP , we say that a{0, 1}-labeled(2AP)-tree〈(2AP)∗, f〉 is aDBW witnessfor
ψ if for all pathsw ⊆ (2AP)ω , we have thatw satisfiesψ iff there are infinitely many
x ∈ w with f(x) = 1. By [Lan69],ψ can be recognized by a DBW iff it has a DBW
witness. We construct a UCT over{0, 1}-labeled(2AP)-trees that accepts exactly all
the DBW witnesses ofψ.

Let A+ = 〈2AP , Q+, q+in, δ
+, α+〉 andA− = 〈2AP , Q−, q−in, δ

−, α−〉 be NBWs

19

for ψ and¬ψ, respectively [VW94]7. Thus,A+ accepts exactly all the words in
(2AP)ω that satisfyψ, andA− complements it. We define an NBWSψ over the alpha-
bet2AP ×{0, 1}. For a wordw ∈ 2AP ×{0, 1}, we usew[1] andw[2] in order to refer
to the projection ofw on 2AP and{0, 1}, respectively. The NBWSψ accepts a word
w if one of the following holds.

• w[1] satisfiesψ andw[2] has only finitely many1’s, or

• w[1] does not satisfyψ andw[2] has infinitely many1’s.

It is easy to defineSψ as a union of two NBWs, the first obtained by intersectingA+

with an NBW for “finitely many1’s”, and the second obtained by intersectingA− with
an NBW for “infinitely many1’s”. By dualizingSψ, we get a UCWS̃ψ that accepts
exactly all the wordsw ∈ 2AP ×{0, 1} for whichw[1] satisfiesψ iff w[2] has infinitely
many1’s. We can runS̃ψ on{0, 1}-labeled2AP -trees so that it accepts exactly all the
DBW witnesses forψ. Formally, if S̃ψ = 〈2AP × {0, 1}, Q, qin, δ, α〉, then the UCT
isWψ = 〈{0, 1}, 2AP , Q, qin, δ, α〉 where for allq ∈ Q andτ ∈ {0, 1}, we have

δ(q, τ) =
∧

σ∈2AP

∧

s∈δ(q,〈σ,τ〉)

(σ, s).

Now, suppose thatψ is in DBW andWψ is not empty. Then, by [Rab70], the
nonemptiness test of its equivalent NBT returns a transducer T with edges labeled by
2AP and states labeled by{0, 1}. Note thatT is deterministic. By defining the states
of T with label 1 to be accepting, we get a DBW equivalent toψ. Thus, when our
test returns a positive answer, it can also translate the LTLformula into an equivalent
DBW.

5.3 Translating LTL formulas to DPW

While DPW are not less expressive than NPW, fixing the index ofa DPW does re-
sult in a strict subset of NPW. In fact, if we denote the set of DPW with indexh by
DPW[h], then DPW[h] form a strict subset of DPW[h + 1] [Kam85]. Since it is pos-
sible to specify the languages described in [Kam85] by LTL formulas, the above strict
hierarchy remains valid when we restrict attention to languages that are generated by
LTL formulas. Recall that the Büchi acceptance condition is a special case of the parity
acceptance condition. Indeed, a Büchi conditionα is equivalent to a parity condition
{∅, α,Q} of index 3. In this section we extend the reasoning describedin Section 5.2
to parity automata with a fixed index. For an LTL formulaψ and an integerh ≥ 2, we
say thatψ is of indexh if the language of words satisfyingψ can be recognized by a
DPW[h]. Current methods for deciding whether an LTL formulaψ is of indexh start
with a construction of an NBW forψ [VW94], then determinize it to a DPW using

7Using the construction in [VW94], the NBWsA+ andA− differ only in their sets of initial states. Our
construction, however, does not make a use of this fact, thusA+ andA− can be optimized, and we assume,
for simplicity, that each of them has a single initial state.

20

Safra’s determinization construction, and then check whether the DPW has an equiv-
alent DPW[h] [KPB95, KPBV95]. In this section we describe how UCW can be used
instead of DPW. In case the LTL formula has an equivalent DPW[h], our procedure
returns it without first constructing a DPW of a larger index.

Theorem 5.3 The problem of deciding the minimal index of an LTL formula can be
reduced to the nonemptiness problem of a UCT with exponentially many states.

Proof: For an LTL formulaψ overAP , we say that a regular{1, 2, . . . , h}-labeled
(2AP)-tree〈(2AP)∗, f〉 is aDPW[h] witnessforψ if for all pathsw ⊆ (2AP)ω, we have
thatw satisfiesψ iff the minimal letterc such that infinitely manyx ∈ w havef(x) = c
is even. It is easy to see that a DPW[h] for ψ induces a DPW[h] witness. Indeed, ifA
is a DPW[h] with α = {F1, F2, . . . , Fh} for ψ and the single run ofA on a wordw ∈
(2AP)∗ leads to a state inFi, we definef(w) to bei. Also, since we restrict attention
to regular trees, a DPW[h] witness induces a DPW[h] for ψ. We construct a UCT over
{1, . . . , h}-labeled(2AP)-trees that accepts exactly all the DPW[h] witnesses ofψ.

Let A+ = 〈2AP , Q+, q+in, δ
+, α+〉 andA− = 〈2AP , Q−, q−in, δ

−, α−〉 be NBWs
for ψ and¬ψ, respectively [VW94]. Thus,A+ accepts exactly all the words in(2AP)ω

that satisfyψ, andA− complements it. We define an NBWSψ over the alphabet
2AP ×{1, . . . , h}. For a wordw ∈ 2AP ×{1, . . . , h}, we usew[1] andw[2] in order to
refer to the projection ofw on2AP and{1, . . . , h}, respectively. The NBWSψ accepts
a wordw if one of the following holds.

• w[1] satisfiesψ and the minimum letter that appears infinitely often inw[2] is
odd, or

• w[1] does not satisfyψ and the minimum letter that appears infinitely often in
w[2] is even.

It is easy to defineSψ as a union of two NBWs, the first obtained by intersecting
A+ with an NBW for “the minimum letter that appears infinitely often is odd”, and
the second obtained by intersectingA− with an NBW for “the minimum letter that
appears infinitely often is even”. By dualizingSψ , we get a UCWS̃ψ that accepts
exactly all the wordsw ∈ 2AP ×{1, . . . , h} for whichw[1] satisfiesψ iff the minimum
letter that appears infinitely often inw[2] is even. We can ruñSψ on{1, . . . , h}-labeled
2AP -trees so that it accepts exactly all the DPW[h] witnesses forψ. Formally, if S̃ψ =
〈2AP×{1, . . . , h}, Q, qin, δ, α〉, then the UCT isWψ = 〈{1, . . . , h}, 2AP , Q, qin, δ, α〉
where for allq ∈ Q andτ ∈ {0, 1}, we have

δ(q, τ) =
∧

σ∈2AP

∧

s∈δ(q,〈σ,τ〉)

(σ, s).

As in the case of DBW, when the NBT equivalent toSψ is not empty, its empti-
ness test returns a regular transducer with edges labeled(2AP) and states labeled
{1, 2, . . . , h}, and hence a DPW[h] for ψ. For ψ of lengthn, Safra’s determiniza-
tion construction results in a DPWAψ of index 2O(n). Thus, all LTL formulas can

21

be translated to a DPW with an exponential index. This suggests a Safraless deter-
minization construction for LTL formulas. Moreover, it suggests a Safraless optimized
determinization construction, where one starts with a small guess for the index ofψ
and increase the guess when necessary.

We note that in all the three applications described in this section, we used the fact
that we are able, given a specificationψ, to construct an NBW for¬ψ of size expo-
nential in|ψ|. Whenψ is given in terms of an LTL formula, this exponential blow-up
is similar to the exponential blow-up in the translation ofψ to an NBW, making our
bounds similar, and even better, than known bounds to the problems. While it is possi-
ble to apply our constructions to a specificationψ that is given in terms of an NBW, the
exponential blow-up in that case is not acceptable. Indeed,since going from an LTL
formula to a DPW involves a doubly-exponential blow-up whereas going from NBW
to DPW involves only an exponential blow-up, the traditional solutions that use Safra’s
determinization construction perform exponentially better forψ that is given in terms
of an NBW. It is an open problem whether a Safraless solution for the applications
described in this section exists also for specifications that are given in terms of NBW.
A positive answer applies to the realizability problem. Indeed, given an NBWA, the
system has a strategyf : (2I)∗ → 2O that realizesA iff the environment does not have
a strategyg : (2O)∗ → 2I that realizes the complement ofA. Now, the complement of
A is a UCW, for which the construction we describe does apply. Thus, realizability of
NBW specifications can be reduced to realizabilty of UCW specifications.

Another point that is joint to the three applications has to do with the size of the
generated transducer, in case the decision procedure returns a positive answer. We will
get back to this point in Section 6.

6 In Practice

As discussed in Section 1, the intricacy of current constructions, which use Safra’s de-
terminization, is reflected in the fact there is no implementation for them. The lack
of a simple implementation is not due to a lack of need: implementations of realiz-
ability algorithms exist, but they have to either restrict the specification to one that
generates “easy to determinize” automata [ST03, WMBSV05] or give up complete-
ness [HRS05]. As we argue in this section, the simplicity of our construction not only
makes it amenable to implementation, but also enables important practical advantages
over the existing algorithms.

6.1 A symbolic implementation

Safra’s determinization construction involves complicated data structures: each state
in the deterministic automaton is associated with a labeledordered tree. Consequently,
even though recent work describes a symbolic algorithm for the nonemptiness problem
for NPT [BKV04], there is no symbolic implementation of decision procedures that are
based on Safra’s determinization and NPT. Our construction, on the other hand, can be
implemented symbolically. Indeed, the state space of the NBT constructed in Theo-
rem 3.3 consists of sets of states and a ranking function, it can be encoded by Boolean

22

variables, and the NBT’s transitions can be encoded by relations on these variables
and a primed version of them. The fixpoint solution for the nonemptiness problem of
NBT (c.f., [VW86]) then yields a symbolic solution to the original UCT nonemptiness
problem. Moreover, when applied for the solution of the realizability problem, the
BDDs that are generated by the symbolic decision procedure can be used to generate a
symbolic witness strategy. The Boolean nature of BDDs then makes it very easy to go
from this BDD to a sequential circuit for the strategy. It is known that a BDD can be
viewed as an expression (in DAG form) that uses the “if then else” as a single ternary
operator. Thus, a BDD can be viewed as a circuit built from if-then-else gates. More
advantages of the symbolic approach are described in [HRS05]. As mentioned above,
[HRS05] also suggests a symbolic solution for the LTL synthesis problem. However,
the need to circumvent Safra’s determinization causes the algorithm in [HRS05] to be
complete only for a subset of LTL. Our approach circumvents Safra’s determinization
without giving up completeness.

6.2 An incremental approach

Recall that our construction is based on the fact we can boundthe maximal rank that
a vertex ofGr can get byk – the bound on the size of the run graphs ofA we con-
sider. Often, the sequenceG0, G1, G2, . . . of graphs converges to the empty graph very
quickly, making the bound on the maximal rank much smaller (see [GKSV03] for an
analysis and experimental results for the case of UCW). Accordingly, we suggest to
regardk as a parameter in the construction, start with a small parameter, and increase
it if necessary. Let us describe the incremental algorithm that follows in more detail.

Consider the combined construction described in Theorem 3.3. Starting with a
UCTA with state spaceQ, we constructed an NBTA′ with state space2Q × 2Q ×R,
whereR is the set of functionsf : Q → [k] in which f(q) is even for allq ∈ α. For
l ≤ k, let R[l] be the restriction ofR to functions with range[l], and letA′[l] be the
NBT A′ with k being replaced byl. Recall that the NBTA′[l] is empty iff all the run
graphs ofA of size at mostl are not accepting. Thus, coming to check the emptiness
of A, a possible heuristic would be to proceed as follows: start with a small l and
check the nonemptiness ofA′[l]. If A′[l] is not empty, thenA is not empty, and we can
terminate with a “nonempty” output. Otherwise, increasel, and repeat the procedure.
Whenl = k andA′[l] is still empty, we can terminate with an “empty” output.

It is important to note that it is possible to take advantage of the work done during
the emptiness test ofA′[l1], when testing emptiness ofA′[l2], for l2 > l1. To see this,
note that the state space ofA′[l2] consists of the union of2Q × 2Q × R[l1] (the state
space ofA′[l1]) with 2Q × 2Q × (R[l2] \ R[l1]) (states whosef ∈ R[l2] has a state
that is mapped to a rank greater thanl1). Also, since ranks can only decrease, once
the NBTA′[l2] reaches a state ofA′[l1], it stays in such states forever. So, if we have
already checked the nonemptiness ofA′[l1] and have recorded the classification of its
states to empty and nonempty, the additional work needed in the nonemptiness test of
A′[l2] concerns only states in2Q × 2Q × (R[l2] \ R[l1]).

The incremental approach circumvents the fact that thek-fold blow-up that is intro-
duced in the translation of a UCT to an AWT occurs for all UCT. With the incremental
algorithm, thek-fold blow occurs only in the worst case. As shown in [GKSV03],

23

experimental results show that in the case of word automata the construction ends up
with a smallk. A point in favor of the Safrafull approach has to do with the bound
on the size of a “nonemptiness witness” in case the APT (or theUCT) is not empty.
Known algorithms for the nonemptiness problem of nondeterministic tree automata can
be easily extended to return a witness to the automaton’s nonemptiness. Such a witness
is a transducer that generates a tree accepted by the automaton whose nonemptiness is
checked (in the case of realizability, the witness is a synthesized strategy; in the case of
LTL determinization, the witness is a DBW or a DPW equivalentto the LTL formula).
The size of the witness is linear in the state space of the automaton. Both the Safrafull
and the Safraless approaches reduce the original problem tothe nonemptiness problem
of a nondeterministic automaton. The Safraless approach avoids the parity condition
and uses instead the Büchi condition. This makes the nonemptiness test easier. Indeed,
the nonemptiness algorithm for NPT is exponential in the index of the NPT, while the
nonemptiness algorithm for NBT is quadratic. On the other hand, if we restrict atten-
tion to the bound on the size of the state space of the automaton (and thus, the size of a
witness), then the parity condition has an advantage: the Safraless approach translates
a UCT withn states to an NBT with2O(n2 log n) states, whereas the Safrafull approach
results in an NPT with2O(n logn) states. Such a Safraless bound on the size of a small
witness is still an open problem. With the incremental algorithm, however, we expect
the NBT whose emptiness we check to be much smaller than an NPTconstructed with
no optimizations.

7 Discussion

In [KV01], we used alternating co-Büchi word automata in order to avoid Safra’s
construction in complementation of Büchi word automata. As here, the approach in
[KV01] involves an analysis of ranks. Alternating word automata are closely related
to nondeterministic tree automata and the analysis in [KV01] have proven to be use-
ful also for solving the nonemptiness problem for nondeterministic parity tree automata
[KV98b]. By now, the simple construction in [KV01] has become the standard comple-
mentation construction [Tho98], has been implemented [GKSV03, Mer00], has led to
tighter and new Safraless complementation constructions for richer types of automata
on infinite words [FKV04, KV04], and has led to further implementations of alternat-
ing automata [Fin01].

Since the bounded-width property trivially holds for runs of word automata, the
analysis in [KV98b, KV01] is much simpler than the one required for alternating tree
automata, and indeed the problem of a Safraless decision procedure for them was left
open. In this work we solved this problem and showed how universal co-Büchi au-
tomata can be used in order to circumvent Safra’s determinization and the parity ac-
ceptance condition. Below we discuss a related theoreticalpoint that is still open.

Our construction avoids the complicated determinization construction of Safra,
but its correctness proof makes use of the bounded-size run graph property, which
in turn makes use of Safra’s determinization. It is an open problem whether we can
have a Safraless proof, and whether such a proof can improve the construction fur-
ther. Consider an infinite run tree〈Tr, r〉 of a UCT. We say that two nodesy1 and

24

y2 of Tr are similar if r(y1) = r(y2). Thus, similar nodes correspond to differ-
ent copies of the UCT, possibly with a different past, but with the same present: if
r(y1) = r(y2) = 〈x, q〉, then both copies have to accept the subtree with rootx from
the stateq. Runs of UCT are memoryless in the sense that two copies of theUCT that
read similar nodes have the same future. Thus, by merging similar nodes on the run
tree, one gets a runDAG Gr of the UCT, which is accepting iff〈Tr, r〉 is accepting.
Recall that the bounded-size run graph property enables us to bound the maximal rank
that a vertex can get. The runDAG Gr is infinite, but we can also show (see [KV01]
for the case of words) that bounding its width (the number of different vertices in each
level) by an integerk leads to a ranking function in which the maximal rank is2k. In
order to get a bounded-widthDAG property, we need not bound the width of all run
DAGs—we only need to show that if the UCT is not empty then it has a accepting run
DAG of width at mostk. We conjecture that a UCT is not empty iff it accepts a tree in
which nodes that are visited by the same set of states (recallthat each node of the input
tree may be visited by several copies of the UCT) are roots of identical subtrees. Our
conjecture leads to ann2n bound on the width, for a UCT withn states. Proving the
conjuncture will not only make the proof Safraless, but willalso reduce the maximal
rank that a vertex can get, and thus improves the construction further.

AcknowledgementWe thank Nir Piterman for helpful discussions and comments on
an early draft of this paper.

References
[ATM03] R. Alur, S. La Torre, and P. Madhusudan. Modular strategies for infinite games on

recursive game graphs. InComputer-Aided Verification, Proc. 15th International
Conference, Lecture Notes in Computer Science. Springer-Verlag, Berlin, 2003.

[ATW05] C. Schulte Althoff, W. Thomas, and N. Wallmeier. Observations on determiniza-
tion of Büchi automata. InProc. 10th International Conference on the Implemen-
tation and Application of Automata, 2005.

[BKV04] D. Bustan, O. Kupferman, and M.Y. Vardi. A measured collapse of the modal
µ-calculus alternation hierarchy. InProc. 21st Symp. on Theoretical Aspects of
Computer Science, volume 2996 ofLecture Notes in Computer Science, pages
522–533. Springer-Verlag, 2004.

[Büc60] J.R. Büchi. Weak second-order arithmetic and finite automata.Zeit. Math. Logik
und Grundl. Math., 6:66–92, 1960.

[Büc62] J.R. Büchi. On a decision method in restricted second order arithmetic. In
Proc. International Congress on Logic, Method, and Philosophy of Science. 1960,
pages 1–12, Stanford, 1962. Stanford University Press.

[Cho74] Y. Choueka. Theories of automata onω-tapes: A simplified approach.Journal of
Computer and System Sciences, 8:117–141, 1974.

[EJ88] E.A. Emerson and C. Jutla. The complexity of tree automata and logics of pro-
grams. InProc. 29th IEEE Symp. on Foundations of Computer Science, pages
328–337, White Plains, October 1988.

25

[EJ91] E.A. Emerson and C. Jutla. Tree automata,µ-calculus and determinacy. In
Proc. 32nd IEEE Symp. on Foundations of Computer Science, pages 368–377,
San Juan, October 1991.

[EKM98] J. Elgaard, N. Klarlund, and A. Möller. Mona 1.x: new techniques for WS1S and
WS2S. InComputer Aided Verification, Proc. 10th International Conference,
volume 1427 ofLecture Notes in Computer Science, pages 516–520. Springer-
Verlag, Berlin, 1998.

[Elg61] C. Elgot. Decision problems of finite-automata design and related arithmetics.
Trans. Amer. Math. Soc., 98:21–51, 1961.

[Eme85] E.A. Emerson. Automata, tableaux, and temporal logics. In Proc. Workshop on
Logic of Programs, volume 193 ofLecture Notes in Computer Science, pages
79–87. Springer-Verlag, 1985.

[Fin01] B. Finkbeiner. Symbolic refinement checking with nondeterministic BDDs. In
Tools and algorithms for the construction and analysis of systems, Lecture Notes
in Computer Science. Springer-Verlag, 2001.

[FKV04] E. Friedgut, O. Kupferman, and M.Y. Vardi. Büchi complementation made
tighter. In 2nd International Symposium on Automated Technology for Verifi-
cation and Analysis, volume 3299 ofLecture Notes in Computer Science, pages
64–78. Springer-Verlag, 2004.

[Fri03] C. Fritz. Constructing Büchi automata from lineartemporal logic using simu-
lation relations for alternating bchi automata. InProc. 8th Intl. Conference on
Implementation and Application of Automata, number 2759 in Lecture Notes in
Computer Science, pages 35–48. Springer-Verlag, 2003.

[FW02] C. Fritz and T. Wilke. State space reductions for alternating Büchi automata:
Quotienting by simulation equivalences. InProc. 22th Conference on the Foun-
dations of Software Technology and Theoretical Computer Science, volume 2556
of Lecture Notes in Computer Science, pages 157–169, December 2002.

[Gab72] D.M. Gabbay. Applications of trees to intermediatelogics i. J. Symbolic Logic,
37:135–138, 1972.

[GKSV03] S. Gurumurthy, O. Kupferman, F. Somenzi, and M.Y. Vardi. On complementing
nondeterministic Büchi automata. In12th Advanced Research Working Confer-
ence on Correct Hardware Design and Verification Methods, volume 2860 of
Lecture Notes in Computer Science, pages 96–110. Springer-Verlag, 2003.

[GL94] G. De Giacomo and M. Lenzerini. Concept languages with number restrictions
and fixpoints, and its relationship withµ-calculus. InProc. 11th European Con-
ference on Artificial Intelligence (ECAI-94), pages 411–415. John Wiley and
Sons, 1994.

[HRS05] A. Harding, M. Ryan, and P. Schobbens. A new algorithm for strategy synthesis
in ltl games. In11th International Conference on Tools and algorithms for the
construction and analysis of systems, volume 3440 ofLecture Notes in Computer
Science, pages 477–492. Springer-Verlag, 2005.

[Jur00] M. Jurdzinski. Small progress measures for solvingparity games. In17th Annual
Symposium on Theoretical Aspects of Computer Science, volume 1770 ofLecture
Notes in Computer Science, pages 290–301. Springer-Verlag, 2000.

[Kam85] M. Kaminski. A classification ofω-regular languages.Theoretical Computer
Science, 36:217–229, 1985.

26

[Koz83] D. Kozen. Results on the propositionalµ-calculus. Theoretical Computer Sci-
ence, 27:333–354, 1983.

[KP84] D. Kozen and R. Parikh. A decision procedure for the propositionalµ-calculus.
In Logics of Programs, volume 164 ofLecture Notes in Computer Science, pages
313–325. Springer-Verlag, 1984.

[KPB94] S.C. Krishnan, A. Puri, and R.K. Brayton. Deterministic ω-automata vis-a-vis
deterministic Büchi automata. InAlgorithms and Computations, volume 834 of
Lecture Notes in Computer Science, pages 378–386. Springer-Verlag, 1994.

[KPB95] S.C. Krishnan, A. Puri, and R.K. Brayton. Structural complexity ofω-automata.
In Symposium on Theoretical Aspects of Computer Science, volume 900 ofLec-
ture Notes in Computer Science. Springer-Verlag, 1995.

[KPBV95] S.C. Krishnan, A. Puri, R.K. Brayton, and P.P. Varaiya. The Rabin index and chain
automata, with applications to automata and games. InComputer Aided Verifica-
tion, Proc. 7th International Conference, pages 253–266, Liege, July 1995.

[KV98a] O. Kupferman and M.Y. Vardi. Freedom, weakness, anddeterminism: from
linear-time to branching-time. InProc. 13th IEEE Symp. on Logic in Computer
Science, pages 81–92, June 1998.

[KV98b] O. Kupferman and M.Y. Vardi. Weak alternating automata and tree automata
emptiness. InProc. 30th ACM Symp. on Theory of Computing, pages 224–233,
Dallas, 1998.

[KV00] O. Kupferman and M.Y. Vardi. Synthesis with incomplete information. InAd-
vances in Temporal Logic, pages 109–127. Kluwer Academic Publishers, January
2000.

[KV01] O. Kupferman and M.Y. Vardi. Weak alternating automata are not that weak.
ACM Trans. on Computational Logic, 2(2):408–429, July 2001.

[KV04] O. Kupferman and M.Y. Vardi. Complementation constructions for nondetermin-
istic automata on infinite words. In11th International Conference on Tools and
algorithms for the construction and analysis of systems, volume 3440 ofLecture
Notes in Computer Science, pages 206–221. Springer-Verlag, 2004.

[KVW00] O. Kupferman, M.Y. Vardi, and P. Wolper. An automata-theoretic approach to
branching-time model checking.Journal of the ACM, 47(2):312–360, March
2000.

[Lan69] L.H. Landweber. Decision problems forω–automata. Mathematical Systems
Theory, 3:376–384, 1969.

[Mer00] S. Merz. Weak alternating automata in Isabelle/HOL. In J. Harrison and M. Aa-
gaard, editors,Theorem Proving in Higher Order Logics: 13th InternationalCon-
ference, volume 1869 ofLecture Notes in Computer Science, pages 423–440.
Springer-Verlag, 2000.

[Mey75] A. R. Meyer. Weak monadic second order theory of successor is not elementary
recursive. InProc. Logic Colloquium, volume 453 ofLecture Notes in Mathe-
matics, pages 132–154. Springer-Verlag, 1975.

[MH84] S. Miyano and T. Hayashi. Alternating finite automataon ω-words. Theoretical
Computer Science, 32:321–330, 1984.

[Mos84] A.W. Mostowski. Regular expressions for infinite trees and a standard form of
automata. InComputation Theory, volume 208 ofLecture Notes in Computer
Science, pages 157–168. Springer-Verlag, 1984.

27

[MS85] D.E. Muller and P.E. Schupp. Alternating automata oninfinite trees. InAutomata
on Infinite Words, volume 192, pages 100–107. Lecture Notes in Computer Sci-
ence, Springer-Verlag, 1985.

[MS87] D.E. Muller and P.E. Schupp. Alternating automata oninfinite trees.Theoretical
Computer Science, 54:267–276, 1987.

[MS95] D.E. Muller and P.E. Schupp. Simulating alternatingtree automata by nonde-
terministic automata: New results and new proofs of theorems of Rabin, Mc-
Naughton and Safra.Theoretical Computer Science, 141:69–107, 1995.

[MSS86] D.E. Muller, A. Saoudi, and P.E. Schupp. Alternating automata, the weak
monadic theory of the tree and its complexity. InProc. 13th International Collo-
quium on Automata, Languages and Programming, volume 226 ofLecture Notes
in Computer Science. Springer-Verlag, 1986.

[MSS88] D.E. Muller, A. Saoudi, and P. E. Schupp. Weak alternating automata give a
simple explanation of why most temporal and dynamic logics are decidable in
exponential time. InProceedings 3rd IEEE Symp. on Logic in Computer Science,
pages 422–427, Edinburgh, July 1988.

[PR89] A. Pnueli and R. Rosner. On the synthesis of a reactivemodule. InProc. 16th
ACM Symp. on Principles of Programming Languages, pages 179–190, Austin,
January 1989.

[Rab69] M.O. Rabin. Decidability of second order theories and automata on infinite trees.
Transaction of the AMS, 141:1–35, 1969.

[Rab70] M.O. Rabin. Weakly definable relations and special automata. InProc. Symp.
Math. Logic and Foundations of Set Theory, pages 1–23. North Holland, 1970.

[Ros92] R. Rosner.Modular Synthesis of Reactive Systems. PhD thesis, Weizmann Insti-
tute of Science, Rehovot, Israel, 1992.

[RW89] P.J.G. Ramadge and W.M. Wonham. The control of discrete event systems.IEEE
Transactions on Control Theory, 77:81–98, 1989.

[Saf88] S. Safra. On the complexity ofω-automata. InProc. 29th IEEE Symp. on Foun-
dations of Computer Science, pages 319–327, White Plains, October 1988.

[Saf89] S. Safra. Complexity of automata on infinite objects. PhD thesis, Weizmann
Institute of Science, Rehovot, Israel, 1989.

[SE84] R.S. Street and E.A. Emerson. An elementary decisionprocedure for theµ-
calculus. InProc. 11th International Colloquium on Automata, Languages and
Programming, volume 172, pages 465–472. Lecture Notes in Computer Science,
Springer-Verlag, July 1984.

[ST03] R. Sebastiani and S. Tonetta. “more deterministic” vs. “smaller” büchi automata
for efficient ltl model checking. In12th Advanced Research Working Conference
on Correct Hardware Design and Verification Methods, volume 2860 ofLecture
Notes in Computer Science, pages 126–140. Springer-Verlag, 2003.

[Str82] R.S. Streett. Propositional dynamic logic of looping and converse.Information
and Control, 54:121–141, 1982.

[THB95] S. Tasiran, R. Hojati, and R.K. Brayton. Language containment using non-
deterministic omega-automata. InProc. of 8th CHARME: Advanced Research
Working Conference on Correct Hardware Design and Verification Methods, vol-
ume 987 ofLecture Notes in Computer Science, pages 261–277, Frankfurt, Octo-
ber 1995. Springer-Verlag.

28

[Tho98] W. Thomas. Complementation of Büchi automata revisited. Jewels are Forever,
Contributions on Theoretical Computer Science in Honor of Arto Salomaa, pages
109–122, 1998.

[Tra62] B.A. Trakhtenbrot. Finite automata and monadic second order logic. Siberian
Math. J, 3:101–131, 1962. Russian; English translation in: AMS Transl. 59
(1966), 23-55.

[TW68] J.W. Thatcher and J.B. Wright. Generalized finite automata theory with an appli-
cation to a decision problem of second-order logic.Mathematical System Theory,
2:57–81, 1968.

[Var97] M.Y. Vardi. What makes modal logic so robustly decidable? In N. Immerman and
Ph.G. Kolaitis, editors,Descriptive Complexity and Finite Models, pages 149–
183. American Mathematical Society, 1997.

[Var98] M.Y. Vardi. Reasoning about the past with two-way automata. InProc. 25th
International Coll. on Automata, Languages, and Programming, volume 1443 of
Lecture Notes in Computer Science, pages 628–641. Springer-Verlag, Berlin, July
1998.

[VW86] M.Y. Vardi and P. Wolper. Automata-theoretic techniques for modal logics of
programs.Journal of Computer and System Science, 32(2):182–221, April 1986.

[VW94] M.Y. Vardi and P. Wolper. Reasoning about infinite computations. Information
and Computation, 115(1):1–37, November 1994.

[WMBSV05] G. Wang, A. Mishchenko, R. Brayton, and A. Sangiovanni-Vincentelli. Synthe-
sizing FSMs according to co-Büchi properties. Technical report, UC Berkeley,
2005.

29

