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Abstract Linear temporal logic (LTL) synthesis is a formal method for automatically com-
posing a reactive system that realizes a given behavioral specification described in LTL if
the specification is realizable. Even if the whole specification is unrealizable, it is prefer-
able to synthesize a best-effort reactive system. That is, a system that maximally realizes
its partial specifications. Therefore, we categorized specifications into must specifications
(which should never be violated) and desirable specifications (the violation of which may
be unavoidable). In this paper, we propose a method for synthesizing a reactive system that
realizes all must specifications and strongly endeavors to satisfy each desirable specification.
The general form of the desirable specifications without assumptions isGϕ, which means “ϕ
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always holds”. In our approach, the best effort to satisfy Gϕ is to maximize the number of
steps satisfying ϕ in the interaction. To quantitatively evaluate the number of steps, we used a
mean-payoff objective based on LTL formulae. Our method applies the Safraless approach to
construct safety games from given must and desirable specifications, where the must specifi-
cation can be written in full LTL and may include assumptions. It then transforms the safety
games constructed from the desirable specifications into mean-payoff games and finally
composes a reactive system as an optimal strategy on a synchronized product of the games.

1 Introduction

1.1 Background

Open systems interact continuously with the external environment. When applied to real
problems, they must often be highly reliable. These systems are modeled as reactive systems.
Linear Temporal Logic (LTL) synthesis is a formal method for checking the realizability
[1,34,35] of a behavioral specification described inLTL [33] and for automatically composing
a reactive system realizing the specification if it is realizable. This method can effectively
obtain a reliable system because it does not have a phase that introduces bugs.

In traditional LTL synthesis, if a given LTL specification is unrealizable, we must refine it
in LTL. One approach for refining an unrealizable LTL specification ϕ is to add or strengthen
the assumptions ψ regarding the environment, such that a refined specification ψ → ϕ

is realizable. In [14], Chatterjee et al. proposed a method for computing some of these
assumptions. However, the computed assumptions are not logical formulae in their naive
method and may be difficult to understand intuitively. Additionally, it may be unallowable
in a practical sense. Hagihara et al. [25] introduced a method for efficiently extracting an
assumption to make a given specification strong satisfiable, where strong satisfiability [31] is
a necessary condition of realizability. The extracted assumption is theweakest LTL formula in
a certain class and easy to understand. Li et al. [30] provided amethod for finding an allowable
assumption to make a given specification realizable, where the assumption is mined from
given LTL templates. Even if we obtainψ , we must consider many things when synthesizing
a reactive system fromψ → ϕ. A system synthesized fromψ → ϕ may stop trying to satisfy
ϕ after an unexpected input that violates ψ , i.e., it may be intolerant [26]. Moreover, such a
system may violate ψ against the wishes of its environment. In [7], Bloem et al. discussed
how to deal with environmental assumptions and surveyed existing approaches.

One approach is to weaken some of the partial specifications that cause the unrealizability
of the whole specification, ϕ = ∧

ϕi∈Φ ϕi . In this approach, we first find a subset of these
partial specifications, i.e., Φ ′ ⊆ Φ such that

∧
ϕi∈Φ ′ ϕi is unrealizable. In [24], Hagihara

et al. proposed a method for finding minimal strongly unsatisfiable subsets of specifications.
Even if we find these partial specifications, it is difficult (but preferable) to obtain a refined
specification that is realizable and close to the original. The intention of an original partial
specificationmight not be preserved in the refined specification.Hence, handling specification
re-refinements associated with changes to the original specifications is difficult.

If the whole specification is unrealizable, it is still preferable to synthesize a best-effort
reactive system, i.e., a system that maximally realizes its partial specifications.

1.2 Our goal and approach

A whole reactive system specification usually consists of some sub-specifications. If the
whole specification is unrealizable, we first try to refine some of the sub-specifications
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Safraless LTL synthesis considering maximal realizability 657

before we drastically reconsider the whole specification. We can divide the specifications
into: must specifications, which should never be violated, and desirable specifications, the
violation of which may be unavoidable. More precisely, the sub-specifications have a priority
order, and each sub-specification may be violated if it competes with other higher-priority
sub-specifications. Must specifications have the highest priority, and hence they should never
be violated.

In this paper, we propose a method for synthesizing a reactive system that realizes all
given must specifications and endeavors to satisfy the given desirable specifications as much
as possible considering their priorities.

In the endeavor, we consider it is reasonable that a desirable specification has no assump-
tion. This is because the system is attempting as best as possible, regardless of whether an
assumption holds, even though the best effort will depend on the assumption. The general
form of the specifications without assumptions is a G-formula Gϕ which means “ϕ always
holds”, i.e., “ϕ holds at every step during an infinite-step interaction with the environment”.
In our approach, the best effort at satisfyingGϕ maximizes the number of steps that satisfy ϕ.

Therefore, we use amean-payoff objective based on LTL formulae to quantitatively evalu-
ate the number of steps. For each desirable specificationGϕi , we basically consider a positive
payoff for each occurrence of a step that satisfies ϕi during an interaction. However, it is often
difficult to strictly impose this payoff, because whether ϕ holds at a step generally depends
on the entire subsequent behavior.Gϕi can be under-approximated into a safety property by
assigning a bound k to a universal co-Büchi word automaton (UCWA), which accepts words
satisfying Gϕi . We then consider a negative payoff for occurrences of minimal bad prefixes
of a safety property represented by a k-bounded UCWA [22] (k-UCWA) that rejects some
of the words accepted by the unbounded UCWA. This approximation was inspired by the
Safraless approach [8,18,22,27,28]. Our mean-payoff objective MP(

∑
1≤i≤n ci · ti ) is the

limit inferior of averages for a sequence of weighted sums
∑

1≤i≤n ci · ti of payoffs ti for
desirable specifications Gϕi , considering weights ci according to their priorities.

In our method, we first apply a UCWA-based Safraless method [8,18,22] to construct
an under-approximated safety game from a must LTL specification ϕ. We obtain a winning
region W on the game as a set of reactive systems realizing an under-approximation of
ϕ. Second, we construct mean-payoff games Mti from atomic terms ti in the mean-payoff
objective MP(

∑
1≤i≤n ci · ti ), reusing the procedures in the Safraless method. Finally, we

compose a reactive system as an optimal strategy on a weighted synchronized product of the
regionW and the mean-payoff gamesMt1 , . . . ,Mtn . An outline of our approach is depicted
in Fig. 1.

Ourmethod does not require any restriction for amust specification and hence can also deal
with an assumption-guarantee type formula ψ → ϕ as the must specification. In this case,
our method produces a reactive system that realizes ψ → ϕ and locally maximizes a given
mean-payoff objective regardless of whether the environment follows the assumption ψ .

1.3 Plan of the paper

In Sect. 2, we introduce some definitions and concepts concerning reactive systems, LTL,
games, and Safraless synthesis. We define our mean-payoff objectives and show how to
interpret desirable LTL specification in the mean-payoff objectives in Sect. 3. In Sect. 4,
we describe our method for synthesizing a reactive system from a must LTL specification
and a mean-payoff objective. We demonstrate the effectiveness of our method using some
experiments in Sect. 5. Section 6 contains some information on related works, and Sect. 7
concludes the paper.
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Unrealizable specification

Prioritize

Must specification ϕ
(realizable LTL formula)

Translate

UCWA
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k-UCWA

Transform
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Compose

Reactive system
(as a winning strategy)

Algorithm 1
(Safraless LTL synthesis)

Desirable specification
(G-formulae with priority weights)

Interpret

Mean-payoff objective MP( 1≤i≤n ci · ti)

Construct

Mean-payoff games
(for MP(t1), · · · ,MP(tn))

⊗
Weighted syncronized product

Synchronized-product mean-payoff game

Compose

Reactive system
(as a optimal strategy)

Algorithm 2

Fig. 1 Outline of our approach

2 Preliminaries

In this section, we first introduce some definitions and concepts regarding reactive systems
that interact with the external environment. Second, we briefly introduce LTL [33], which
is commonly used to describe formal behavioral specifications of systems. Third, we give
some definitions and concepts regarding games, which model sets of interactions between
systems and environment, and related decision making processes. Finally, we briefly outline
Safraless synthesis [8,18,22,27,28].

2.1 Reactive systems

A reactive system models an open system that interacts continuously with an external envi-
ronment. It cannot control a sequence of inputs from the environment and hence must choose
an output at each step based on the history of the interaction thus far.

In this paper, we assume that an interaction starts with an output of the system.1 Let OAP
and IAP be disjoint sets of atomic propositions (or signals) for outputs and inputs controlled
by the system and environment, respectively. The set of all atomic propositions, i.e., the union
IAP ∪ OAP, is denoted by AP.

– An interaction between a reactive system and the environment is represented as an infinite
word on alphabet 2AP, i.e., an infinite sequence s = (αO

0 ∪ α I
0 )(α

O
1 ∪ α I

1 ) · · · ∈ (2AP)ω.
– A reactive system is a function R : (2IAP)∗ → 2OAP that decides an output αO

n ∈ 2OAP

at the current step, based on a sequence h ∈ (2IAP)∗ of inputs thus far.1

The interaction produced by R for a sequence s = α I
0α

I
1 . . . ∈ (2IAP)ω of inputs is denoted

as Intrs(R). That is, Intrs(R) = (αO
0 ∪ α I

0 )(α
O
1 ∪ α I

1 ) · · · , where αO
0 = R(ε) and αO

i+1 =
1 When an interaction startswith an input from the environment, a reactive system is defined asR : (2IAP)+ →
2OAP . Cf. Footnote 3.
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Safraless LTL synthesis considering maximal realizability 659

R(α I
0 · · ·α I

i ) for each i ∈ N. A set Intr(R) = {Intrs(R) ∈ (2AP)ω | s ∈ (2IAP)ω} of possible
interactions of R is denoted by Intr(R).

2.2 Linear temporal logic (LTL)

Linear temporal logic [33] is a modal logic used to express temporal properties and is widely
used to describe formal behavioral specifications of systems.

2.2.1 Syntax and semantics

Linear temporal logic has standard logical connectives (¬,∨, and∧) and temporal operators
(the next operator, X, the until operator, U, and the release operator, R).

Definition 1 An LTL formula ϕ on AP has the form

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | Xϕ | ϕUϕ | ϕRϕ, (1)

where p ∈ AP.

Intuitively, Xϕ means that “ϕ holds in the next step”, ϕ1Uϕ2 means that “ϕ2 eventually
holds, and ϕ1 continually holds until then” (i.e., ϕ1 until ϕ2), and ϕ1Rϕ2 means that “ϕ2

holds until and including the point when ϕ1 holds” (i.e., ϕ1 releases ϕ2). Note that the release
operator R is the dual of the until-operator U.

The following standard abbreviations for logical connectives and symbols are also com-
monly used in LTL.

ϕ1 → ϕ2 ≡ ¬ϕ1 ∨ ϕ2, (2)

ϕ1 ↔ ϕ2 ≡ (ϕ1 → ϕ2) ∧ (ϕ2 → ϕ1), (3)

 ≡ ϕ ∨ ¬ϕ, (4)

⊥ ≡ ¬. (5)

We use the following abbreviations for temporal operators.

Fϕ ≡ Uϕ, (6)

Gϕ ≡ ⊥Rϕ, (7)

ϕ1Wϕ2 ≡ ϕ2R(ϕ1 ∨ ϕ2). (8)

The operator F is often denoted by ♦, and Fϕ means that “ϕ holds eventually (i.e., in the
future)”. The operator G is often denoted by �, and Gϕ means that “ϕ holds always (i.e.,
globally)”. The operatorW is called theweak-until operator, because the second sub-formula
ϕ2 may never hold if the first sub-formula ϕ1 always holds. We also use the following
abbreviations.

Xnϕ ≡
{

ϕ if n = 0,

X
(
Xn−1ϕ

)
otherwise,

(9)

ϕ1U≤nϕ2 ≡
{

ϕ2 if n = 0,

ϕ2 ∨
(
ϕ1 ∧ X

(
ϕ1U≤n−1ϕ2

))
otherwise,

(10)

ϕ1R≤nϕ2 ≡
{

ϕ2 if n = 0,

(ϕ1 ∧ ϕ2) ∨
(
ϕ2 ∧ X

(
ϕ1R≤n−1ϕ2

))
otherwise,

(11)
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F≤nϕ1 ≡ U≤nϕ1, (12)

G≤nϕ1 ≡ ⊥R≤nϕ1, (13)

ϕ1W≤nϕ2 ≡ ϕ2R≤n(ϕ1 ∨ ϕ2). (14)

An LTL formula ϕ is bounded if it has only next-operators. Note that U≤n and R≤n (also
F≤n , G≤n andW≤n) are bounded because of Eqs. (10) and (11).

Linear temporal logic semantics is defined as satisfaction relation |� between an infinite
word on 2AP and an LTL formula.

Definition 2 For an infinite word s = α0α1 · · · ∈ (2AP)ω on 2AP, the semantics of an LTL
formula ϕ is:

s |� ϕ ⇔ 〈s, 0〉 |� ϕ. (15)

Here, 〈s, i〉 |� ϕ is a satisfaction relation between the i-th suffix αiαi+1 · · · of s and ϕ, such
that

〈s, i〉 |� p ⇔ p ∈ αi , (16)

〈s, i〉 |� ¬ϕ1 ⇔ 〈s, i〉 �|� ϕ1, (17)

〈s, i〉 |� ϕ1 ∨ ϕ2 ⇔ 〈s, i〉 |� ϕ1 or 〈s, i〉 |� ϕ2, (18)

〈s, i〉 |� ϕ1 ∧ ϕ2 ⇔ 〈s, i〉 |� ϕ1 and 〈s, i〉 |� ϕ2, (19)

〈s, i〉 |� Xϕ1 ⇔ 〈s, i + 1〉 |� ϕ1, (20)

〈s, i〉 |� ϕ1Uϕ2 ⇔ ∃ j ∈ N≥i
(〈s, j〉 |� ϕ2 and ∀h ∈ N≥i ∩ N< j (〈s, h〉 |� ϕ1)

)
, (21)

〈s, i〉 |� ϕ1Rϕ2 ⇔ ∀ j ∈ N≥i (〈s, j〉 |� ϕ2) or

∃ j ∈ N≥i
(〈s, j〉 |� ϕ1 and ∀h ∈ N≥i ∩ N≤ j (〈s, h〉 |� ϕ2)

)
. (22)

The set {s ∈ (2AP)ω | s |� ϕ} of words satisfying ϕ is denoted by L(ϕ). An LTL formula
ϕ is satisfiable (or consistent) if L(ϕ) �= ∅.

An LTL formula ϕ has negation normal form (NNF) if the negations ¬ in ϕ appear only
as negative literals. Any LTL formula ϕ can be transformed into the equivalent NNF formula
nnf (ϕ) via a function nnf recursively defined as follows:

nnf (p) = p, (23)

nnf (¬p) = ¬p, (24)

nnf (¬¬ϕ) = nnf (ϕ), (25)

nnf (ϕ1 ∨ ϕ2) = nnf (ϕ1) ∨ nnf (ϕ2), (26)

nnf (¬(ϕ1 ∨ ϕ2)) = nnf (¬ϕ1) ∧ nnf (¬ϕ2), (27)

nnf (ϕ1 ∧ ϕ2) = nnf (ϕ1) ∧ nnf (ϕ2), (28)

nnf (¬(ϕ1 ∧ ϕ2)) = nnf (¬ϕ1) ∨ nnf (¬ϕ2), (29)

nnf (Xϕ1) = X(nnf (ϕ1)), (30)

nnf (¬Xϕ1) = X(nnf (¬ϕ1)), (31)

nnf (ϕ1Uϕ2) = (nnf (ϕ1))U(nnf (ϕ2)), (32)

nnf (¬(ϕ1Uϕ2)) = (nnf (¬ϕ1))R(nnf (¬ϕ2)), (33)

nnf (ϕ1Rϕ2) = (nnf (ϕ1))R(nnf (ϕ2)), (34)

nnf (¬(ϕ1Rϕ2)) = (nnf (¬ϕ1))U(nnf (¬ϕ2)). (35)

An LTL formula ϕ is safe if nnf (ϕ) has no until-operator U (and also F).
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Safraless LTL synthesis considering maximal realizability 661

2.2.2 Realizability

A reactive system specification ϕ described in LTL specifies a set of valid interactions as
L(ϕ). Note that a reactive system must decide an output at each step using the history of the
interaction up to then. Thus, a reactive system specification given as an LTL formula ϕ must
be realizable [1,34,35] (or programmable).

Definition 3 A property L ⊆ (2AP)ω is realizable if there exists a reactive system R :
(2IAP)∗ → 2OAP such that

Intr(R) ⊆ L . (36)

An LTL formula ϕ on AP is realizable if L(ϕ) is realizable.

2.2.3 Minimal bad prefixes

For a language L ⊆ �ω (i.e., a set of words) on an alphabet �, we can sometimes determine
if a word s is not in L using only a prefix of s. Such a prefix is called a bad prefix of L .
Formally, a nonempty finite word s ∈ �+ on � is a bad prefix of L ⊆ �ω if ss′ /∈ L for any
infinite word s′ ∈ �ω, and it is minimal if any proper prefix of it is not a bad prefix of L . A
set of minimal bad prefixes of L is denoted by BadPref (L).

A language L ⊆ �ω is a safety property if L is equivalent to the complement �ω \
(BadPref (L)(�ω)) of a set of words with bad prefixes of L . If ϕ is a safe LTL formula, L(ϕ)

is a safety property.

2.2.4 LTL-to-automata translation

For verification, an LTL formula ϕ is often translated into an ω-automaton accepting L(ϕ).
The set of accepting words for an automaton A is also denoted by L(A). LTL formula ϕ is
equivalent to A if L(ϕ) = L(A).

A UCWA accepts a word if all of its corresponding runs only visit their rejecting states
finitelymany times. AUCWA is a dual of a nondeterministic Büchi word automaton (NBWA).
We can therefore translate an LTL formula ϕ into an equivalent UCWAAϕ , using a standard
LTL-to-NBWA translating technique [3,17,23,40]. In automata-based approaches, synthesis
and probabilisticmodel checking require that a used automaton is deterministic,2 unlike naive
model- and satisfiability-checking. Safra’s construction [32,36–38] is used to determinize
UCWA (and NBWA) and is very complicated.

A k-bounded UCWA (k-UCWA) [22] accepts a word if all of its corresponding runs visit
their rejecting states at most k times. A UCWA can be under-approximated using a bound
k. A larger bound provides a UCWA that is closer to the original. In other words, for any
mapping T from each LTL formula to an equivalent UCWA,

L
(
T k (ϕ)

)
⊆ L

(
T k+1 (ϕ)

)
⊆ L (ϕ) , (37)

where T k denotes a mapping from LTL formula ϕ to a k-UCWA, which is an under-
approximation of T (ϕ) using bound k. The acceptance language of a k-UCWA is a safety
property because of its acceptance condition.

2 For probabilistic model checking, a deterministic automaton is required for Markov decision processes;
however, an unambiguous automaton suffices for Markov chains [4].
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662 T. Tomita et al.

A universal safety word automaton (USWA) is a UCWA with at most one rejecting state,
which loops on itself in every case. For any safe LTL formula, there exists a USWAequivalent
to the formula because a word violates a given safe property if and only if the word has
a (minimal) bad prefix. In this paper, we assume that an LTL-to-UCWA translator T is
reasonable, i.e., for a safe LTL formula ϕ and any bound k,

L (T (ϕ)) = L
(
T k (ϕ)

)
. (38)

We can easily construct a deterministic safety automaton equivalent to a k-UCWA or USWA,
using a type of powerset (i.e., Safraless) construction.

2.3 Games

A game models the set of interactions among agents and a related decision-making process.
In LTL synthesis, a game is used to model the set of interactions between a reactive system
and the environment.

Definition 4 A (two-player) game G is a triple 〈A, qinit, outcome〉, where
– A = 〈V0, V1, Γ0, Γ1, E0, E1〉 is an arena, where

– V0 (resp., V1) is a disjoint set of states for Player 0 (resp., Player 1)
– Γ0 (resp., Γ1) is a set of actions for Player 0 (resp., Player 1),
– E0 : V0 × Γ0 → V1 (resp., E1 : V1 × Γ1 → V0) is a (possibly, partial) transition

function which maps to V1 (resp., V0) from V0 (resp., V1) and Γ0 (resp., Γ1),

– vinit ∈ V0 is the initial state,
– outcome : (E0E1)

ω → R is a function that gives the outcome of a play ρ ∈ (E0E1)
ω.

When the current state is v in V0 (resp., V1), Player 0 (resp., Player 1) chooses its action
γ in Γ0 (resp., Γ0), and the state moves according to transition function E0 (resp., E1). Let
σ ∈ {0, 1}. If Eσ (v, γ ) = v′, there is a transition to v′ from v with γ . If Eσ (v, γ ) is undefined
for some action γ (i.e., Eσ is a partial function), γ is unavailable on v. In this paper, we
assume that all states have at least one available action; i.e., there is no dead-end state. We let
Eσ be a set {〈v, γ, v′〉 | Eσ (v, γ ) = v′} of triples that represent transitions. For an available
transition e = 〈v, γ, v′〉, its predecessor state v, successor state v′, and action γ are denoted
by pred(e), succ(e), and act(e), respectively.

A play ρ on G is an infinite alternating sequence e0e1e2e3 · · · ∈ (E0E1)
ω of 0- and 1-

transitions,where the starting state pred(e0) is the initial state vinit . It is available if succ(ei ) =
pred(ei+1) for each i ∈ N. A set of available plays on G is denoted by Play(G).

An outcome of an available play is evaluated according to function outcome. When the
outcomes are in a binary set, an outcome is often interpreted as either win or loss. In this
paper, we use two types of game: safety games and mean-payoff games.

2.3.1 Safety games

The outcome of a safety game is evaluated based on a safety condition and is mapped to the
binary {0, 1}.
Definition 5 A game S = 〈A, vinit, outcomeS〉with an arena A = 〈V0, V1, �0, �1, E0, E1〉
is a safety game if, for a set S ⊆ V0 ∪ V1 of safe states, the outcome outcomeS(ρ) for an
available play ρ = 〈v0, γ0, v1〉〈v1, γ1, v2〉 ∈ Play(S) on S is
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outcomeS(ρ) =
{
1 if vi ∈ S for all i ∈ N,

0 otherwise.
(39)

Player 0 wins (and Player 1 loses) for ρ if outcomeS(ρ) = 1, i.e., ρ stays in S forever
(safety condition). Otherwise, i.e., if ρ reaches the complement of S, Player 0 loses (and
Player 1 wins). Therefore, this kind of game is a reachability game from the standpoint of
Player 1.

The outcome outcomeS is characterized by S, and therefore we use a triple 〈A, vini t , S〉
instead of 〈A, vini t , outcomeS〉.

2.3.2 Mean-payoff games

The outcome of a mean-payoff game is evaluated based on the limit inferior of averages for
a sequence of payoffs assigned at each transition according to a given weighting function.

Definition 6 A game M = 〈A, vinit, outcomeW 〉 with an arena A = 〈V0, V1, �0, �1,

E0, E1〉 is a mean-payoff game if, for a weighting function W : (E0 ∪ E1) → Z that
gives an integer weight for a transition, the outcome outcomeW (ρ) for an available play
ρ = e0e1 · · · ∈ Play(M) on M is

outcomeW (ρ) = lim inf
n→∞

1

n + 1

n∑

i=0
W (ei ). (40)

For a mean-payoff game, a threshold k is often given as a winning condition. That is,
Player 0 wins (and Player 0 loses) for a play ρ ∈ Play(M) if outcomeW (ρ) ≥ k.

The outcome outcomeW is characterized byW , and sowe use a triple 〈A, vini t ,W 〉 instead
of 〈A, vini t , outcomeW 〉.

2.3.3 Strategies

The goal of Player 0 (resp., Player 1) is to maximize (resp., to minimize) the outcome.
Player σ ∈ {0, 1}must choose an available action (and its corresponding transition) for their
current state v based on a finite sequence e0e1 . . . e2n+σ−1 ∈ E0E1 . . . E1−σ Eσ of previous
transitions such that vini t = pred(e0), succ(ei ) = pred(ei+1) for 0 ≤ i ≤ 2n + σ − 1, and
v = succ(e2n+σ−1).

A strategy μ0 : E∗1 → E0 of Player 0 (resp., μ1 : E+0 → E1 of Player 1) on a game
G is a function that decides the next transition e2n (resp., e2n+1) from a set {e ∈ E0 |
succ(e2n−1) = pred(e)} (resp., {e ∈ E1 | succ(e2n) = pred(e)}) of available transitions
from succ(e2n−1) (resp., succ(e2n)). The 0-strategy μ0 and 1-strategy μ1 pair derives a
play ρ{μ0,μ1} = e0e1 . . . ∈ Play(G) where e0 = μ0(ε), e2i+1 = μ1(e0e2 . . . e2i ), and
e2i+2 = μ0(e1e3 . . . e2i+1).

A 0-strategyμ0 is optimal ifμ0 maximizes the worst-case outcome, i.e., for any 0-strategy
μ′
0,

inf
μ1

{
outcome

(
ρ{μ0,μ1}

)}
≥ inf

μ1

{
outcome

(
ρ{μ′0,μ1}

)}
. (41)

Alternatively, a 1-strategy μ1 is optimal if, μ1 minimizes the best-case outcome, i.e., for any
1-strategy μ′

1,

sup
μ0

{
outcome

(
ρ{μ0,μ1}

)}
≤ sup

μ0

{
outcome

(
ρ{μ0,μ

′
1,}

)}
. (42)
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In particular, μ0 (resp. μ1) is winning if G is a safety game, and outcome(ρ{μ0,μ1}) is 1 (resp.
0) for any 1-strategy μ1 (resp. any 0-strategy μ0).

A 0-strategy μ0 (resp. 1-strategy μ1) ismemoryless or positional if there exists a function
ν0 : V0 → E0 (resp. ν1 : V1 → E1) that gives a next available transition for the current
state, such that μ0(ε) = ν0(vinit) and μ0(e0 . . . ei ) = ν0(succ(ei )) (resp. μ1(e0 . . . ei ) =
ν1(succ(ei ))). In this case, ν0 (resp. ν1) is equivalent to μ0 (resp. μ1).

For safety games [19] and mean-payoff games [20], each player has a strategy that is both
optimal andmemoryless. Therefore, we only consider memoryless strategies in the following
sections.

2.3.4 Winning regions

For a safety game G with an arena A = 〈V0, V1, Γ0, Γ1, E0, E1〉, an initial state vini t , and a
safe region S ⊆ V0 ∪ V1, Player 0 will try to choose a transition such that they stay in S.

Thewinning regionW for Player 0 is themaximal sub-graph 〈V ′
0, V

′
1, Γ0, Γ1, E ′0, E ′1〉 of A

such that V ′
0 ⊆ V0∩S, V ′

1 ⊆ V1∩S, E ′0 ⊆ E0∩(V ′
0×Γ0×V ′

1) and E
′
1 = E1∩(V ′

1×Γ1×V0).
Player 0 can ensure that they stay inW because any 1-state v ∈ V ′

1 has no successor outside
of S. The region is maximal, and hence Player 0 has a winning strategy if vinit ∈ V ′

0. In
this case, W represents the set of all winning strategies on G, and we let W be a sub-game
〈W, vini t , V ′

0 ∪ V ′
1〉 consisting of W .

For a safety game, we can efficiently extract the winning region using a simple fixed-point
computation, in time O(|E0| + |E1|) [19].

2.3.5 Reactive systems as strategies

The safety game G used in Safraless synthesis has the following characteristics.3

– Players 0 and 1 represent system-side and environment-side players, respectively.
– Γ0 is 2OAP, and Γ1 is 2IAP.
– E0 may be partial, whereas E1 must be total.
– An available play ρ = e0e1 . . . ∈ Play(G) corresponds to an interaction trace(ρ) ∈

(2AP)ω,

– where a trace trace(ρ) on ρ is an infinite word (act(e0) ∪ act(e1))(act(e2) ∪
act(e3)) · · · (act(e2i ) ∪ act(e2i+1)) . . ..

Therefore, a memoryless 0-strategy ν0 on G can be regarded as a reactive system Rν0 such
that

– Rν0(ε) = αO
0 and Rμ0(α I

0 . . . α I
i ) = αO

i+1 where, for 0 ≤ j ≤ i ,

– v0 = vinit , v2( j+1) = E1(E0(v2 j , α
O
j ), α I

j ), and

– αO
0 = act(ν0(v0)) and αO

j+1 = ν0(act(v2( j+1))).

3 When an interaction starts with an input from the environment, the roles of Players 0 and 1 are switched.
Cf. Footnote 1.
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2.4 Safraless synthesis

Safraless synthesis [8,18,22,27,28] is a mainstream method for LTL synthesis.
The outline of a UCWA-based method [8,18,22] is given in Algorithm 1. For a given

LTL formula ϕ on a set AP (= IAP ∪ OAP) of atomic propositions, we first construct
a UCWA Aϕ accepting L(ϕ) (the procedure LTL2UCWA_translation at Line 1) and
initialize the bound k to 0 (Line 2). Let T be an LTL-to-UCWA mapping implemented by
LTL2UCWA_translation, i.e., Aϕ = T (ϕ). We next derive an under-approximation to
Aϕ using k and transform the under-approximated k-UCWA T k(ϕ) into a safety game Sϕ,k

(the procedure BUCWA2SG_transformation at Line 4). This transformation consists
of determinizing Aϕ and dividing its states/transitions into system-side and environment-
side ones based on the respective sets OAP and IAP of output and input propositions. Sϕ,k

has characteristics described in Sect. 2.3.5. Additionally, the winning condition of Sϕ,k

corresponds to the under-approximated property L(T k(ϕ)) of ϕ. Therefore, if the system-
side player wins for a play ρ on Sϕ,k , trace(ρ) satisfies ϕ. Then we extract a winning region
Wϕ,k for the system-side player on Sϕ,k (the extract_winning_region at Line 5).
If the initial state of Sϕ,k is in Wϕ,k (Line 6), there exists a reactive system that realizes ϕ.
Otherwise, k is incremented (Line 9), and we repeat a loop from Line 3. Lines 1–10 check
the realizability of ϕ, and in practice the unrealizability of ϕ is also checked in parallel.
Finally, we concretely compose a winning strategy ν for the system-side player onWϕ,k (the
procedure winning_strategy at Line 11).

In this paper, we have omitted the details of the procedure. For simplicity, we assume
that the subprocedure BUCWA2SG_transformation produces a safety game 〈〈V0, V1,
�0, �1, E0, E1〉, vinit, S〉 such that E0 is total.

3 Mean-payoff objectives

In this section, we focus on desirable specifications and introduce the mean-payoff objective
that determines the desirable specifications.

Algorithm 1 Safraless synthesis
Input: A realizable LTL formula ϕ on atomic propositions AP = IAP ∪ OAP, and an initial bound kinit
Output: A reactive system realizing ϕ, as a winning strategy ν on a winning region Wϕ,k

1: Aϕ := LTL2UCWA_translation(ϕ) // Translating ϕ into a UCWA Aϕ

2: k := kinit // Initializing bound k
3: loop
4: Sϕ,k := BUCWA2SG_transformation(Aϕ, k,OAP, IAP)

// Transforming k-UCWA Aϕ,k into a safety game Sϕ,k

5: Wϕ,k := extract_winning_region(Sk )
// Extracting a winning region Wϕ,k for the system-side player on Sϕ,k

6: if The initial state of Sϕ,k is in Wϕ,k then
7: break
8: end if
9: k := k + 1
10: end loop // Lines 1–10 check the realizability of ϕ

11: ν := winning_strategy(Wϕ,k )
// Composing a (memoryless) winning strategy ν of the system-side player on Wϕ,k

12: return 〈ν, Wϕ,k 〉

123



666 T. Tomita et al.

3.1 Basic idea

The general form of desirable specifications without assumptions is a G-formula Gϕ. We
consider that a preferable reactive system should endeavor to satisfy ϕ at each step, i.e., to
maximize the number of steps satisfying ϕ to the extent possible.

We fit a mean-payoff to quantitatively evaluate the desirability if the payoff at each step
depends on the importance of the desirable specifications Gϕ and whether ϕ holds at the
step. Therefore, we propose a mean-payoff objective, which covers the set of desirable
specifications. We can optimize a reactive system using the mean-payoff objective, which
quantitatively specifies the desirability of interactions with the environment.

We are left with the problem of determining whether ϕ holds at each step. If ϕ is bounded,
we can determine if ϕ holds at a step using only the behavior of the next n-steps, where n
is the depth of the next-operator X. That is, the length of a subsequence deciding whether ϕ

holds at each step is less than n + 1. An example of when ϕ = a → X(bU≤1c) is shown
in Fig. 2. A mean-payoff value is preserved, even if every payoff at a step is given bounded
steps later. Hence, it is easy to deal with a bounded LTL formula.

If ϕ is unbounded, we may need to know the entire behavior after a step to determine
whether ϕ holds at the step. It is difficult to strictly apply an unbounded LTL formula, and
hence we use the UCWA approximation. For a desirable specification Gϕ and an LTL-to-
UCWA mapping T , consider a b-UCWA T b(Gϕ) that is obtained by giving bound b to
UCWA T (Gϕ). An interaction satisfies Gϕ if it has no minimal bad prefix of L(T b(Gϕ))

because L(T b(Gϕ)) ⊆ L(Gϕ). Based on the equivalence between Gϕ and GGϕ, trying
to avoid violating Gϕ at each step can be considered as another attempt to satisfy Gϕ.
In this sense, maximizing the average length (or minimizing the number) of the minimal
bad prefixes occurring on interaction corresponds to the attempt. However, it is diffi-
cult to maximize strictly the average length. This is because they are overlapping, and
their lengths are unbounded in general. Consider an example of an under-approximated
safety property of G(p1 → X(p2Up3)) is G(p1 → X(p2U≤1 p3)) and an interaction is
{p1}{p2}{p1, p3}{p1, p2}{p2}{p1, p2}{p1, p3}∅ · · · , as shown in Fig. 3. Figure 2 indicates
that in this example only the third, fourth, and seventh occurrences of minimal bad prefixes

Word
{p1} {p2} {p1,p3}{p1,p2} {p2} {p1,p2}{p1,p3} ∅

. . .

Witness subsequences
for p1 → X(p2 U≤1 p3)

1st
2nd

3rd
4th

5th
. . .

Violating subsequences
for p1 → X(p2 U≤1 p3)

1st
2nd

3rd
. . .

Fig. 2 Witness/violating subsequences for which the first steps satisfy/violate a bounded formula p1 →
X(p2U≤1 p3) for a word {p1}{p2}{p1, p3}{p1, p2}{p2}{p1, p2}{p1, p3}∅ . . .
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Word
{p1} {p2} {p1,p3}{p1,p2} {p2} {p1,p2}{p1,p3} ∅

. . .

Minimal bad prefixes
for G(p1 →X(p2 U≤1 p3))

1st
2nd

3rd
4th

5th
6th

7th
. . .

Fig. 3 Counting minimal bad prefixes of an over-approximated safety property G(p1 → X(p2U≤1 p3)) of
G(p1 → X(p2Up3)) for a word {p1}{p2}{p1, p3}{p1, p2}{p2}{p1, p2}{p1, p3}∅ · · ·

play a role in the violation of G(p1 → X(p2U≤1 p3)). The others include them as suffixes.
In this paper, we focus on the frequency of occurrences of non-overlapping ones, which
is inversely proportional to the average length of them. That is, in Fig. 3, the first and sixth
occurrences of minimal bad prefixes are counted and the others are not. The first (resp., sixth)
occurrences can be considered as a representative subsequence among those that include the
third (resp., seventh) one. We can roughly maximize the average length, by giving a negative
payoff for each occurrence of non-overlapping ones and maximizing a mean-payoff under
the setting.

3.2 Syntax and semantics

We now introduce the syntax and semantics for mean-payoff objectives, based on the ideas
in the previous subsection.

The syntax of mean-payoff objectives is defined, in a similar manner to [39], as follows.

Definition 7 A payoff term t specifies a payoff at each step and is defined as

t ::= S(χ) | Bb(ϕ) | t + t | c · t, (43)

where c ∈ Z is an integer constant, χ a bounded LTL formula, ϕ an LTL formula, b ∈ N

a natural constant representing an approximation parameter, and + and · are addition and
product-by-constant operators.

For a payoff term t , a mean-payoff objective is a term MP(t).

Intuitively, S(χ) means that a payoff of 1 is given at a step if χ holds at the step, i.e.,
S(χ) strictly captures whether χ holds at the step. A value of S(χ) at a step depends on the
behavior after the next n-steps, where n is the depth of X in χ . However, Bb(ϕ) means that a
payoff of −1 is given for each occurrence of minimal bad prefixes of L(T b(ϕ)), where the
overlapping of the prefixes is not considered. The value of Bb(ϕ) at a step depends on the
preceding behavior. The coefficient c of the product term c · t is used as a weight that depends
on the desirability of t . We abbreviate c · S() to c and B0(ϕ) to B(ϕ).

Note that a B-term Bb(ϕ) should be treated attentively because the precise meaning of
the B-term depends on an LTL-to-automata translation T that does not appear in the syntax.
From only the syntax, it is impossible to understand the structure of T (ϕ), and hence it is not
clear what is lost in T b(ϕ). For example, a certain translator under-approximates GFp into
GF≤b p, but another translator outputsGF≤b+1 p. The loss depends strongly on T , although,
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it becomes smaller when b becomes larger. Even if we do not use sufficiently large b, we can
estimate the loss for b when we fix T and construct experimentally T (ϕ) in advance. For
instance, the size of the state space and the length of the shortest path reaching to rejecting
states from the initial state, etc. of T (ϕ) will be important information for the estimation.
Another reason is that a B-term focuses on only non-overlapped minimal bad prefixes. For
the example shown in Fig. 3, the first and sixth occurrences of minimal bad prefixes are
counted and the others are not. We do not strictly count occurrences of minimal bad prefixes,
which play an important role in the violation of T b(ϕ).

The semantics of mean-payoff objectives is given in the following.

Definition 8 Let T be an LTL-to-UCWAmapping. For an interaction s ∈ (2AP)ω, the value
[[MP(t)]]Ts of a mean-payoff objectiveMP(t) under T is defined as

[[MP(t)]]Ts = lim inf
n→∞

1

n + 1

n∑

i=0
〈〈t〉〉Ts (i). (44)

Here, a function 〈〈t〉〉Ts : N → Z gives an integer payoff at each step for term t on s = α0α1 · · ·
under T , such that

〈〈S(χ)〉〉Ts (i) =
{
1 if 〈s, i〉 |� χ,

0 otherwise,
(45)

〈〈Bb(ϕ)〉〉Ts (i) =
{
−1 if α0 . . . αi ∈

(
BadPref

(
L

(
T b (ϕ)

)))+
,

0 otherwise,
(46)

〈〈t1 + t2〉〉Ts (i) = 〈〈t1〉〉Ts (i)+ 〈〈t2〉〉Ts (i), (47)

〈〈c · t1〉〉Ts (i) = c · 〈〈t1〉〉Ts (i). (48)

Note that S(χ) is not equivalent to 1− S(¬χ) because the limit inferior is not generally
equal to the limit superior. Additionally, note that −B(Gχ) is not equivalent to S(¬χ).
S(¬χ) strictly counts steps that violate χ , whereas−B(Gχ) is an approximate count via the
set BadPref (L(Gχ)) of minimal bad prefixes of L(Gχ). Therefore,

[[MP(−B(Gχ))]]Ts ≤ [[MP(S(¬χ))]]Ts . (49)

Additionally, note that we put no limitation on an argument of a B-term.

3.2.1 Choice on LTL-to-automata translators

In formal verification and analysis, it is normally preferable that an LTL-to-automata trans-
lator composes an automaton not only efficiently but also with tractable characteristics, e.g.,
smaller state space, simpler acceptance condition, and certain limitation on transition func-
tion. Most existing translators, e.g., LTL2BA4 [23], SPOT5 [17] and LTL3BA6 [3], try to
compose such automata. Our semantics of mean-payoff objectives depend strongly on an

4 Available at http://www.lsv.ens-cachan.fr/~gastin/ltl2ba/.
5 Available at https://spot.lrde.epita.fr/.
6 Available at http://sourceforge.net/projects/ltl3ba/.
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LTL-to-automata translator T , so that the choice for T is very important, especially when
bounds for B-terms are not sufficiently large.

However, the preference in the normal sense may not be suited to our approach. This is
because the preference on LTL-to-automata translators in our method should be considered
on the premise of using the k-UCWA approximation.

There are questions on the preferable translation in our method; however, they are beyond
the scope of this paper.

3.2.2 The relations between mean-payoff objectives and GF-/FG-formulae

The LTL formulae GFϕ and FGϕ are two of the simplest over-approximated properties of
Gϕ. Definition 8 implies, for a mean-payoff objectiveMP(S(χ)),

s |� FGχ ⇒ [[MP(S(χ))]]Ts = 1, (50)

[[MP(S(χ))]]Ts > 0 ⇒ s |� GFχ. (51)

They mean that a word with a greater value for MP(S(χ)) has a property closer to FGχ .
Note that the converse of Eq. (50) is not generally true. For a word s on which ¬χ holds
infinitely and negligibly often, the right-hand side holds but the left does not. That is, a word
may not satisfy FGχ even if the word fully maximizes MP(S(χ)).

For a safe G-formula Gϕ, Eq. (38) based on our assumption for LTL-to-automata trans-
lation implies that B(Gϕ) is equivalent to Bb(Gϕ). Additionally,

s |� FGϕ ⇒ [[MP(B(Gϕ))]]Ts = 0. (52)

3.2.3 Mean-payoff objectives for words with periodic suffixes

Inmany synthesismethods, a synthesized reactive system is amemoryless (or finite-memory)
strategy on a game. Such reactive system produces an interaction with a periodic suffix
for any input sequence with a periodic suffix. The input sequences are produced by the
environment given as a memoryless counter strategy against the reactive system. For a mean-
payoff objective, it is sufficient in practice to consider the interaction because in mean-payoff
game each player has a strategy that is both optimal and memoryless. For a finite word
s0 ∈ (2AP)∗ and a nonempty finite word s1 ∈ (2AP)+, we have

[[MP(S(χ))]]Ts0(s1)ω = [[MP(1− S(¬χ))]]Ts0(s1)ω , (53)

[[MP(S(χ))]]Ts0(s1)ω = 1 ⇔ s0(s1)
ω |� FGχ, (54)

[[MP(Bk(Gϕ))]]Ts0(s1)ω = 0 ⇒ s0(s1)
ω |� FGϕ. (55)

Equation (54) [resp., Eqs. (52) and (55)] justify using S(χ) (resp., Bb(Gϕ)) to make the best
effort to satisfy Gχ (resp., Gϕ), especially in the synthesis of memoryless reactive systems.

3.3 Interpretation

A mean-payoff objective can be constructed from scratch. However, if a conjunction of
must LTL specifications is unrealizable, some of them should be downgraded to desirable
specifications. In this subsection, we show how to interpret these desirable LTL specifications
in amean-payoff objective. This interpretationmay be conducted alongwith refining the other
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must LTL specifications. However, for simplicity, we only consider interpretations without
the refinement and assume that all desirable LTL specifications are G-formulae.

The set of desirable LTL specifications Gϕ1, . . . ,Gϕn can be reasonably interpreted as
the mean-payoff objective

MP

⎛

⎝
∑

1≤i≤n
ti

⎞

⎠ , (56)

where each ti is a payoff term interpreted from the desirable LTL specificationGϕi . However,
there are many ways of interpreting Gϕi in ti . We now address the interpretations, with and
without considering the structure and intention of the sub-formulae.

3.3.1 General cases

We first address how to interpret each desirable LTL specification Gϕi , without considering
the detailed structure and intention of its sub-formula ϕi . We provide naive interpretation
guidelines, however, the details of the interpretation should be specified based on desirability.

Equation (54) implies that, when ϕi is bounded, Gϕi is naturally interpreted as a payoff
term

ci · S(ϕi ), (57)

where ci is a weight depending on the priority of Gϕi . MaximizingMP(S(ϕi )) corresponds
strictly to maximizing the number of steps satisfying ϕi .

We can also reasonably interpret Gϕi for bounded ϕi as the payoff term

ci · B(Gϕi ). (58)

Maximizing MP(B(Gϕi )) corresponds to maximizing the number of steps satisfying ϕi if
almost all of the distances of steps violating ϕi are larger than the depth of the next-operators
in ϕi .

From the equivalence betweenGϕi andGGϕi , when ϕi is unbounded,Gϕi is reasonably
interpreted as a payoff term

ci · Bbi (Gϕi ), (59)

where bi ∈ N is a bound. If ϕi is safe (resp., unsafe), maximizing MP(Bbi (Gϕi )) roughly
means trying to avoid violating Gϕi (resp., the under-approximation property of ϕi ) at each
step to the extent possible. If ϕi is unsafe, larger bi is better. One of the reasons is that Eq. (37),
which determines a larger bound for UCWA, gives a tighter approximation. Another is the
equivalence between Fϕ (≡ ¬G¬ϕ) and ϕ ∨ XFϕ, which is one of the basic relations for
standard techniques in LTL-to-NBWA translation, such as tableau methods [41]. Therefore,
if an LTL-to-UCWA translator employs such a method without unusual tunings, it produces
a UCWA with an initial state from which rejecting states are no easier to reach than any
non-rejecting state. If T is such a translator, we have

[[MP(Bbi (Gϕi ))]]Ts ≤ [[MP(Bbi+1(Gϕi ))]]Ts (60)

for any word s ∈ (2AP)ω, because T bi (Gϕi ) has the same state space and transition relation
as T bi+1(Gϕi ).
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Additionally, Eq. (55) suggests that additional payoff terms−Bb′i (G¬ϕi ),Bb′i (GFϕi ), and
−Bb′i (GF¬ϕi ) are also helpful for evaluating the effort made to satisfyGϕi . This is because
Eq. (55) implies

[[MP(−Bb′i (G¬ϕi ))]]Ts0(s1)ω = 0 ⇒ s0(s1)
ω �|� GFϕi , (61)

[[MP(Bb′i (GFϕi ))]]Ts0(s1)ω = 0 ⇒ s0(s1)
ω |� GFϕi , (62)

[[MP(−Bb′i (GF¬ϕi ))]]Ts0(s1)ω = 0 ⇒ s0(s1)
ω �|� FGϕi , (63)

for a finite word s0 ∈ (2AP)∗ and a nonempty finite word s1 ∈ (2AP)+. Therefore, Gϕi is
reasonably interpreted as another payoff term

ci · Bbi (Gϕi )+
∑

1≤ j≤m
ci, j · ti, j , (64)

where each ci, j is a weight according to the importance of ti, j , and each ti, j is a payoff term
of the form−Bbi, j (G¬ϕi ), Bbi, j (GFϕi ) or−Bbi, j (GF¬ϕi ). Note that s0(s1)ω satisfies FGϕi

(resp.,GFϕi ), if the mean-payoff objectiveMP(Bb′i (Gϕi )) (resp.,MP(Bb′i (GFϕi ))) is equal
to 0 for s0(s1)ω (i.e., fullymaximized by s0(s1)ω). However, s0(s1)ω may violateGFϕi (resp.,
FGϕi ) even if MP(−Bb′i (G¬ϕi )) (resp., MP(−Bb′i (GF¬ϕi ))) is greater than 0 for s0(s1)ω

(i.e., not fully minimized by s0(s1)ω).
An alternative interpretation approach is the use of a formula-based approximation on

ϕi rather than an automata-based approximation via UCWA. The simplest formula-based
approximation is to bound until-operators in ϕi . Let m be the number of unbounded until-
and release- operators in ϕi . Consider an LTL formula ϕ′i obtained by replacing every occur-
rence of the respective unbounded until- and release- operators in ϕi by bounded until- and
release- operatorsU≤l j andR≤l j ′ ( j, j ′ ∈ {1, . . . ,m}). ϕ′i is bounded, so that ϕi is reasonably
interpreted as a payoff term

ci · S(ϕ′i ), (65)

Note that ϕ′i draws closer to ϕi when bounds l1, . . . , lm become larger; however, ϕ′i may be
neither an under- nor an over-approximation of ϕi .

Another formula-based approximation is to “safetyize” ϕi . Let m′ be the number of
unbounded until-operators in anNNF formula nnf (ϕi ). Consider an LTL formulaϕ′′i obtained
by replacing every occurrence of unbounded until-operator in nnf (ϕi ) by bounded until-

operator U≤l ′j (1 ≤ j ≤ m′). ϕ′′i is safe, so that ϕi is also reasonably interpreted as a payoff
term

ci · B(Gϕ′′i ), (66)

Note that ϕ′′i is an under-approximation of ϕi and becomes closer to ϕi when bounds
l ′1, . . . , l ′m′ become larger.

The above is briefly summarized as follows:

– Maximizing the mean-payoff for the S-term given by Eq. (57) [resp., Eq. (65)] corre-
sponds to making an effort to satisfy ϕi (resp., the approximated property of ϕi ) at each
step.

– Maximizing the mean-payoff for the B-term given by Eq. (58) [resp., Eqs. (59), (64)
or (66)] corresponds to making an effort to avoid violating Gϕi (resp., the under-
approximated property of Gϕi ) at each step.
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Eachweight and bound inEqs. (57)–(59) and (64)–(66) should depend on the priority order
of the desirable specifications, the types of terms, and the designer’s preferences regarding
the behavior. In particular, for a term ci · Bbi (Gϕi ), it will be preferable that the values of ci
and bi are chosen based on the characteristics of the UCWA T (Gϕi ) constructed in advance.

3.3.2 Special cases

We now discuss the interpretation of each desirable LTL specification Gϕi , considering the
detailed structure and intention of its sub-formula ϕi . In this type of approach, the designer
should provide details of the interpretation based on the desirability and applications. We
only give a simple example of the interpretation. Consider the following desirable LTL
specification as an example.

ϕ1 = G(req → X(Fres)), (67)

where req ∈ IAP and res ∈ OAP are atomic propositions for input and output, respectively.
ϕ1 means that “for each occurrence of a request req , a system must eventually return a
response res”. When using this type of formula, it is often expected that “a system responds
within a certain time (or rather, as soon as possible)”.

Considering this implicit requirement “within a certain time”, ϕ1 can be interpreted as a
mean-payoff objective such as

MP
(
S

(
req → X

(
F≤lres

)))
, (68)

by giving bound l for the F-operator. This mean-payoff objective intuitively represents a
desirable specification: “for each occurrence of a request req , a system tries to return a
response res within the next l-steps to the extent possible”. To capture the intention “as soon
as possible”, for example, ϕ1 may be interpreted as follows:

MP

⎛

⎝
∑

1≤i≤n
S

(
req → X

(
F≤li res

))
⎞

⎠ . (69)

In this objective, the response time is evaluated in some stages.
Alternatively, ϕ1 can also be interpreted as another mean-payoff objective.7

MP(cb · B(G(req → X(waitWres)))− cs · S(wait)), (70)

wherewait ∈ OAP is a fresh atomic proposition for output, and cb and cs are positiveweights
that depend on the importance of the respective terms. The cb ·B(G(req → X(waitWres)))
part of the payoff termmeans that “a penalty−cb is given for each occurrence of minimal bad
prefixes of L(G(req → X(waitWres)))”, where G(req → X(waitWres)) is a weakened
property of G(req → X(waitUres)) that does not guarantee the response res. The −cs ·
S(wait) part means that “a penalty−cs is given for each occurrence ofwait”. Therefore, this
mean-payoff objective intuitively represents a desirable specification: “for each occurrence
of a request req , a system basically tries to return a response res as soon as possible; however,
the system is allowed to neglect the request if returning it quickly is difficult”.More precisely,
if the system cannot return a response for a request within the next �cb/cs�-steps, it will ignore
the request.

7 In an advanced interpretation, we can useG(req → X(waitWres)) as an additional must specification and
MP(−cs · S(wait)) as a mean-payoff objective.
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In this type of interpretation, it is sometimes possible to naturally formalize requirements,
e.g. “as soon as possible” as above, that are difficult (or impossible) to express in LTL.

3.4 Assumptions

A kind of soft assumption which may be violated by the environment can be included in our
mean-payoff objectives.

Consider a desirable LTL specification ϕAsmp → ϕGrnt with the assumption-guarantee
form,whereϕAsmp signifies a property that is assumed to be followed by the environment, and
ϕGrnt signifies a property that should be guaranteed by a system. A normal LTL synthesis
method may involve a system that does not guarantee ϕGrnt when ϕAsmp does not hold.
However, it is often required that a system is robust [5]. Informally, a robust system produces
a small number of system errors for a small number of environment errors. Let ϕAsmp and
ϕGrnt be respective G-formulae Gϕ1 and Gϕ2. According to our basic idea, a more robust
reactive system should produce a smaller difference in the number of steps violating ϕ2 from
the number of steps violatingϕ1. Therefore, the desirable LTL specification can be interpreted
as the mean-payoff objective

MP(tGrnt − tAsmp), (71)

when tGrnt (resp., tAsmp) is a certain term interpreted from ϕGrnt (resp., ϕAsmp) according to
the ideas in Sect. 3.3.

4 Our synthesis method

In this section, we propose a method for synthesizing a reactive system that realizes all given
must specifications and endeavors to satisfy the desirable specifications.

Our problem is formalized to synthesizing a reactive system Ropt that realizes a given
must LTL specification ϕ and is optimal for a given mean-payoff objective MP(t), which
represents the weighted desirable specifications. Note that ϕ is a non-restricted LTL formula,
i.e. it may be an assumption-guarantee type formula ϕ1 → ϕ2. We assume that an LTL-to-
UCWA mapping T is fixed. That is,

Ropt = arg sup
R

{

c
∣
∣
∣ ∀s ∈ Intr(R)

(
s |� ϕ and [[MP(t)]]Ts ≥ c

)
}

(72)

MP(t) is described from scratch or is interpreted from desirable LTL specifications using
the ideas in Sect. 3.3. Note that, in this formalization, payoff term t may include expressions
related to performance requirements.

This problem can be strictly reduced to finding an optimal (or ε-optimal) strategy on a
mean-payoff parity game [13]. However, this reduction generally requires a deterministic
ω-regular automaton, which is very difficult to attain. Furthermore, the algorithm in [13]
that solves the mean-payoff parity game is also very complicated, and the optimal (resp.,
ε-optimal) strategy generally requires infinite (resp., large) memory.

In considering the trade-off among computational cost, size (and finite memory), and
optimality of the resulting reactive systems, we propose using the Safraless approach (Lines
1–10 in Algorithm 1), to obtain a winning region Wϕ,k from ϕ. We then compose a locally
optimal reactive system for MP(t) from the set of systems given as winning strategies in
the winning region Wϕ,k . This is a generalized method of the one in [26], which focuses
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on must LTL specifications with the assumption-guarantee form and mean-payoff objectives
(interpreted from its guarantee part) without B-terms.

4.1 Outline

The latter part of our method is given in Algorithm 2. Let MP(t) be a given mean-payoff
objective, where t = ∑

1≤i≤n ci · ti and each ti is either S(χi ) or Bbi (ϕi ). First, for each
atomic term ti (either S-term or B-term), we construct a safety game from ti by reusing
the procedures LTL2UCWA_translation8 and BUCWA2SG_transformation in
Algorithm 1 (either Lines 3–9 or 12–13), where LTL2UCWA_translation imple-
ments T . It is then transformed into a mean-payoff game Mti (using either procedure
SG2MPG_transformation_S at Line 10 or SG2MPG_transformation_B at Line
14). For each game Mti , its transition functions are total, and an outcome of any play
ρ equals [[MP(ti )]]Ttrace(ρ)/2. Second, we construct a weighted synchronized product of

an input winning region Wϕ,k and the mean-payoff games Mt1 , . . . ,Mtn (the procedure
weighted_synchronized_product at Line 17). For the synchronized product mean-
payoff gameMϕ,k,t , the outcome of a play ρ is [[MP(t)]]Ttrace(ρ)/2. Finally, we find an optimal

strategy ν for the system-side player (Player 0) on Mϕ,k,t using the standard technique for
solving mean-payoff games [12,20] (the procedure optimal_strategy, Line 18).

4.2 Mean-payoff games for simple mean-payoff objectives

In this subsection, we explain how to construct a mean-payoff gameMt from an atomic term
t ∈ {S(χ),Bk(ϕ)}, i.e., Lines 3–10 and 12–14 in Algorithm 2.

4.2.1 Mean-payoff game for MP(S(χ))

Let ϕ′ be a safe LTL formulaG(χ ↔ X�depth(χ)� p̂) for a bounded LTL formula χ , where p̂ is
a fresh atomic proposition, and depth(χ) is the depth of the next operators in χ considering
(system-side and environment-side) turns in the games.

depth(χ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if χ ∈ Bool(OAP),

1/2 if χ ∈ Bool(AP)\Bool(OAP),

min{depth(χ1), depth(χ2)} if χ = χ1 ∨ χ2 or χ = χ1 ∧ χ2,

depth(χ1)+ 1 if χ = Xχ1.

(73)

If depth(χ) ∈ N (resp., depth(χ) /∈ N), we can determine if χ holds at a step in a system-side
(resp., environment-side) turn after �depth(χ)�-steps. ϕ′ implies that p̂ is associated with χ

at a �depth(χ)�-step delay. ϕ′ is safe and hence can be translated into a USWAAϕ′ (= T (ϕ′))
by the procedure LTL2UCWA_translation, implementing T , at Line 4 in Algorithm 2.
In the transformation from Aϕ′ into a mean-payoff game MS(χ) for MP(S(χ)), we use
transitions labeled p̂ as guides to set payoffs.

Consider depth(χ) ∈ N, implying that the deepest Boolean formula includes no
input proposition. In this case, we treat p̂ as an output proposition. Let S be a safety
game 〈〈V0, V1, 2OAP∪{ p̂}, 2IAP, E0, E1〉, vinit, S〉, constructed from Aϕ′ using the procedure
BUCWA2SG_transformation at Line 6 in Algorithm 2. Note that both E0 and E1 are

8 We reuse the LTL-to-automata translator in Algorithm 1 for simplicity. However, we can use another trans-
lator in Algorithm 2.
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Algorithm 2 The latter part of our synthesis method

Input: A winning region Wϕ,k extracted using Lines 1–11 in Algorithm 1, and an objective term t =
∑

1≤i≤n ci · ti where ti ∈ {S(χi ),B
bi (ϕi )}

Output: A reactive system that realizes ϕ and is optimal for MP(t) on Wϕ,k , as a memoryless strat-
egy ν on a mean-payoff game Mϕ,k,t , where an LTL-to-UCWA mapping T is implemented by
LTL2UCWA_translation.

1: for i = 0 to n do
2: if ti = S(χi ) then
3: ϕ′i := G(χi ↔ X�depth(χi )� p̂) // p̂ is a fresh proposition to bind with χi on �depth(χi )�-step delay

4: Aϕ′i := LTL2UCWA_translation(ϕ′i ) // Aϕ′i can be seen as a USWA because ϕ′i is safe.
5: if depth(χi ) ∈ N then

6: Sϕ′i := BUCWA2SG_transformation(Aϕ′i , 0,OAP ∪ { p̂}, IAP)

7: else
8: Sϕ′i := BUCWA2SG_transformation(Aϕ′i , 0,OAP, IAP ∪ { p̂})
9: end if
10: Mti := SG2MPG_transformation_S(Sϕ′i , p̂)

// Mti has total transition functions for the environment-side player
// and a weighting function that depends on S(χi )

11: else if ti = Bbi (ϕi ) then
12: Aϕi := LTL2UCWA_translation(ϕi )
13: Sϕi ,bi := BUCWA2SG_transformation(Aϕi , bi ,OAP, IAP)

14: Mti := SG2MPG_transformation_B(Sϕi ,bi )
// Mti has total transition functions for the environment-side player

// and a weighting function that depends on Bbi (ϕi )
15: end if
16: end for
17: Mϕ,k,t := weighted_synchronized_product(Wϕ,k ,Mt0 , . . . , Mtn , c0, . . . , cn)

// Mϕ,k,t has an extended arena of Wϕ,k and a weighting function that depends on t
18: ν := optimal_strategy(Mϕ,k,t )
19: return 〈ν, Mϕ,k,t 〉

total. The mean-payoff game MS(χ) = 〈〈V0 ∩ S, V1 ∩ S, 2OAP, 2IAP, E ′0, E ′1〉, vinit,W 〉
constructed by the procedure SG2MPG_transformation_S at Line 10 in Algorithm 2 is

E ′0(v, αO ) =
{
E0(v, αO ∪ { p̂}) if E0(v, αO ∪ { p̂}) ∈ S,

E0(v, αO ) otherwise,
(74)

E ′1(v, α I ) = E1(v, α I ), (75)

W (e) =
{
1 if E0(pred(e), act(e) ∪ { p̂}) = E ′0(pred(e), act(e)),

0 otherwise.
(76)

ϕ′ is trivially realizable because a reactive system can easily determine an output signal,
either p̂ or ¬ p̂, that satisfies it at each step using information from the past depth(χ) steps.
This fact implies that E ′1 is total because, for any v ∈ V1 ∩ S and α I ∈ 2IAP, its succes-
sor E1(v, α) is in S. Additionally, for all v ∈ V0 ∩ S and αO ∈ 2OAP, either E0(v, αO ) or
E0(v, αO∪{ p̂}) is in S. Therefore, E ′0 is also total. For any play ρ = e0e1 . . . ∈ Play(MS(χ))

and its corresponding interaction trace(ρ) ∈ (2AP)ω, we have

〈〈S(χ)〉〉Ttrace(ρ)(i + depth(χ)) = W (e2i )+W (e2i+1), for each i ∈ N, (77)

[[MP(S(χ))]]Ttrace(ρ) = 2 · outcomeW (ρ). (78)
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Consider depth(χ) /∈ N, implying that the deepest Boolean formula includes at
least one input proposition. In this case, we treat p̂ as an input proposition. Let S
be a safety game 〈〈V0, V1, 2OAP, 2IAP∪{ p̂}, E0, E1〉, vinit, S〉, constructed from Aϕ′ using
BUCWA2SG_transformation at Line 8 in Algorithm 2. The mean-payoff game
MS(χ) = 〈〈V0 ∩ S, V1 ∩ S, 2OAP, 2IAP, E ′′0 , E ′′1 〉, vinit,W ′〉 constructed by the procedure
SG2MPG_transformation_S at Line 10 in Algorithm 2 is

E ′′0 (v, αO ) = E0(v, αO ), (79)

E ′′1 (v, α I ) =
{
E1(v, α I ∪ { p̂}) if E1(v, α I ∪ { p̂}) ∈ S,

E1(v, α I ) otherwise,
(80)

W ′(e) =
{
1 if E1(pred(e), act(e) ∪ { p̂}) = E ′′1 (pred(e), act(e)),

0 otherwise.
(81)

In this case, ϕ′ is trivially unrealizable because the environment can easily determine an input
signal, either p̂ or¬ p̂, that violates it at each step, using information from the past �depth(χ)�
steps. This fact implies that E ′′0 is total because, for any v ∈ V0 ∩ S and αO ∈ 2OAP, its
successor E0(v, αO ) is in S. Additionally, for allv ∈ V1∩S andα I ∈ 2IAP, either E1(v, α I )or
E1(v, α I ∪{ p̂}) is in S. Therefore, E ′′1 is also total. For any play ρ = e0e1 . . . ∈ Play(MS(χ))

and its corresponding interaction trace(ρ) ∈ (2AP)ω, we have

〈〈S(χ)〉〉Ttrace(ρ)(i + �depth(χ)�) = W ′(e2i )+W ′(e2i+1), for each i ∈ N, (82)

[[MP(S(χ))]]Ttrace(ρ) = 2 · outcomeW ′
(ρ). (83)

4.2.2 Mean-payoff game for MP(Bb(ϕ))

For a term MP(Bb(ϕ)), we can obtain a UCWA Aϕ (= T (ϕ)) by the procedure
LTL2UCWA_translation at Line 12 in Algorithm 2. On a determinized safety word
automaton of T b(ϕ) (resp., in Aϕ), reaching (resp., more than b-times visiting) rejecting
states on a run means a minimal bad prefix of L(T b(ϕ)) has occurred in its word. In the

transformation fromAϕ with bound b into a mean-payoff gameMBb(ϕ) forMP(Bb(ϕ)), we
use rejecting states as guides to set payoffs.

Let S be a safety game 〈〈V0, V1, 2OAP, 2IAP, E0, E1〉, vinit, S〉, constructed from Aϕ and
bound b using BUCWA2SG_transformation at Line 13 in Algorithm 2. The mean-

payoff game MBb(ϕ) = 〈〈V0, V1 ∪ {vmid}, 2OAP, 2IAP, E ′′′0 , E ′′′1 〉, vinit , W ′′〉 constructed by
the procedure SG2MPG_transformation_B at Line 14 in Algorithm 2 is

E ′′′0 (v, αO ) =
{

vmid if E0(v, αO ) /∈ S,

E0(v, αO ) otherwise,
(84)

E ′′′1 (v, α I ) =
{

vinit if v = vmid or E1(v, α I ) /∈ S,

E1(v, α I ) otherwise,
(85)

W ′′(e) =
{
−1 if pred(e) = vmid or E1(pred(e), act(e)) /∈ S,

0 otherwise.
(86)

Both E ′′′0 and E ′′′1 are total because E0 and E1 are total. From the definition of W ′′, for a
minimal bad prefix (αO

0 ∪ α I
0 ) · · · (αO

n ∪ α I
n ) ∈ (2AP)+ of L(T b(ϕ)) and the corresponding
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prefix 〈v0, αO
0 , v1〉〈v1, α I

0 , v2〉 · · · 〈v2n, αO
n , v2n+1〉〈v2n+1, α I

n , v2(n+1)〉 ∈ (E ′′′0 E ′′′1 )+ of any
play,

W ′′(〈v2i , αO
i , v2i+1〉)+W ′′(〈v2i+1, α I

i , v2(i+1)〉) = 0, for each i < n, (87)

W ′′(〈v2n, αO
n , v2n+1〉)+W ′′(〈v2n+1, α I

n , v2(n+1)〉) = −1. (88)

Therefore, for any play ρ = e0e1 . . . ∈ Play(MBb(ϕ)) and its corresponding interaction
trace(ρ) ∈ (2AP)ω, we have

〈〈Bb(ϕ)〉〉Ttrace(ρ)(i) = W ′′(e2i )+W ′′(e2i+1), for each i ∈ N, (89)

[[MP(Bb(ϕ))]]Ttrace(ρ) = 2 · outcomeW ′′
(ρ). (90)

4.3 Weighted synchronized product

Let Wϕ,k be a winning region 〈〈V 0
0 , V 0

1 , 2OAP, 2IAP, E0
0 , E

0
1〉, v0init , V

0
0 ∪ V 0

1 〉 of an input
to Algorithm 2. For payoff term t = ∑

1≤i≤n ci · ti , let Mti be a mean-payoff game
〈〈V i

0 , V i
1 , 2OAP, 2IAP, Ei

0, E
i
1〉, viinit ,Wi 〉, constructed from ti using either Line 10 or Line 14

in Algorithm 2.
The mean-payoff game Mϕ,k,t = 〈〈V 0

0 × V 1
0 × · · · × V n

0 , V 0
1 × V 1

1 × · · · ×
V n
1 , 2OAP, 2IAP, E ′′′′0 , E ′′′′1 〉, 〈v0init, v1init, . . . , vninit〉,W ′′′〉 constructed from them by the proce-

dure weighted_synchronized_product at Line 17 in Algorithm 2 is, for σ ∈ {0, 1},
E ′′′′σ (〈v0, v1, . . . , vn〉, α)

=
{
undefined if σ = 0 and E0

0(v
0, α) is undefined,

〈E0
σ (v0, α), E1

σ (v1, α), . . . , En
σ (vn, α)〉 otherwise,

(91)

W ′′′(〈v0, v1, . . . , vn〉, α, 〈E0
σ (v0, α), E1

σ (v1, α), . . . , En
σ (vn, α)〉)

=
n∑

i=0
ci ·Wi (〈vi , α, E(vi , α)〉). (92)

From Eqs. (78), (83), and (90), for any play ρ ∈ Play(Mϕ,k,t ) and its corresponding
interaction trace(ρ) ∈ (2AP)ω, we have

[[MP(t)]]Ttrace(ρ) = 2 · outcomeW ′′′
(ρ). (93)

Additionally, because E1
0 , E

1
1 , . . . , E

n
0 , En

1 are total, we have

∀ρ ∈ Play(Mϕ,k,t ), ∃ρ′ ∈ Play(Wϕ,k)
(
trace(ρ) = trace(ρ′)

)
. (94)

4.4 Correctness and optimality

We have the following theorem.

Theorem 1 (Correctness of Algorithm 2) Algorithm 2 returns a reactive system that realizes
ϕ and is optimal for mean-payoff objective MP(t) on winning region Wϕ,k .

Proof From Eqs. (93) and (94), the optimal strategy onMϕ,k,t is optimal onWϕ,k , and any
play on Wϕ,k satisfies ϕ.  !
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As a result, we can obtain a reactive system that realizes ϕ and is locally optimal forMP(t)
in the sense of Eq. (72). Note that our method does not guarantee that the reactive system is
globally optimal forMP(t) as a trade-off for the memory finiteness. This is because the must
LTL specification ϕ is under-approximated in our method. The winning regionWϕ,k derived
from ϕ is based on the under-approximated safe property via UCWA with bound k, and we
find the reactive system fromWϕ,k . There generally exists a gap between the original property
ϕ and the under-approximated property. It can be a matter for any large k in our method,
unlike in LTL realizability checking. Consider the simple case when amust LTL specification
GFp and a mean-payoff objectiveMP(S(¬p)), where p is an output proposition. A reactive
system realizesGFp and is globally optimal forMP(S(¬p)), i.e., its value is 1, if and only if
the system outputs p infinitely often and the distance between p increases further and further.
Our method cannot produce such reactive systems requiring infinite memory.GFp would be
under-approximated intoGFk p via a naive LTL-to-UCWA translator. Therefore, our method
employing the naive translation composes a reactive system outputting p at k-step intervals,
i.e., its value of MP(S(¬p)) is (k − 1)/k. Any other translator leads to a similar result. The
value approaches the global optimum arbitrarily using larger k in Algorithm 1.

Another concern in optimality regards bounds forB-terms in mean-payoff objectives. Our
first idea is, for desirable specifications Gϕ1, . . . ,Gϕn with priority weights c1, . . . , cn , to
maximize each number of steps satisfying ϕi taking into account all priority weights, i.e., to
maximize MP(

∑
1≤i≤n ci · S(ϕi )), where the S-term is an extension of the S-term defined

semantically for a non-restricted LTL formula ψ as follows.

〈〈S(ψ)〉〉Ts (i) =
{
1 if 〈s, i〉 |� ψ,

0 otherwise.
(95)

This objective cannot be directly represented in ourmean-payoff objectives defined in Sect. 3.
One question is whether there exist an LTL formula ϕ′ andmean-payoff objectiveMP(t) such
that, if a reactive system realizes ϕ′ and maximizes MP(t), it also realizes the original must
LTL specification ϕ and maximizesMP(

∑
1≤i≤n ci · S(ϕi )). If so (under some restrictions),

another question is whether such t can be obtained as a term with a specific form, e.g.,∑
1≤i≤n ci · Bbi (Gϕi ). These are open problems that are out of the scope of this paper.

4.5 Complexity

The time complexity of Algorithm 2 is doubly exponential, so it is in the same class as
traditional LTL synthesis and realizability-checking [1,34,35].

For each atomic payoff term ti with the form S(χi ), we can construct Mti with at most
2Pi ·�depth(χi )� · (2|OAP| + 1) states, where Pi is the number of distinct atomic propositions
in χi . χi can be translated into a deterministic safety automaton with at most 2Pi ·�depth(χi )�
states. An m-state deterministic automaton can be transformed into a game with at most
m ·(2|OAP| +1) states. For each atomic payoff term ti with the formBbi (ϕi ), we can construct
a mean-payoff game Mti with at most 22

O(|ϕi |)·log(bi+2) · (2|OAP| + 1) states, where |ϕi | is
the size of ϕi . ϕi (resp., ¬ϕi ) can be translated into an equivalent UCWA (resp., NBWA)
with at most 2O(|ϕi |) states [40]. An ni -state bi -UCWA can be transformed into an equivalent
deterministic safety automatonwith atmost 2ni ·log(bi+2) states.We can construct theweighted
synchronized product mean-payoff game from input winning regionWϕ,k and mean-payoff
objectiveMP(t), which has at most |Wϕ,k | ·T states and a largest absolute weight less than or
equal to the possible weights of t . Here, T is a product of the sizes of the mean-payoff games
for atomic terms in t . The time complexity for solving an m-state l-transition mean-payoff
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game isO(m2 ·l ·d ·(logm+ log d)) [12], where d is the largest absolute value of the weights.
The above discussion implies that the time complexity of Algorithm 2 is doubly exponential.

As mentioned in Sect. 4.4, there is a trade-off between the optimality of the resulting
system for MP(t) and its computational cost. The size of Wϕ,k (and the resulting system)
grows polynomially in k. Therefore, themean-payoff value of the resulting systemapproaches
the global optimum arbitrary; however, its computational cost increases polynomially as k
increases.

5 Experimental evaluation

To confirm that our algorithm produces preferable reactive systems, we implemented a pro-
totype of our synthesis method and performed a simple experiment. We also demonstrate
that our method can treat non-trivial scale instances. Additionally, we discuss the advantage
of our method.

5.1 Implementation and experimental environment

The prototype is implemented in C++ and only supports payoff terms without B-terms.
We can employ an existing LTL-to-NBWA translator, e.g., LTL2BA [23], SPOT [17] and
LTL3BA [3], as an LTL-to-UCWA translator. The prototype uses LTL3BA for the LTL-to-
UCWA mapping T . A direction of the implementation is the same as the one in [26]. Each
state of automata and games is dealt with explicitly whereas transitions from the state are
represented by one multi-terminal binary decision diagram (BDD). We employ CUDD9 for
manipulating BDDs. On solving mean-payoff games (at Line 18 in Algorithm 2), we employ
an iterative algorithm proposed in [42] and introduce a heuristic to check the optimality of a
tentative solution after a certain number of iterations, which depends on the size of the games.
Furthermore, for solving them efficiently, an abstracted mean-payoff game is constructed
from the original game Mϕ,k,t . Actions of transitions are omitted in the abstracted game,
and thus the state space of the abstracted game can be reduced. That is, its optimal strategy
can be computed efficiently. From the optimal strategy and Mϕ,k,t , the optimal reactive
system is composed as a transition system with the same format to Acacia+10 [8–10] that is
a well-known LTL synthesis tool.

The experiments were performed on a MacBook Pro (Retina, Mid 2012) with OS X
Yosemite 10.10.5, 2.6-GHz CPU (Intel Core i7), and 16-GB memory (1600-MHz DDR3).

5.2 Experiments

Instance 1 First, we focus on the preferability of synthesized systems. Consider synthesizing
a reactive system that realizes the nearest property of LTL formula ϕ = ϕ1 ∧ ϕ2 ∧ ϕ3. This
is a conjunction of the LTL formulae

ϕ1 = G(req1 → Xres), (96)

ϕ2 = G(req2 → X¬res), (97)

ϕ3 = G(res ↔ Xres), (98)

9 Available at http://vlsi.colorado.edu/~fabio/.
10 Available at http://lit2.ulb.ac.be/acaciaplus/.
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Fig. 4 A reactive system (Moore
machine format) synthesized by
the proposed method for
Instance 1

req1 ∨ ¬req2

res

req1

¬req1 ∧ req2

¬res

¬req1

where req1, req2 ∈ IAP are atomic propositions for the input, and res ∈ OAP is an atomic
proposition for the output. Intuitively, ϕ1 means that “a system must output res in the next
step in response to an input req1”, and ϕ2 means that “a system must output ¬res in the
next step in response to an input req2”. ϕ3 means that “a system must maintain its current
output in the next step”, where ϕ3 is a desirable specification derived from the performance
requirement that “the output of a system should be maintained if unnecessary, to reduce
signal switching”. The non-necessity depends on other specifications, and it is impossible to
express the meaning of “if unnecessary” in LTL. Therefore, ϕ3 is a stronger property than
this requirement. ϕ (or, more precisely, ϕ1 ∧ ϕ2) is unrealizable, because if both res1 and
res2 are simultaneously inputs at a certain step, output res (resp., ¬res) in the next step
violates ϕ2 (resp., ϕ1). We assume that a specification ϕi has a higher priority than another
specification ϕ j if i < j . In our approach, a must specification is an LTL formula ϕ1, and
desirable specifications ϕ2 and ϕ3 are transformed into a payoff term dependent on their
priorities. The discussion in Sect. 3.3 implies that this payoff term is, for example,

t23 = 2 · S(req2 → X¬res)+ S(res ↔ Xres). (99)

This term suggests that ϕ2 has a higher priority than ϕ3, because their weights are 2 and 1,
respectively.

Result 1 Figure 4 shows a reactive system synthesized by our prototype for an input pair
to LTL formula ϕ1 and mean-payoff objective MP(t23). The system realizes ϕ1 and tries to
satisfy ϕ2 (resp., ϕ3) without violating ϕ1 (resp., ϕ1 or ϕ2).

Discussion 1 To refine an unrealizable specification by adding assumptions, we can obtain an
assumptionG(¬(req1∧req2)) for unrealizable ϕ1∧ϕ2 that is reasonable in some cases. For
ϕ, we can derive assumptionsG¬req1 andG¬req2; however, they are trivially unallowable
in a practical sense even if the refined formulae (G¬req1) → ϕ and (G¬req2) → ϕ are
realizable. This is because ϕ3 does not appropriately express the requirement. However, there
are many natural requirements that cannot be represented in LTL. As in the above example,
we often fail to obtain allowable assumptions. We can also attempt to refine an unrealizable
specification by weakening its partial specifications. Unrealizable ϕ can be refined into, for
example, ϕ′ = ϕ1 ∧ ϕ′2 ∧ ϕ′3, under the assumption of a priority order for the specifications.
Here, ϕ′2 (resp., ϕ′3) is a weakened specification for ϕ2 (resp., ϕ3), and

ϕ′2 = G(((¬req1) ∧ req2) → X¬res), (100)

ϕ′3 = G((¬(req1 ∨ req2)) → (res ↔ Xres)). (101)

ϕ′ is realized by the reactive system shown in Fig. 4. This example is very simple, and the
unrealizable formula ϕ can be easily refined into the realizable formula ϕ′. In general, we
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must repeatedly refine a specification and check its realizability. However, in our approach,
we need to extract amust specification and interpret the desirable specifications using amean-
payoff objective that is based on their priorities. If the must specification is realizable, we can
synthesize a concrete reactive system that considers the mean-payoff objective. Additionally,
a mean-payoff objective can easily capture some requirements that are impossible to express
in LTL, such as “if possible”.

Instance 2 Next, we focus on the scalability of our implementation. We use a specification
of an n-client load balancing system [18] as an instance. The specification is given as a
combination of some formulae (for details, see “Appendix 1”). We denote each formula by
ϕLB
i where i is its index. As shown in [18], the following formulae ϕLB

a , ϕLB
b and ϕLB

c are
realizable.

ϕLB
a =

∧

i∈{1,2}
ϕLB
i , (102)

ϕLB
b =

∧

i∈{1,2,4}
ϕLB
i , (103)

ϕLB
c =

⎛

⎝
∧

i∈{6,7}
ϕLB
i

⎞

⎠ →
∧

i∈{1,2,5,8}
ϕLB
i (104)

However,
∧

i∈{1,2,3} ϕLB
i ,

∧
i∈{1,2,4,5} ϕLB

i or (
∧

i∈{6,7} ϕLB
i ) → ∧

i∈{1,2,5,8,9} ϕLB
i are not.

According to the naive ideas on interpretation given in Sect. 3.3.1, we interpret ϕLB
3 , ϕLB

5 and
ϕLB
9 into the following payoff terms, respectively.

tLB3 =
∑

0≤i<n

B
(
F≤3gi

)
, (105)

tLB5 =
∑

0≤i<n

B((Xgi ) → job), (106)

tLB9 = B

⎛

⎝

⎛

⎝
∨

1≤i<n

Xgi

⎞

⎠ → ¬r0
⎞

⎠ . (107)

In the interpretation for ϕLB
3 , we use a formula-based approximation because the current

implementation does not support B-terms.

Result 2 Table 1 shows an experimental result for the must LTL specification ϕLB
a and

mean-payoff objective MP(tLB3 ) when n ∈ {2, . . . , 7}. Because ϕLB
a is safe, there is no

approximation in Algorithm 1, i.e., k is meaningless in this case. The numbers of clients
are given in column “n”. Column “α” (resp. “β”) gives execution times for transforming
UCWAs, which are constructed from the must specification (resp. payoff terms), into safety
games (resp. mean-payoff games). This transforming includes a procedure for minimizing
state-spaces of the games. Column “γ ” gives execution times for solving weighted synchro-
nized product games, i.e., constructing and minimizing action-abstracted games and solving
them. Total execution times (including execution times for constructing UCWAs, etc.) are
given in column “Total”. We denote timeouts (>20min) by “TO”. Column “|W|” (resp.
“|M|”) gives the sizes of winning regions which are eventually obtained from the must spec-
ifications (resp., synchronized products ofmean-payoff games, which are eventually obtained
from the payoff terms). The sizes of weighted synchronized products of the winning regions
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Table 1 Experimental result for the must LTL specification ϕLBa and mean-payoff objective MP(tLB3 )

n Execution time (s) Size

α β γ Total |W| |M| |P| |Pabs| |R|
2 0.022 0.035 0.027 0.201 5 59 116 59 5

3 0.026 0.061 0.063 0.278 9 199 460 84 17

4 0.022 0.472 0.183 0.818 17 707 1684 92 47

5 0.023 20.56 0.604 21.38 33 2599 5710 92 99

6 0.025 884.6 1.726 887.0 65 9779 18136 92 179

7 0.026 TO – – 129 – – – –

Table 2 Experimental result for the must LTL specification ϕLBb and mean-payoff objective MP(tLB5 )

n Execution time (s) Size

α β γ Total |W| |M| |P| |Pabs| |R|
2 0.029 0.031 0.152 0.335 55 4 94 75 15

3 0.047 0.029 1.765 1.965 471 4 854 315 87

4 0.714 0.029 112.7 113.5 6449 4 12150 1624 711

5 61.12 0.026 TO – 125,309 4 240,484 8353 –

and mean-payoff games are given in column “|P|”. Column “|Pabs|” gives the sizes of the
abstracted andminimized games for the weighted synchronized products. The sizes of result-
ing systems are listed in column “|R|”. Table 2 (resp. Table 3) shows an experimental result
for the must LTL specification ϕLB

b (resp. ϕLB
c ) and mean-payoff objective MP(tLB5 ) (resp.

MP(tLB9 )) when n ∈ {2, . . . , 5} (resp. n ∈ {2, . . . , 6}). We set the initial value for k as n + 1
(resp. n) in this case. This is because it is theminimum value whichmakesL(T k(ϕLB

b )) (resp.
L(T k(ϕLB

c ))) realizable. These results suggest that our implementation can treat non-trivial
scale instances.

Discussion 2The current implementation is just a prototype and does not supportB-terms.We
conjecture that non-trivial scale instances withB-terms will be treated by a complete version.
The values in column “|W|” in Tables 1, 2 and 3 are used as a basis for the conjecture. This is
because constructing a mean-payoff game from a B-term is nearly the same as constructing
a safety game from an LTL formula with a UCWA approximation. Additionally, Tables 1,
2 and 3 suggest it is very effective to use an abstracted and minimized game of a weighted
synchronized product mean-payoff game. The state spaces are significantly reduced in many
cases. In Table 1, the sizes of the abstracted and minimized games are the same when the
number n of clients is greater than the bound (i.e., 3) for the F operators in the payoff term
tLB3 . This fact suggests it may be possible to efficiently treat some types of S-terms with
many X operators (and also B-terms with large bounds).

Instance 3 Finally, we confirm the trade-off between the optimality of synthesized systems
and bound k in Algorithm 1 (and its computational cost) using a non-trivial scale instance.
We use a specification of a 2-floor elevator system [2] as an instance. The specification is
given as a combination of some formulae (for details, see “Appendix 2”). We denote by ϕELV
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Table 3 Experimental result for the must LTL specification ϕLBc and mean-payoff objective MP(tLB9 )

n Execution time (s) Size

α β γ Total |W| |M| |P| |Pabs| |R|
2 0.025 0.029 0.019 0.085 20 4 23 18 8

3 0.047 0.030 0.132 0.362 101 4 110 54 25

4 0.686 0.029 0.750 1.620 810 4 861 188 148

5 25.03 0.031 13.29 38.76 8693 4 9126 691 1299

6 TO – – – – – – – –

Table 4 Experimental result for the must LTL specification ϕELV and mean-payoff objective MP(tELV)

k Execution time (s) Size MP

α β γ Total |W| |P| |Pabs| |R| value

3 0.468 0.029 0.065 0.763 165 197 58 37 −0.500

6 5.246 0.027 1.995 7.281 1194 1185 323 93 −0.200

9 23.15 0.029 4.055 27.86 3015 3159 855 153 −0.125

12 68.12 0.024 33.51 103.1 5852 6069 1638 213 −0.091

15 156.7 0.031 85.16 224.9 9635 9915 2673 273 −0.071

18 352.0 0.032 432.1 790.9 14,354 14,697 3960 333 −0.059

19 415.3 0.040 350.6 779.8 16,135 16,499 4444 353 −0.056

20 535.3 0.156 650.6 1157 18,020 18,405 4958 373 −0.053

21 631.7 0.314 TO – 20,009 20,415 5499 – –

the specification. ϕELV includes the following constraint.

G
∧

i∈{1,2}
(LocBtni → FXLoci ), (108)

where LocBtn1,LocBtn2 ∈ IAP and Loc1,Loc2 ∈ OAP. This formula means that, if the
button on the i-th floor is pushed (LocBtni ), the system must eventually move the cage to the
i-th floor (Loci ). Consider a desirable specificationMP(tELV), where

tELV = −S(Loc1 ∧ XLoc2)− S(Loc2 ∧ XLoc1). (109)

MaximizingMP(tELV) means that the system tries to keep its cage on the same floor as long
as possible. This type of desirable specification is required to save power consumption. The
desirable specificationMP(tELV) conflicts with the unsafe property given by Equation (108)
(and also the must specification ϕELV).
Result 3 Table 4 shows an experiment result for the must LTL specification ϕELV and mean-
payoff objectiveMP(tELV)when kinit ∈ {3, 6, 9, 12, 15, 18, 19, 20, 21}. Column “MPvalue”
gives mean-payoff values of resulting systems. The other columns are the same as Tables 1, 2
and 3. The size of the product of mean-payoff games for payoff terms in tELV is 9. This result
suggests that the mean-payoff value of the resulting system approaches the global optimum
(0, for this instance) and its computational cost grows non-linearly, when k increases. For
this instance, reasonably good systems are obtained in times that are practical.
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5.3 Summary

We confirmed some advantages of our method with several experiments. They are summa-
rized as follows.

– We can obtain a best-effort system from an unrealizable specification, by interpreting
low-priority subspecifications into a mean-payoff objective.

– Our method can treat non-trivial scale instances in times that are practical.
– We can obtain a reasonably good system by choosing bound k (which is an over-

approximation parameter for a given must LTL specification) considering the available
computational resource and desired mean-payoff value.

6 Related work

6.1 LTL synthesis

In a naive game-based method for LTL synthesis, a deterministic ω-regular word automaton
(e.g., deterministic parity word automaton)Dϕ is translated from a given LTL specification ϕ.
Next, an ω-regular game Gϕ is transformed from Dϕ . Finally, a reactive system is composed
as a winning strategy on Gϕ . The first phase can be performed by translating ϕ to a non-
deterministic ω-regular word automaton N ϕ [3,17,23,40], and, using Safra’s construction
[32,36–38], to determinizeN ϕ toDϕ . However, Safra’s construction is very complicated and
difficult to implement efficiently. Recently, Esparza and Křetínský proposed another method
for directly constructing a deterministic ω-regular automaton from an LTL formula [21].
Their method constructs transition-based automata, which are in most cases smaller than
state-based automata obtained by Safra’s construction, but is also complicated.

Therefore, some Safraless LTL synthesis methods were proposed [8,18,22,27,28]. In
these methods, ϕ is appropriately under-approximated into a tractable automaton (e.g., safety
automaton),which is used to construct a reactive system.Some tools are available forSafraless
LTL synthesis, e.g., Lily11 [27], Acacia+ [8–10], and Unbeast12 [18]. In some Safraless LTL
synthesis methods [8,18,22], ϕ is under-approximated by giving a bound k to UCWA Aϕ

equivalent to ϕ. A k-UCWAAϕ,k represents a safety property and can easily be determinized
by a type of powerset (i.e., Safraless) construction. Therefore, a reactive system is composed
as a winning strategy on a safety game Sϕ,k corresponding to Aϕ,k . The state space of this
winning strategy is typically minimized [19].

In our method, we apply the UCWA-based Safraless method to construct an under-
approximated safety game from amust LTL specification and then compose a reactive system
as a winning strategy on the game. This is also optimal for a given mean-payoff objective
that represents weighted desirable specifications.

6.2 Maximum satisfiability problem

Our problem is similar to the weighed partial maximum satisfiability (MAX-SAT) problem
[29].13

11 Available at http://www.iaik.tugraz.at/content/research/design_verification/lily/.
12 Available at http://www.react.uni-saarland.de/tools/unbeast/.
13 The term partial means that some clauses are hard.
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The weighed partial MAX-SAT problem considers a set of hard clauses, which must be
satisfied, and a set of weighted soft clauses, which are satisfied if possible. The solution is
a valuation that satisfies all the hard clauses and maximizes the total weight of the satisfied
soft clauses. The input formulae of the problem are not temporal; the objective is given as
the total weight of the satisfied soft clauses, and the problem considers satisfiability.

However, our problemconsiders amust LTL specification and amean-payoff objective that
represents weighted desirable specifications. The solution is a synthesized reactive system
that realizes all the must specifications and maximizes the objective. The input formula for
our problem is temporal, the objective is given as a mean-payoff of a sequence of weights
that depend on LTL formulae, and our problem considers realizability.

6.3 Synthesis considering the mean-payoff objectives/constraints

In our approach, a set of weighted desirable specifications is represented by a naive mean-
payoff objective based on LTL formulae with weights. The syntax of our objective is based
on that of the mean-payoff constraints in [39]. In this paper, an argument of a S-term must
be bounded, but it may be unbounded in [39] (i.e., S-terms defined in Equation (95) are
considered). This restriction is derived from the difficulty of dealing with non-determinacy
(on payments) in the synthesis. [39] studied anLTLwithmultiplemean-payoff constraints and
methods for model- and satisfiability-checking. Non-determinacy does not affect the model-
or satisfiability-checking. In this paper, we instead used a new type of term,Bb(ϕ), to capture
the violation of the approximated safety property using UCWA. Therefore, the expressive
power of payoff terms in this paper is incomparable with that in [39]. The semantics of the
mean-payoff constraints in [39] was purely based on LTL formulae. However, our objective
in this paper is also based on an LTL-to-UCWA translator.

Our method synthesizes an optimal reactive system in a set of reactive systems that realize
a certain under-approximation of a must LTL specification. This is an optimal memoryless
strategy on a naive mean-payoff game that is constructed from a mean-payoff objective. This
strategy can be efficiently computed [12]. Our problem can be strictly reduced to finding an
optimal (or ε-optimal) strategy on a mean-payoff parity game [13], which is a synchronized
product of a parity game constructed from the must LTL specification and the naive mean-
payoff game. However, this reduction generally requires that we construct a deterministic
parity word automaton that accepts words satisfying the must LTL specification. That is,
Safra’s or the Esparza-Křetínský construction.14 Furthermore, the algorithm for solving the
game in [13] requires recursively solving parity and mean-payoff games; its optimal (resp.,
ε-optimal) strategy generally requires infinite (resp., large) memory.

In [6], Bloem et al. studied lexicographic mean-payoff (parity) games with multi-
dimensional weights. The mean-payoffs are lexicographically ordered based on the priority
of the dimensions. Any lexicographic mean-payoff (parity) game can be reduced to a naive
mean-payoff (parity) game [6]. Therefore, our method can be easily extended to allow such
multi-dimensional lexicographical weighting. However, the time complexity of extending
our method is exponential to the number of dimensions [6]. Bloem et al. also proposed a
method for reducing an automata-based mean-payoff objective (and ω-regular specification)
into a lexicographic mean-payoff (parity) game [6]. They composed an optimal strategy
for the game. However, our method deals with an LTL specification and a formula-based
mean-payoff objective.

14 More precisely, the naive Safra’s construction [36] and the Esparza-Křetínský method construct determin-
istic (generalized) Rabin/Streett automata, and hence parityizing [11] is also required.
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In [15], Chatterjee et al. studied multi-dimensional mean-payoff games, and proposed
a method for finding a winning strategy that guarantees that the multi-dimensional mean-
payoff for any play is greater than or equal to a given threshold vector. Acacia+ supports
synthesis from an LTL formula with multiple mean-payoff constraints [9] (based on [15])
and also one with optimization for a naive mean-payoff objective under a Markov decision
process environment [10]. However, the mean-payoff constraints and objectives supported
in Acacia+ are only based on S-terms. Strictly speaking, Acacia+ only supports payoffs for
literals. Hence, if we use S(χ) with a non-Boolean and bounded argument χ , we need to
add a fresh atomic proposition p̂ ∈ 2OAP for output and an additional LTL specification
G(χ ↔ X�depth(χ)� p̂). Our mean-payoff objective can be expressed by B-terms that capture
the violations of approximated safety properties using UCWAs.

6.4 Synthesis considering assumptions

A reactive system specification is often given as an LTL formula with the implication form
ϕAsmp → ϕGrnt , where ϕAsmp is an assumption regarding the behavior of the environment,
and ϕGrnt is a property that the system should guarantee. In [7], Bloem et al. presented some
goals for a reliable system synthesized from such a specification. The be-correct goal is “to
fulfill ϕGrnt if the environment fulfills ϕAsmp”. This is the aim for a reactive system obtained
by traditional LTL synthesis. Some approaches for the other goals were surveyed in [7]. In
our method, we can include assumptions in must specifications in a naive sense.

As suggested in [7], synthesis with mean-payoff optimization can work against the don’t-
be-lazy goal, which is “to fulfill ϕGrnt as well as possible for as many situations as possible,
even when ϕAsmp are not fulfilled”. In our approach, the don’t-be-lazy goal is accomplished
by a system synthesized from the must LTL specification ϕAsmp → ϕGrnt and the mean-
payoff objective interpreted from (sub-formulae of) ϕGrnt . The synthesized system realizes
ϕAsmp → ϕGrnt and tries to satisfy (the sub-formulae of) ϕGrnt to the extent possible, even
if ϕAsmp is violated. In [26], we focused on this type of synthesis and regarded the goal
as maximizing the degree of environmental tolerance which is given by the mean-payoff
objective with S-terms and without B-terms, as in [39]. However, atomic terms occurring in
the mean-payoff objective for a synthesis method in [26] is restricted to be S-terms.

Our approach also satisfies the never-give-up goal, which is “to try to satisfy ϕGrnt when
you can if you cannot satisfy ϕGrnt for every environment behavior”. In [7], Bloem et al. sug-
gested that this goal can be achieved by adding a reasonable property L ⊆ (2AP)ω, such that
L(ϕGrnt )∪L is realizable and then synthesizing a system that realizesL(ϕGrnt )∪L . Existing
approaches can define this property, L . For example, the negation of a new assumptionψAsmp

on the behavior of the environment such thatψAsmp → ϕGrnt (≡ ¬ψAsmp∨ϕGrnt ) is realiz-
able. In [14], Chatterjee et al. proposed amethod for computing this assumption. However, we
must still check that it is reasonable. In [16], Dammand Finkbeiner introduced the admissibil-
ity of specifications and proposed a method for synthesizing a distributed system consisting
of dominant reactive systems. A specification ϕ is admissible if there exists a dominant reac-
tive system for ϕ. A reactive system R (or strategy) is dominant for ϕ if, for any sequence
s ∈ (2IAP)ω of inputs, Intrs(R) |� ϕ if there exists R′ such that Intrs(R′) |� ϕ. In other
words, this reactive system realizesL(ϕ)∪CSS(ϕ), whereCSS(ϕ) is a set of possible interac-
tions produced by counterexample input-sequences for strong satisfiability [31] of ϕ. That is,

CSS(ϕ) = {(αO
0 ∪ α I

0 )(α
O
1 ∪ α I

1 ) · · · ∈ (2IAP)ω | Intrα I
0α I

1 ···(R
′) �|� ϕ for any R′}. (110)

Similar to the above studies, Damm and Finkbeiner used CSS(ϕGrnt ) as an additional prop-
erty, L . Both of these existingmethods do not satisfy the don’t-be-lazy goal. For the additional
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property L (i.e., L(¬ψAsmp) or CSS(ϕGrnt )) considered in their methods, a system synthe-
sized from a supplemented specification L(ϕGrnt ) ∪ L may stop trying to satisfy ϕGrnt if L
is satisfied. Our method can be extended to fit this problem. For example, a system realizing
L(ϕGrnt )∪L and optimizing amean-payoff objective based on (the sub-formulae of) ϕGrnt is
expected to satisfy the don’t-be-lazy and never-give-up goals. The dominant reactive system
is also a type of best-effort system. However, note the difference between the interpretations
of “best effort”. In their view, a system can stop trying to satisfy ϕ for only the worst input-
sequences in CSS(ϕ). This type of “best effort” will be reasonable in some cases, e.g., in
compositional synthesis for distributed systems, as in [16]. In our view, ϕ should be divided
intomust specifications and desirable specifications in thefirst place ifϕ is unrealizable.Addi-
tionally, we assume that each desirable specification has no assumption because a system
tries to make the best effort possible regardless of whether the assumption holds.G-formula
is basic form of reactive system specifications without assumptions, so that the best effort to
satisfy a desirable specification Gϕi can be regarded to maximize the number of steps that
satisfy ϕi . That is, try to satisfy ϕi at each step, even if ϕi is repeatedly violated. Synthesiz-
ing robust systems is another approach to obtain the don’t-be-lazy goal. In [5], Bloem et al.
proposed a method to synthesize a robust reactive system from a combination of safety- and
liveness- properties. For safe ϕAsmp and ϕGrnt , Bloem et. al. focused on the ratio of the num-
ber of violations for ϕGrnt to the number of violations for ϕAsmp; a synthesized robust system
that makes the ratio as small as possible. They suggested some types of violations for safety
properties, and their reset-on-error heuristic corresponds to our idea of B-terms, which is
based on the non-overlapped minimal bad prefixes. In our approach, minimizing the ratio for
the heuristic can be interpreted as maximizing the mean-payoff objective given by Eq. (71).

7 Conclusions

In this work, we divided specifications into must specifications and desirable specifications.
We proposed a method for efficiently synthesizing a reactive system, which realizes all the
must specifications and endeavors as best as possible to satisfy the desirable specifications.

We derived a mean-payoff objective to encapsulate a set of desirable specifications. The
syntax of the objective is given in LTL formulae, and its semantics is based on the UCWA-
based approximation used in Safraless synthesis. The precise meaning of the mean-payoff
objective depends on an LTL-to-automata translator. However, we can easily and flexibly
describe the objective considering desirable specifications with weights.

In the proposed method, we first construct a safety game from a must LTL specification
in the same way as UCWA-based Safraless synthesis. Note that assumptions can naively be
included in the must specification. Then, mean-payoff games are constructed from atomic
terms in the mean-payoff objective by reusing procedures from the Safraless synthesis. Note
that the LTL-to-automata translator for mean-payoff objectives may be different from one
for constructing the safety game from the must LTL specification. Finally, a reactive system
is composed as an optimal strategy on a weighted synchronized product of games. We can
obtain a preferable reactive system considering the objective, if the must LTL specification is
realizable. We implemented a prototype of our method and performed several experiments.
The results of these experiments suggest that our method can treat non-trivial scale instances
and produce reasonably good systems in times that are practical.

The G-formula is a basic form of reactive system specifications without assumptions.
This reasonably implies that the best effort to satisfy Gϕ is to maximize the number of
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steps that satisfy ϕ on an infinite-step interaction with the environment. Our method can
construct a reactive system that realizes a given must LTL specification and keeps trying to
the extent possible to satisfy ϕ at each step for each desirable specification Gϕ, even when
Gϕ is violated. Such systems are expected in many practical applications. We expect that
our approach can be further refined, so that it can be applied as a formal synthesis method
for practical systems.

A direction for further refinement is to discuss what kind of LTL-to-automata translators is
fit to our mean-payoff objectives. We believe that a framework to reflect the designer’s inten-
tion on LTL-to-automata translation is required. Additionally, the implementation/method
need to be complete/refined along with a series of experiments. The complexity of our syn-
thesis method is doubly exponential time. Nevertheless, it may be possible to solve practical
instances using state-of-the-art techniques.

As stated in Sect. 3.4, our method can synthesize a reactive system, giving considera-
tion to a number of soft assumptions of the form Gϕ and the frequency with which their
violation occurs or is witnessed. However, our method does not treat hard assumptions,
which are strictly followed by the environment, on desirable specifications. Another direc-
tion is an extension for adding the hard assumptions on desirable specifications. A desirable
specification in our method is given via a mean-payoff objective, and hence the hard assump-
tions should be mean-payoff (or probabilistic) constraints. This extension is required for
obtaining a reactive system that is optimal under a certain situation satisfying the hard
assumptions.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.

Appendix 1: Specification of load balancing system

A specification of an n-client load balancing system [18] is given as a combination of the
following LTL formulae.

ϕLB
1 =

∧

0≤i<n

G ((Xgi ) → ri ) , (111)

ϕLB
2 =

∧

0≤i<n

G

⎛

⎝gi →
⎛

⎝
∧

j∈{0,...,n}\{i}
¬g j

⎞

⎠

⎞

⎠ , (112)

ϕLB
3 =

∧

0≤i<n

GFgi , (113)

ϕLB
4 =

∧

0≤i<n

((GFri ) → GFXgi ) , (114)

ϕLB
5 = G

⎛

⎝

⎛

⎝
∨

0≤i<n

Xgi

⎞

⎠ → job

⎞

⎠ , (115)

ϕLB
6 = GFjob, (116)
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ϕLB
7 = G

⎛

⎝

⎛

⎝job ∧
∧

0≤i≤n
X¬gi

⎞

⎠ → Xjob

⎞

⎠ , (117)

ϕLB
8 =

∧

0≤i≤n
¬FG (ri ∧ X¬gi ) , (118)

ϕLB
9 = G

⎛

⎝

⎛

⎝
∨

1≤i<n

Xgi

⎞

⎠ → ¬ri
⎞

⎠ , (119)

where r0, . . . , rn−1, job ∈ IAP and g0, . . . , gn−1 ∈ OAP. We added X for each output literal
in the formulae with both input and output atomic propositions because an interaction starts
with an output of a system in this paper (resp. an input from an environment in [18]). We
omit ϕLB

10 because it is not used in Sect. 5.

8 Appendix 2: Specification of 2-floor elevator system

AspecificationϕELV
Grnt of a 2-floor elevator system [2] is given as a conjunction of the following

LTL formulae.

G(Loc1 ∨ Loc2), (120)

G((Loc1 → ¬Loc2) ∧ (Loc2 → ¬Loc1)), (121)

G
∧

i∈{1,2}
(LocBtni → ((FXLoci ) ∧ (((XLoci ) ∧ XReqLoci )RXReqLoci ))), (122)

G
∧

i∈{1,2}
((Loci ∧ ReqLoci ) → (Open ∧ (MovableRLoci ))), (123)

G
∧

i∈{1,2}
((((XLoci ) ∧ XMovable)) → (LocBtniRX¬ReqLoci ))), (124)

G
∧

i∈{1,2}
((Loci ∧ ¬ReqLoci ) → ¬Open)), (125)

G(Open → ((¬Open)R¬Movable)), (126)

G((¬Open) → (OpenRMovable)), (127)

G(Open → FOpenTimeout), (128)

G((OpenBtn ∧ X¬OpenTimeout) → XReqOpen), (129)

G(OpenTimeout → ¬Open), (130)

G((CloseBtn ∧ X¬ReqOpen) → X¬Open), (131)

G((ReqOpen ∧ ¬Movable) → Open), (132)

where LocBtn1,LocBtn2,OpenBtn,CloseBtn ∈ IAP and Loc1,Loc2,ReqLoc1,ReqLoc2,
Open,Movable,OpenTimeout,ReqOpen ∈ OAP. We added X in the same manner as in the
specification of a load balancing system. Equation (108) is a weakened property of Eq. (122).

ϕELV
Grnt is unrealizable and thus we consider the following assumption in this paper.

ϕELV
Asmp = G

∧

i∈{1,2}
(LocBtni → X¬LocBtni ). (133)

123
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That is, the specification ϕELV used in Sect. 5 is given as follows.

ϕELV = ϕELV
Asmp → ϕELV

Grnt . (134)
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