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Abstract

An application of the “top-down” concept for the development of accurate coarse-grained

intermolecular potentials of complex fluids is presented. With the more common “bottom-

up” procedure, coarse-grained models are constructed from a suitable simplification of a full-

detailed atomistic representation, and minor adjustments to the intermolecular parameters are

made by comparison with limited experimental data where necessary. By contrast in the

top-down approach, a molecular-based equation of state is used to obtain an effective coarse-

grained intermolecular potential that reproduces the macroscopic experimental thermophysical

properties over a wide range of conditions. These coarse-grained intermolecular potentials can

then be used in a conventional molecular simulation to obtain properties (such as structure

or dynamics) that are not directly accessible from the equation of state or at extreme condi-

tions where the theory is expected to fail. In order to demonstrate our procedure, a coarse-

grained model for carbon dioxide (CO2) is obtained from a recent implementation of the Sta-

tistical Associating Fluid Theory of variable range (SAFT-VR) employing a Mie (generalised

Lennard-Jones) potential; the parameters of this single-site Mie model of CO2 are estimated

by optimising the equation of state’s description of the experimental vapour-pressure and satu-

rated liquid density data. This approach is only possible due to the excellent agreement of the

SAFT-VR Mie EoS with simulation data. Our single-site SAFT-γ coarse-grained model for

CO2 is used in Monte Carlo molecular simulation to assess the adequacy of the description of

the fluid phase behaviour and properties which were not used to develop the potential model

such as the enthalpy of vaporisation, interfacial tension, density profiles, supercritical densities

and second-derivative thermodynamic properties (thermal expansivity, isothermal compress-

ibility, heat capacity, Joule-Thompson coefficient, and speed of sound). The accuracy of the

single-site SAFT-γ model of CO2 is found to be of similar quality to that of more sophis-

ticated intermolecular potentials such as a six-site (three LJ centres and three charged sites)

all-atom model. The SAFT-γ top-down approach to coarse-graining resolves a key challenge

with coarse-graining techniques: the provision of a direct robust link between the microscopic

and macroscopic scales.
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I. Introduction

Detailed all-atom or united-atom models (e.g., the OPLS1 or TraPPE-type2 force fields) are now

in ubiquitous use in computer simulation of molecular fluids, and are often assumed to describe

molecular systems with a precision that supplements experiments. More than 1% of all the recent

articles published in the open scientific and engineering literature involve molecular simulation

at this level.3 Exponential, Moore-law type,4 increases in computational hardware have extended

the limits of possibilities of simulating large systems; one of the recent records is the molecular

dynamics simulation of 3.2×1011 Lennard-Jones (LJ) atoms of a copper crystal cube with a 1.56

µm lengths,5 followed only two years later by the simulation of a system which was an order

of magnitude larger.6 In spite of these impressive metrics and forecasts for the future, molecular

simulations spanning even larger length and time scales are routinely required, and coarse-graining

(CG) methods must be developed to bridge the gap between the atomistic modelling of matter and

the commonplace continuum description of fluids and solids.7

Highlights in the modelling of soft matter using CG techniques has been collected in three re-

cent volumes: a book edited by Voth,7 and themed issues of PCCP,8 and Faraday Discussions of

the Royal Society of Chemistry.9 Excellent reviews on the topic have also recently appeared, such

as that by Klein and Shinoda10 and McCullagh et al.,11 to name just a salient few. There are two

key challenges faced by any proposed coarse-graining scheme: robustness and transferability. First

of all, a formal connection must be established between the coarse-grained model and the underly-

ing (full resolution) model which one is attempting to describe. The resulting description must then

be transferable to other similar systems, not used in the initial parameterization of the CG model.

The resulting model must be robust, with a clear connection between the detailed molecular and

macroscopic information, and it must be reliable, allowing for predictions at conditions removed

from those where the model was developed.

The techniques that have been used to address these challenges with a certain degree of success

have by and large followed a “bottom-up” method. This approach to coarse-graining consists in

matching the properties of either a classical atomistic model or a quantum model with those of a
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“super-atom”. At this level of description, the CG methodology generally consists in removing

some of the degrees of freedom in the system in order to simplify its description, while at the

same time attempting to maintain the thermodynamic description. The theoretical framework for

this procedure has a firm and well established foundation.12 From a statistical mechanical point

of view, the full thermodynamic description of a system can be obtained once the Helmholtz free

energy A of a system is determined. There is direct relationship between A and the corresponding

configurational integral:

exp(−βA) = C
∫

V
exp[−βU(r)]dr (1a)

≈C′
∫

V
exp[−βUCG(rCG)]drCG, (1b)

where U(r) refers to the total intermolecular potential which is a function of the vector of all rel-

evant variables r, β = 1/kBT , kB is the Boltzmann constant, T is the temperature, and C and C′

are specific constants which incorporate the kinectic contribution. The aim and “holy grail” of CG

techniques is to be able to reduce the phase space of r to a small subspace of these, rCG, in such a

way that the solution of the configurational integral of the new CG model (and its new intermolec-

ular potential energy, UCG(rCG)) represents in the best way possible the original free energy of the

system. This statement is a sufficient condition to achieve consistency in configurational space.12

Despite the simplicity of the relationship between the full and CG models, the implementation of

the procedure is far from trivial. The exact solution of the configurational integral is impossible

apart from the most trivial cases, so the methodology that is used consists in performing a limited

molecular simulation study of the full system (Eq. (1a)). The resulting data is then taken as that

of the “real” or full-resolution model, and its properties are used to construct the CG model as

described by Eq. (1b).

A wide range of properties are used as the “target” in this context including the matching

of: effective forces amongst molecules;13,14 molecular structure using iterative Boltzmann inver-
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sion;15,16 interfacial tensions;17 partitioning free energies between polar and apolar phases (par-

tition coefficients);18 critical points;19–25 or maximising the overlap between the target and CG

distributions (maximising the so-called relative entropy).26 In most of these cases, the robustness

of the methods is guaranteed by following well founded statistical mechanical recipes. However,

a critical inspection of Eq. (1) implies that the transferability to other thermodynamic states and

systems will be limited when one adheres to the correct procedure. By eliminating degrees of

freedom, we are not capable of uniquely describing the full free energy landscape. The problem

plaguing many of the aforementioned methods is that the resulting intermolecular potentials are

state and system specific. The issue of transferability is still an elusive one, and has been addressed

by several groups in terms of a group contribution approach, where molecules are represented

as an assembly of functional building blocks interacting in the same way for different systems.

Methodologies using this approach are the MARTINI force field18 (biomolecular systems), the

CG force fields of Klein and co-workers15,17,27,28 (alkanes, biomolecular systems, amino acids,

phenyl-based molecules), the CG force field of Chiu et al29 (water and alkanes), and the CG ver-

sion of the TraPPE force field (TraPPE-CG) of Maerzke and Siepmann (alkanes).30 Different func-

tional forms are used for the non-bonded interactions in these CG force fields. In the MARTINI

force field the non-bonded interactions are parameterized with a simple LJ potential. However, for

the other methodologies, a more flexible functional form, which allows a control of the repulsion

and attraction contributions, is used by means of the Morse and Mie potentials.

In this contribution we propose a direct route to obtaining the required CG potential from

macroscopic thermodynamic data. Our “top-down” approach relies on having access to an accu-

rate molecular-based equation of state (EoS) that describes the Helmholtz free energy in a closed

algebraic form, and is formulated explicitly in terms of a predefined intermolecular potential. An

equation of state of this type can be used to explore a wide parameter space to estimate the set

of intermolecular potential parameters that provides an optimal description of the macroscopic

experimental data. This parameter set does not represent a unique mapping to a single state point

(temperature or density), but rather an over-arching average over the entire regression space. When
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the EoS is expressed in terms of the free energy of the system for a well defined intermolecular

potential, it can be used to propose a “top-down averaged” CG intermolecular potential.

We follow this vein here and present a proof-of-concept of our top-down approach for carbon

dioxide (CO2), employing the accurate and versatile family of EoSs based on the Statistical As-

sociating Fluid Theory for potentials of variable range (SAFT-VR)31,32 as developed for the Mie

(generalised LJ) intermolecular potential.33,34 The SAFT-VR Mie EoS is used to develop a SAFT-

γ CG force field for CO2 by estimating the parameters from fluid phase equilibrium data for the

vapour-pressure and saturated liquid density. We adopt the SAFT-γ version in our methodology

because it refers to the formulation of SAFT-VR as a generic group contribution approach35–37

which allows for a united atom or CG representation on an equal footing.

II. The SAFT-γ force field: Mie potential and SAFT-VR Mie EoS

The coarse-graining strategy used in our work is based on the assumption that a wide range of real

substances can be modelled effectively as chain molecules formed from fused Mie segments. The

use of this type of generalised Lennard-Jonesium potential as the elementary building block for

homonuclear chains of spherical segments has previously proven to be very fruitful in modelling

simultaneously the fluid behaviour and second-derivative thermodynamic properties of a wide va-

riety of systems.33,34 The (λr, λa) Mie potential acting between two spherical segments can be

expressed as:38,39

uMie(r) = C ε
[(σ

r

)λr
−
(σ

r

)λa
]

(2)

where r is the intersegment distance, ε the potential depth, σ the position at which the poten-

tial is zero (segment diameter), and λr and λa are the repulsive and attractive exponents which

characterise the potential. The constant C in Eq. (2) is defined as

C =
λr

λr −λa

(
λr

λa

) λa
λr−λa

, (3)
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which ensures that the minimum of the potential corresponds to −ε . Once the intermolecular po-

tential is defined, the challenge is to derive a closed analytical form for the Helmholtz free energy of

the system without loss of accuracy. The SAFT-VR equation of state is well suited for this purpose.

For more details of the generic SAFT approach the reader is referred to the original papers40,41 and

to the various reviews of the method.42–45 The direct link between SAFT and the underlying po-

tential has been explored before.46 The original versions of SAFT were developed to describe

molecules with potentials of fixed form such as the LJ. The SAFT-VR formulation31,32 allows for

a generic description of the effect of the range of the interaction and has been implemented for the

square-well,31 Sutherland,31 Lennard-Jones,47 and Yukawa48 potentials. More recently Lafitte et

al.33 developed a version of the theory for chains of segments interacting through the Mie potential

(SAFT-VR Mie) in closed analytical form. The general SAFT form of the Helmholtz free energy

of a non-associating chain fluid can be written as

a = aIDEAL +aMONO +aCHAIN (4)

where a = A/NkT , is the dimensionless Helmholtz free energy, aIDEAL is the ideal free energy,

aMONO is the residual free energy due to the monomer segments, and aCHAIN is the contribution

due to the formation of the chains of monomers. The reader is referred to our paper34 for the latest

developments with the SAFT-VR Mie EoS, and to the Appendix for a summary of the explicit

relations used in our current work.

The Mie potential has long been recognized to improve the description of different properties

in both molecular-based theories and atomistic and CG simulations, when the Lennard-Jones po-

tential is found to fail. It is well-known that force-fields for the n-alkanes based on the LJ potential

cannot be used to reproduce simultaneously the saturated liquid densities and vapour pressures

of the fluid with good accuracy (see for example ref. 49). In this respect the Mie potential is

more flexible for the modelling of thermodynamic and transport properties as appropriate values

of the repulsive (softness) and attractive exponents can be chosen to provide the best overall repre-

sentation of the macroscopic properties.50,51 Early on Gibbons and Klein52 proposed a two-center
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model to study the thermodynamic properties of CO2 in solid state using the Mie potential. In their

work they found that by varying the repulsive exponent a very good description of the molar vol-

ume at absolute zero, the heat of sublimation, and the bulk elastic modulus can be achieved. More

recently, Potoff and Bernard-Brunel49 have developed a new force-field for phase equilibrium cal-

culations of the n-alkanes and n-perfluoroalkanes based on Mie united-atom segments. Using this

force-field, the simultaneous representation of saturated liquid densities and vapour pressures for

pure components and mixtures is possible. Related studies on the dynamical properties have been

reported by Gordon,51 where the softness of the intermolecular potential was varied to obtain a

better description of the viscosity of the n-alkanes.

The Mie potential has also been used in the development of CG force-fields to reproduce dif-

ferent properties. For example, Nielsen et al.17 employed a CG model for n-alkanes parameterized

to reproduce surface tension data using a (9,6) Mie potential. He et al.53 followed a similar ap-

proach to obtain Mie potential parameters for the calculation of the surface tension in CG models

of water. Shelley and co-workers15,54,55 developed force-fields based on the Mie potential for the

non-bonded interaction for the CG simulations to study the self-assembly of phospholipids15,54

and diblock copolymers.55 An equivalent methodology has been used to model ionic liquids56 and

phenyl-based molecules57 in CG simulations. These are only a few examples of the capability and

flexibility of the Mie potential in modelling the interactions in the context of either atomistic or

CG simulations.

III. Case study: the carbon dioxide molecule

A. Classical intermolecular potentials for CO2

While arguably not the most complex molecular fluid, carbon dioxide has recently been in the

spotlight as the urgent need to reduce its atmospheric concentration becomes evident. Many of

the carbon capture abatement technologies that have been proposed require some information on

the thermodynamic equilibrium properties of the molecules at interfaces, be it in porous media

8



(e.g., depleted reservoirs), in or contact with complex fluids (absorption in liquid phases). In

this context, molecular simulation can play a significant role in understanding and predicting the

relevant physical phenomena. On the other hand, the modelling of interfacial systems requires the

simulation of extremely large samples for long times.

Carbon dioxide has been widely studied using molecular simulation and there are therefore

a number of models available. Here we present a brief overview of some of the semiempirical

models that have been reported. The simplest conceivable model consists of a single spherical site

with both repulsive and attractive contributions. The prototypical potential, u, of this type is the LJ

potential, which incorporates a repulsive term, urep, and an attractive (dispersion) term, uatt , and is

given by

u(r)LJ(r) =4ε
[(σ

r

)12
−
(σ

r

)6
]
,

=urep(r)+uatt(r), (5)

where the size σ , and energy ε , parameters may be regressed from appropriate experimental data

for different properties. Some common choices are based on the use of viscosity and diffusivity

data,58–63 a direct fit of the critical temperature and density,20,64,65 or on an overall representation

of single phase volumetric properties and fluid phase equilibria data.66 Some of the available pa-

rameterizations for the LJ model of CO2 are summarised in Table 1. Clearly there is no unique set

of values for the parameters, though the parameters fitted to critical properties invoking a corre-

sponding states principle appear to provide the best overall performance.67 It is interesting to note

that no matter what parameter set is chosen, the LJ model alone is unable to describe adequately

the vapour-liquid equilibrium curve of CO2. In spite of the well known fact that a simple single-

site LJ interaction does not adequately represent the potential surfaces of real molecules, the model

has been used extensively to simulate the fluid phase equilibrium,66,68–73 transport properties,74–77

and adsorption78,79 of supercritical CO2, and mixtures involving perfluoroalkanes.80 The single-
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site model is simple and useful, but does not have the correct functional form to treat the uneven

charge distribution of the carbon dioxide molecule.

Though carbon dioxide is a small and rigid molecule, the presence of significant electrostatic

interactions makes the problem of its description far from trivial. Carbon dioxide is linear, with

negligible bond bending and with electronegative centres at either end. Due to its symmetry, the

molecule has no permanent dipole moment. However, the uneven charge distribution manifests

itself in a significant quadrupole moment. In the more complex potential models the effect of the

quadrupole moment is incorporated, either by placing partially charged sites,

u(r) =
[
urep(r)+uatt(r)

]
+∑

a
∑
b

qaqb

4πε0rab
, (6)

where the sums are over all charged sites (a,b) on the interacting molecules, or indirectly by

assigning a centrally placed point quadrupole to the model,

u = (urep +uatt)+uµµ +uµQ +uQQ + . . . (7)

In Eq. (6), qa is the partial charge of site a, rab is the centre-centre distance between charged sites

a and b, ε0 is the vacuum permittivity, and in Eq. (7) the superscripts µµ , µQ and QQ refer to the

dipole-dipole, dipole-quadrupole and quadrupole-quadrupole interactions, respectively, which are

all included for completeness. For an axially symmetric molecule such as CO2, the corresponding

quadrupole-quadrupole energy uQQ can be obtained from a multipole expansion as58,81,82

uQQ =
3Q2

4r5 fΩ (8)

where fΩ is a function of the relative molecular orientation.58

The simplest of these quadrupolar models would consist of a LJ (or other similar) spherical

interaction, with a centrally placed point quadrupole; the sum of Eqs. (5) and (8). This potential

has been used by Nouacer and Shing83 in grand canonical Monte Carlo simulations of naphthalene

and CO2. The study included an analysis of entrainment with water modelled as a LJ sphere with
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a point dipole.

As far back as 1974 Gibbons and Klein52 proposed a two-center model to study the thermody-

namic properties of CO2 in the solid state. The sites were taken to interact through a Mie potential,

and the exponents λr = 9 and λa = 6 were found to give the best description of the thermophysical

and elastic properties. Johnson and Shaw84 later proposed a two-center model with force centers

on the oxygen atoms (the carbon atom is ignored in the model), using an exponential-6 (exp-6, as

opposed to Mie) potential to represent the repulsive and dispersive interactions between the spher-

ical sites. This model may be spherically averaged, both using an exp-6 or in tabulated form.85

Möller and Fischer86 have proposed a fused model comprising two overlapping LJ spheres (where

the centers of the spheres do not correspond to any particular atom center) with an embedded cen-

tral point quadrupole as in Eq. (8). Four adjustable parameters were used to characterise the model,

since now the bond length and the square of the quadrupolar moment Q∗2 = Q2/εσ5 are also esti-

mated by comparison to experimental volumetric properties. The potential provides an appropriate

model of the vapour-liquid equilibria (VLE),87,88 supercritical properties,89–91 adsorption on car-

bon pores92 and nanotubes,93 and even second derivative thermodynamic properties such as the

Joule-Thomson inversion curves.94–96 This two-site LJ plus quadrupole model has been used ex-

tensively to model several binary97 and ternary mixtures98 comprising CO2. Elongated molecules

represented with Kihara potentials have also been used to model the repulsive-dispersive part of

the potential. After decoration with a suitable central quadrupole99 this model is found to provide

a good description of the vapour-liquid behaviour of CO2.

In a more detailed model one should in principle treat the three distinct atoms present in the

molecule. Three fused LJ spheres may be used as a repulsive-dispersive non-spherical core, with

an additional point quadrupole (3CLJQ).100–102 Murthy et al.100 proposed and compared several

two (2CLJQ) and three-centre (3CLJQ) models with a centrally placed quadrupole moment, point-

ing out the superiority of a three-centre model with distinct size and energy parameters for the

spheres representing the carbon and the two oxygen atoms. A refined version of the 3CLJQ model

has been introduced recently by Merker et al.102 to describe the VLE of CO2. The aim of their
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study was to represent the VLE, with a better description of the molecular structure. The 3CLJQ

model of Merker et al. is found to provide an accurate description of the saturation densities and

vapour pressure, and is also able to reproduce shear viscosity and thermal conductivity data. A

different treatment of the quadrupole moment in the CO2 molecules was made in the elementary

physical model (EPM) of Harris and Yung.103 Their model comprises three LJ spheres with partial

charges associated with each site (instead of a central point quadrupole) positioned to reproduce a

net quadrupole moment of Q =−4.3×10−26esu (1.43×10−39Cm2). In a re-adjustment of the pa-

rameters they proposed a refined model, referred to as EPM2, with better agreement in the critical

region. Models with flexible bond angles have also been considered, but no significant improve-

ment over the other models has been found. Several other parameterizations of the EPM2 model

are available depending on the particular property sought.104–110 A variant of this potential with an

exp-6 core instead of LJ spheres has also been proposed.111 These three-centre plus electrostatic

charge models are comparatively detailed with respect to both the geometry of the molecule and the

potential energy surface, and have been successfully used to study the fluid structure,112 vapour-

liquid equilibria,105,113–116 transport properties,105 interfacial kinetics,117 solvation properties,118

selective adsorption of CO2 on activated carbons119 and templated nanomaterials,120 and the sol-

ubility in supercritical CO2,121–125 amongst other work. They are considered to be the de facto

standard for simulations of fluid and solid phases of CO2. A related three-centre polarisible rigid

model has recently been reported by Persson,126 comprising sites interacting through a modified

Buckingham exp-6 potential with an anisotropic (three-body) Axilrod-Teller dispersion correc-

tion, and Gaussian charge densities localised on the atomic sites. In this model the experimental

quadrupole moment, polarizability, and bond distances are used during the parameterisation. In

general the second and third virial coefficients are underestimated with simple pairwise interaction

models of CO2, while the model of Persson reproduces these properties with good accuracy.

More sophisticated multi-parameter potentials are available, usually developed to reproduce

volumetric data and distribution functions obtained from neutron scattering experiments.127 Ulti-

mately, as mentioned earlier, one may obtain the information about the intermolecular potential
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directly from quantum-mechanical calculations.102,128–132 A notable example of this type of ap-

proach is the potential that has been suggested by Tsuzuki et al.,133,134 who presented the results

of ab-initio calculations using a three-site LJ model with partial charges. Unlike the EPM-type

models, the partial charges do not coincide with the LJ centers. In general the gas-phase potential

energy surfaces obtained using ab initio methods are not able to reproduce the properties of con-

densed phases. These potentials are usually tested by computing the second virial coefficient. In

order to use these potentials in molecular simulation of fluid phases it is necessary to modify the

ab initio potential energy surfaces. Merker et al. followed this approach to obtain their 3CLJQ

model. The initial locations of the LJ sites were the same as the positions of the nuclei computed

using a Hartree-Fock level of theory, while the magnitude of the point quadrupole located at the

centre of the molecule was calculated by placing a single CO2 molecule into a dielectric cavity to

approximate the liquid-like behaviour using the Møller-Plesset 2 method. These parameters were

subsequently adjusted to reproduce the liquid density, vapour pressure, and enthalpy of vaporisa-

tion.

B. Coarse-graining CO2 as a single-site model

In a molecular dynamics simulations, the complexity of the potential model has a direct effect on

the computational effort that is required. To evaluate the interaction energy between two carbon

dioxide molecules interacting via the EPM model, for example, one must calculate 32 = 9 site-

site distances for each pair of molecular interactions and, due to the non-sphericity, solve for the

angular momentum conservation equations at each time step. Additionally, the presence of point

charges requires special computational techniques, e.g., the use of the Ewald summation,135–137

reaction-field,138 or Wolf139,140 methods, to account for the long-range interactions. Assuming

that fluid phase equilibria is dominated by the energetic contributions to the interactions rather

than by specific molecular shape,19 one can simplify the intermolecular potential by considering

that a spherical geometry will be adequate for most calculations, particularly for states of moderate

densities. The use of a single spherical interaction site model can decrease the computational effort
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by at least an order of magnitude of CPU time.

In general, multipolar interactions are angle dependent (cf. Eq. (8)), so one must specify both

centre-to-centre distances and relative orientations for a proper evaluation of the intermolecular po-

tential. When one performs an appropriate Boltzmann or free-energy angle average,19,58 an angle-

independent potential function is obtained, which can be used in corresponding states correlations

to obtain a simple isotropic multipolar potential (IMP), including angle-average contributions of

the type

uµµ(r) ≈−β µ4

3r6 , (9)

uµQ(r) ≈−β µ2Q2

r8 , (10)

uQQ(r) ≈−7βQ4

5r10 . (11)

The resulting overall interaction potential, the sum of Eq. (5) and Eqs. (9) to (11) is isotropic, i.e.

it only depends on the intermolecular distance r. The IMP model is a function of temperature T ,

since β = 1/kBT , and is thus not a true potential, but rather a potential of mean force (free energy)

corresponding to an “effective” force field. For isothermal simulations this does not present a

problem, though the potential will depend on the thermal state being simulated.

In representing CO2 with the original IMP parameterization a constant value of the quadrupole

moment Q = −4.1 × 10−26 esu141 (−1.367 × 10−39Cm2) is used, with an energy ε/kB = 215

K and diameter σ = 3.748
◦
A.19 The critical temperature obtained from simulations of the IMP

fluid using finite-size scaling calculations is 304.8±0.5 K20 which compares favourably with the

experimental values of 304.21 K.142,143 It is feasible that one could obtain different parameter

values for the IMP model which would provide a better description of other properties, such as

the coexistence densities, vapour pressures, etc.19,22 Alternatively, the value of the quadrupole

moment could be varied, using it as an adjustable parameter to provide a better representation of a
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given property.

A question immediately arises from the discussion of the previous section: to which extent can

one represent the thermodynamic properties of CO2 with a state independent single-site spherical

intermolecular potential? This may at first sight appear too crude an approximation since it is well

known that simple spherically symmetric intermolecular potentials such as the LJ model cannot be

used to capture the fluid phase equilibria of CO2 with reasonable accuracy20,22(cf. Section A). In

order to assess the possibility of simplifying the description of CO2 with a single spherical core,

we propose a new "top-down" coarse-graining approach based on the use of the SAFT-VR EoS for

molecules comprising Mie segments (cf. Appendix A).34 By making use of the analytical SAFT-

VR free energy which is based on an explicit intermolecular potential model, one can rapidly

explore a very large parameter space, and estimate the parameters that provide the best represen-

tation of the available macroscopic experimental data. The approach also allows one to assess the

importance or otherwise of explicitly treating the non-sphericity of CO2 by simply comparing the

representation for different numbers of interactions sites, cf. the number of molecular segments ms

in the SAFT-VR treatment (see Appendix A). We opt for a good overall description of fluid phase

equilibria over the entire vapour-liquid temperature range as the most important characteristic of

our coarse-grained model. To this end the model parameter values are estimated by optimising

the SAFT-VR Mie description for a set of experimental data over a range of subcritical temper-

atures: the vapour pressure and saturated liquid density are considered in this particular case. It

should be emphasized that other properties such as heat capacity of the liquid, Joule-Thomson in-

version curve or speed of sound of the fluid could also have been taken into account. These other

properties were not considered in developing the potential model, however, since the equation of

state is based on a high-temperature perturbation theory, and the calculation of second-derivative

properties with respect to temperature can lead to some discrepancies with the "exact" values as

determined from molecular simulation, particularly at low temperature.144 We advocate the use of

a simple estimation procedure which involves only first-derivatives of the Helmholtz free energy

function (the pressure and chemical potential corresponding to phase equilibria) by minimising the
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relative residuals between the measured and estimated vapour pressures Psat and saturated liquid

densities ρL, as a function of temperature.

If one assumes that these properties of CO2 can be represented with a single Mie interaction

site (ms=1), the objective function F can written as follows:

min
σ ,ε,λr,λa

F(σ ,ε,λr,λa) = min
σ ,ε,λr,λa

 Np

∑
i=1

(
Psat

i (T ;σ ,ε,λr,λa)−Psat,exp
i (T )

Psat,exp
i (T )

)2

+
Nd

∑
j=1

(
ρL

j (T ;σ ,ε,λr,λa)−ρL,exp
j (T )

ρL,exp
j (T )

)2
 , (12)

where Np and Nd are the number of experimental points of vapour pressure and saturated liquid

densities, respectively. Note that F is a function of the four interaction parameters of the Mie po-

tential including the repulsive and attractive exponents λr and λa. A common consideration with

the attractive exponent is to fix it to the LJ value of λa = 6 in order to follow the London law

for the dispersion interactions. However, London dispersion interactions invoke a simple disper-

sion attraction without permanent multipoles, which is not the case for CO2. Both exponents are

therefore optimised here in order to capture effectively the unique multipolar interactions present.

The intermolecular SAFT-gamma model parameters are obtained by optimizing the theoretical de-

scription of the experimental fluid phase equilibrium; a Levenberg-Marquardt algorithm145 is used

to minimize the objective function, F . As is common practice with equation of state parameters,

experimental data for the vapor pressure and saturated liquid density are used in the determina-

tion of potential parameters, in this case we used 40 state points (temperature, pressure, density)

equally spaced in temperature from the triple point to 90% of the critical point Tc, i.e. T/Tc = 0.9.

Smoothed experimental data were taken directly from the NIST database.143 It should be pointed

out that the proposed approach will result in a slight overestimate of the critical temperature and

pressure predicted by the equation of state. Such a behaviour is unavoidable with any algebraic

EoS unless a specific treatment of the near-critical region is made.146 This does not mean that the
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resulting intermolecular potential will lead to a poor estimate of the critical point by simulation,

as we will show later in the paper. We obtain the following optimal molecular parameters for our

single-site SAFT-γ Mie force field for CO2: σ = 3.741
◦
A, ε/kB = 361.69 K, λa=6.66 and λr=23.0.

These molecular parameters are presented in Table 2. A single-site Mie potential provides an ac-

curate description of both the vapour pressure and saturated liquid density. Details of the property

predictions with this new SAFT-γ intermolecular potential model for CO2 are described in Section

IV.

C. Molecular simulation details

The fluid phase equilibria and second-derivative properties of the SAFT-γ Mie CG model of CO2

are determined using Monte Carlo simulation of the fluid in the grand canonical (GC-MC) and

isobaric-isothermal (NPT -MC) ensembles, respectively. The simulation of phase equilibria is not

straightforward as the system will form an interface between coexisting phases, with a free energy

that is higher than that of the coexisting states; this energetic barrier has to be overcome for a

correct description of the coexistence properties with the GC-MC technique. In order to overcome

the interfacial free energy barrier during the GC-MC simulation we have made use of the so-called

multicanonical methods147,148 that modify the acceptance criteria using a preweighting distribu-

tion function, that allows for a uniform sampling of all states without being trapped in energy

minima for temperatures below the critical point.149 The aforementioned preweighting function is

not known a priori and different methods have been proposed for its evaluation.149 In our work we

use the transition matrix Monte Carlo method,150–152 as implemented by Errington,153,154 to cal-

culate probability distribution Π(N; µ,V,T ) for numbers of particles ranging from N = 0 to Nmax,

in a self-consistent way using the acceptance probability between the microstates sampled during

the simulation. To calculate Π(N; µ,V,T ) all of the information about the microstates, including

those that are rejected, is taken into account, which makes the method very effective. During the

simulation Π(N; µ,V,T ) can be used to obtain the preweighted distribution that modifies the ac-

ceptance probability of the GC-MC method to access the low-probability mixed-phase states using
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the multicanonical method. It should be stressed that even when the simulation is biased using the

multicanonical method, Π(N; µ,V,T ) has to be calculated using the unbiased acceptance proba-

bility. Once the simulation has been undertaken, one can make use of the histrogram reweighting

(HR) technique155,156 to determine the chemical potential at coexistence, µcoex(T ). In order to

reweight the data at a single temperature, the following expression can be used:

lnΠ(N; µ,V,T ) = lnΠ(N; µ0,V,T )+β (µ −µ0)N, (13)

where the chemical potential µ is tuned until the areas underneath the two peaks of the bimodal

number distribution Π(N; µ,V,T ) are equal, corresponding to the coexisting vapour and liquid

phases. In Eq. (13) the subscript 0 refers to that of the original simulation state. In practice it is

convenient to have an estimate of µcoex(T ) to start the simulations though, as shown by Erring-

ton,153,154 any suitable value of µ will in principle lead to similar results after reweighting. A

good estimate can be obtained by running a set of simulations for a small system at any value of µ ,

and then reweighting the data. This approach provides an estimate of µcoex(T ) which is no more

than 1% of that of the large systems. If the low-density limit N = 0 has been sampled, the vapour

pressure can be calculated by using the ideal gas as a reference state:153,154

β pV = ln

[
∑
N

Π(N; µcoex,V,T )

]
− lnΠ(0; µcoex,V,T )− ln2. (14)

Finally, the surface tension can be estimated using the finite-size scaling (FSS) formalism of

Binder157 which can be expressed as

βγL =
AL

2L2 = c1
1
L2 + c2

lnL
L2 +βγ , (15)

where γL is the surface tension of the finite system, and γ is the surface tension of the infinite

system, L is the length of the cubic simulation box; the factor of a half is included as the system

will exhibit two interfaces. Using this approach, it is possible to extrapolate γ from a series of

simulations for systems of different sizes.158 The interfacial free energy AL is obtained from the
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particle number distribution Π(N; µcoex,V,T ) as

βAL =
1
2
{max[lnΠ(N; µcoex,V,T )]liq +max[lnΠ(N; µcoex,V,T )]vap}−min[lnΠ(N; µcoex,V,T )]d},

(16)

where max[lnΠ(N; µcoex,V,T )]liq and max[lnΠ(N; µcoex,V,T )]vap correspond to the maximum of

the logarithm of the particle number probability for the liquid and vapour peaks, respectively, and

min[lnΠ(N; µcoex,V,T )]d corresponds to the minimum between the liquid and vapour domains. A

test-area MC technique159 could also have been used in this case, but we opted for the FSS method

as this can also be used to provide an accurate estimate of the critical point.

The calculations of volumetric and second-derivative thermodynamic properties are carried

out using NPT -MC simulations, where one can determine the coefficient of thermal expansion αP,

the isothermal compressibility κT , and the configurational heat capacity at constant pressure Cconf
P

directly. These properties are estimated by using the appropriate expressions involving the averages

of the fluctuations of the configurational internal energy Uconf, the configurational enthalpy Hconf,

the volume V , and their combinations. These expressions are given by95,160,161

αP =
1
〈V 〉

(
∂ 〈V 〉
∂T

)
P

=
1

〈V 〉kBT 2

(
〈V Hconf〉−〈V 〉〈Hconf〉

)
, (17)

κT = − 1
〈V 〉

(
∂ 〈V 〉
∂P

)
T

=
1

〈V 〉kBT

(
〈V 2〉−〈V 〉2) , (18)

Cconf
P =

(
∂Uconf

∂T

)
P
+P

(
∂ 〈V 〉
∂T

)
P
−NkB

=
1

kBT 2

(
〈UconfHconf〉−〈Uconf〉〈Hconf〉

)
+

1
kBT 2

(
〈V Hconf〉−〈V 〉〈Hconf〉

)
−NkB, (19)
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where the 〈〉 brackets correspond to ensemble averages. In order to make a comparison with

experimental data, the ideal contribution Cid
P to the heat capacity at constant pressure is added to

the configurational part,

CP = Cid
P +Cconf

P , (20)

where the ideal contribution is taken from experimental correlations.142,143 Once these properties

have been calculated, the other second-derivative properties can be obtained using the standard

thermodynamic relationships. The isochoric heat capacity CV , the Joule-Thomson coefficient µJT ,

and speed of sound ω can be conveniently obtained from162

CP −CV = T 〈V 〉α2
P

κT
, (21)

µJT =
〈V 〉
CP

[T αP −1] , (22)

ω2 =
CP

CV

〈V 〉
κT

MwNA

N
, (23)

where Mw and NA are the molecular weight and the Avogadro constant, respectively.

The calculations of the fluid phase equilibria using GC-MC simulation are carried out in a

cubic simulation box of volume L3 with L∗ = L/σ = 14. An estimate of µcoex is obtained using

a small system of length size L∗ = 6 and a HR technique is used to locate the coexistence point.

Simulation runs are carried out for 1× 109 MC configurations for the system with L∗ = 6 and

about 4 to 5× 109 for the system with L∗ = 14. In all cases, the cut-off of the potential is taken

to be half of the simulation box length, Rc = 0.5L∗, and standard long-range corrections to the

energy and pressure virial are included.135,136 Fixed probabilities of 70% for the insertion-deletion

attempts and 30% for the particle displacements are chosen. Extra simulations involving systems

with sizes corresponding to L∗ = 8,10 and 12 are also carried out to allow for the extrapolation
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of the macroscopic interfacial tension. The critical temperature Tc is estimated using a Wegner

expansion up to the first-order correction term:163–165

ρl −ρv = B0|τ|βc +B1|τ|βc+∆, (24)

where ρl and ρv correspond to the coexisting liquid and vapour densities, respectively, τ = 1−

T/Tc, βc = 0.325 is the critical exponent which is fixed at its universal renormalisation-group

value, ∆ is the so-called gap exponent which is taken as 0.51, and Bi are the correction amplitudes.

The critical density ρc is calculated by means of the least-square fit of the rectilinear diameter law:

ρl +ρv

2
= ρc +D|τ |, (25)

where D is the correlation parameter. A more accurate description for the critical region is possible

with, e.g., FSS techniques,149,166,167 but as the scope of the present work is not an exhaustive treat-

ment of the critical region, we have limited ourselves to the use of the simple scaling relations of

Eqs. (24) and (25). The critical pressure is obtained by extrapolation using the Clausius-Clapeyron

equation:

lnP = C1 +
C2

T
, (26)

where C1 and C2 are fitted parameters.

The NPT -MC simulations are carried out for a system of N = 800 particles. The runs are per-

formed for 7.5×104 MC cycles for equilibration and 2.5×105 cycles to accumulate the averages.

In our simulations, one NPT -MC cycle refers to N Monte Carlo steps, 5% of which corresponds to

an attempt to change the volume of the system and 95% to attempted displacements of the particles.

The cut-off of the potential is fixed to Rc = 4σ in the NPT simulations, and standard long-range

corrections to the energy and pressure virial are also included.135,136 Uncertainties for the different

properties are obtained by performing three independent runs for both the GC-MC and NPT -MC

simulations.
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IV. Results

The results of the GC-MC simulations for the coexistence curve and vapour pressure of our SAFT-

γ CG single-centre Mie model of CO2 are presented in Figures 1 and 2. The simulation data for

our new model is compared with the calculations obtained with the SAFT-VR Mie EoS (which is

used to develop the potential model),34 the corresponding data obtained for the EPM and EPM2

models of Harris and Yung103 and for the 3CLJQ model of Merker et al.,102 and with the available

experimental data.142,143 As can observed from Figure 1, the simulation data for the SAFT-γ model

and theory are in good agreement with the experimental vapour-liquid coexistence envelope, ex-

cept close to the critical point, where a small overestimate is expected with the theory; one should

appreciate that the GC-MC technique will also lead to a slight overestimate of the critical temper-

ature unless a full FSS treatment is made. The average absolute deviation (AAD%)168 obtained

with our model for the coexistence liquid density is 2.6% for a temperature range between 228 and

289 K, compared with 2.0% and 1.7% obtained with the EPM and EPM2 models, respectively,

over the same range. The 3CLJQ model of Merker et al. reproduces the experimental data very

well with an AAD% of 4% for the larger temperature range of 220−300 K. Our model predicts the

vapour density with an accuracy of 6% for temperature between 228 and 289 K. By comparison,

the EPM and EPM2 models overpredicts this property by more than 10%, while the 3CLJQ model

of Merker et al. underpredicts the vapour density by 5%.

The critical point of the SAFT-γ CG Mie model of CO2 corresponds to a critical temperature of

Tc = 311.13 K compared with the experimental value of 304.128 K, which is an overprediction of

2.3%. By comparison, a critical temperature Tc = 312.8 K is obtained with the EPM model, which

is about 3% higher than the experimental value. The EPM2 model provides a correct description of

the critical point, because it has been parameterized for that purpose. Our model can also be com-

pared with the more sophisticated models for CO2, such as the two-centre LJ plus point quadrupole

(2CLJQ) model of Möller and Fischer,86 which was parameterized using saturation properties of

the fluid. This model predicts a critical temperature of Tc = 307.83 K, which corresponds to an

overprediction of about 1.2%. The recent model developed for CO2 by Merker et al.102 describes
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the critical region with very good accuracy.

From Figure 2 it is also apparent that our SAFT-γ CG Mie model reproduces the experimental

vapour-pressure data for CO2 very well, corresponding to an AAD% of 2.9% for temperatures

ranging between 228 and 298 K. The EPM and EPM2 models both give rise to an significant

deviation of the vapour pressure of more than 10%, while the model of Zhang and Duan107 leads

to an overprediction of about 15%. For the model of Merker et al.102 a deviation of only 1.8%

for the saturation pressure is obtained. The good description of the experimental vapour pressure

with our model is perhaps not that surprising, because it is well known that the variable repulsive

and dispersive exponents of the Mie potential are the key feature which allow for this property to

be captured accurately.33 The same observation has been made by Potoff and Bernard-Brunel49 in

their simulation studies on the use of the Mie potential to develop united atom models of the alkanes

and perfluoroalkanes. Though one could improve the description of the fluid phase behaviour

of CO2 by further refinement of our CG Mie model, it is important to stress that the values of

the interaction parameters are obtained from the SAFT-VR Mie EoS34 without any a posteriori

adjustment of the CG model. It is also very gratifying to find that a single-site CG model can be

used to reproduce the phase behaviour of CO2 with good accuracy, as long as the softness/hardness

of the interaction is modelled appropriately.

The SAFT-γ CG Mie model of CO2 is obtained using the SAFT-VR EoS, by estimating the

intermolecular parameters solely to the saturation properties of the fluid. The prediction of other

thermodynamic properties, not used in the parameterization of the model, provides a stringent

assessment of the robustness of our single-site model. For example, our model provides a good

prediction of the enthalpy of vaporisation ∆Hv as can be observed in Figure 3, which corresponds

to an AAD% of about 5% for this caloric property. The EPM and EPM2 predict ∆Hv with AAD%s

of about 9% and 2%, respectively. The corresponding AAD% obtained with the model of Merker

et al.102 is 8.1% for this property over the temperature range from 200 to 300 K. It is important to

reiterate that as shown in Figures 1 to 3, the simulated properties for the SAFT-γ CG Mie model

are in excellent agreement with the predictions of the SAFT-VR EoS, which is why it is possible
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to use the theory to estimate the intermolecular parameters in an accurate manner for a very broad

range of thermodynamic states.

We have also determined the interfacial tension of the vapour-liquid interface of our CG CO2

model using the FSS methodology described in Section D, and the resulting values are compared

with experimental data in Figure 4. It is clear from Figure 4 that the use of the CG model leads

to a reasonable description of the experimental values with a small overestimate of the interfacial

tension corresponding to a shift in the curve by an almost constant amount ( ∼ 7 K) over the entire

range of temperatures. This constant deviation is related to the overprediction of the critical point

with our CG model. A further refinement of the SAFT-γ CG Mie model can be undertaken to

describe accurately the saturation curve and the interfacial tension of CO2 simply by ensuring that

the model reproduces the experimental critical temperature. One can achieve this with a direct

rescaling of the potential energy parameter from ε/kB = 361.69 K to ε/kB = 353.55 K which

essentially corresponds to a Guggenheim169 corresponding states treatment for the tension, γ =

γ0(1−T/Tc)µc , where γ0 is a substance specific “zero temperature” coefficient and µc is a universal

constant. The interfacial tension obtained with the rescaled model is also shown in Figure 4,

where an excellent agreement between simulation and experiment is now observed. The saturation

densities obtained using the rescaled and unscaled models are depicted in the inset of Figure 4,

where a good agreement is seen, apart from a slight deterioration of the description expected at

low temperatures for parameters which have been rescaled to the critical point. In the case of

studies of the interfacial properties of CO2 and its mixtures we recommend the use of the rescaled

energy parameter.

Lafitte et al.33 have shown how by using a Mie potential with variable repulsive and attractive

range one is able to represent accurately not only the fluid phase behaviour of a variety of systems,

but also the single-phase volumetric and second-derivative thermodynamic properties that are of

importance in many practical applications. Using NPT -MC simulations, we have calculated the

second-derivative properties of CO2 for five supercritical isobars P = 10,20,30,40,50 MPa. The

results are summarised in Figures 5 to 10. In Figure 5 we present results for the density as a
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function of temperature for the five aforementioned isobars. As can be observed, the molecular

simulation data obtained with our SAFT-γ CG Mie model of CO2 are in good agreement with

the experimental values over a broad range of densities, with an AAD% for the density of 1.29%.

The largest deviation is in the vicinity of the critical region, as one would expect. In the same

figure, we make a comparison with the description obtained with the SAFT-VR Mie EoS, where

it can be observed that the theory provides a good representation of both the experimental and

simulation data. Our simulation results are also in good agreement with the values obtained with

more sophisticated models: for example, Colina et al.95 have reported data for the volumetric

properties and second-derivative properties using molecular simulation with the 2CLJQ model.

Our data is in close agreement with that of Colina et al., suggesting that (for these properties

at least) the electrostatic complexity and linear, non-spherical shape of CO2 can be effectively

integrated out and described in an effective sphericalised manner using the adjustable attractive

and repulsive exponents of the Mie potential.

The coefficient of thermal expansion, αP, and the isothermal compressibility, κT , are shown

in Figures 6 and 7, respectively. In general, good agreement between the simulation data for

the SAFT-γ CG Mie model and the experimental values is obtained, with an AAD% of 3.90%

and 5.59% for αP and κT , respectively. It is very encouraging to see that one is able to predict

accurately the high peaks observed at low pressures and low temperatures (in the vicinity of the

critical point) with our CG model. As in the case of the density, the highest AAD%s for both

properties are also found close to the critical region, where deviations of about 30% and 20% can

be observed for αP and κT , respectively.

In Figure 8 we present the results for the temperature and pressure dependence of the heat

capacity at constant pressure, Cp, where an AAD% of 2.71% is found between the values obtained

with our CG model and experiment. The highest deviations are again seen close to the critical

point, decreasing rapidly away from that region. The deviations characterising our model are

comparable to those reported by Colina et al.,95 who also found an AAD% of less than 3% with

the 2CLJQ model.
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Finally, in Figures 9 and 10 we present the results for the temperature and pressure dependence

of the Joule-Thomson coefficient µJT and speed of sound ω , respectively. As before, very good

agreement is found for both properties apart from near the critical region. The description of the

speed of sound data obtained with our CG model is commensurate with the results reported by

Colina et al.95 using the 2CLJQ model, where good agreement with experimental data is found in

general. In our model, the overall AAD% for the speed of sound is less than 5%. A close inspection

of the results for µJT at low temperatures in Figure 9 reveals a good agreement of the values of

both the SAFT-VR Mie theory and simulation data for our model compared with experimental

data. This region is extremely important for the representation of the Joule-Thomson inversion

curve.

The fact that the complex intermolecular potential of CO2 can be represented as one-site model

leads to considerable savings in computational time. For example, for the EPM and EPM2 models

developed by Harris and Yung,103 the CO2 molecule is modelled as three fused LJ sites with three

partial charges embedded in each of the sites. A comparison of the computational performance for

simulations of the fluid with our single-site CG model and the EPM2 model, at one thermodynamic

state, is made in Figure 11. The resulting benefits are striking, exemplifying how one can explore

longer time and larger length scales using such a CG model. The findings presented in Figure 11

can be rationalized in two ways: for a fixed CPU time per time step one can simulate a system-

size that is about two orders of magnitude larger with the CG model than with the EPM model;

conversely, for a fixed system size one can access simulation times which are two (and in some

cases three) orders of magnitude larger with the single-site CG model.

V. Conclusions

In this work we have introduced our new SAFT-γ methodology for coarse graining intermolecular

potentials. The key feature that sets it apart from common approaches is that we use a top-down

procedure, in which an accurate equation of state (in this case SAFT-VR Mie34) is used to estimate
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the molecular parameters from experimental macroscopic fluid phase properties. The robustness

of our approach lies in the fact that the effective intermolecular potentials developed in this way

are not state dependent, which is an issue commonly faced with bottom-up CG approaches.

The version of SAFT-VR Mie used in our work has thus been shown to be a powerful tool

not only in the description of the fluid phase behaviour of different systems, but also as a global

framework for the representation of complex intermolecular potential functions with a much sim-

pler Mie form. Our approach still involves the estimation of the potential parameters using some

macroscopic experimental input. However, this is an efficient procedure as the theory is alge-

braic and a large amount of data can be included in estimating the parameters for a broad range

of thermodynamic states, involving only a few minutes (or even seconds) of CPU time. Using

this approach it has been possible to obtain optimized molecular parameters that are not state-

dependent. This is a step change in comparison with the common bottom-up approaches, in which

computationally expensive simulations of high-resolution models are required to establish the CG

models.

We have outlined the methodology by proposing a single-site spherical CG model for the CO2

molecule. This molecule is interesting not only from the technological and environmental point of

view, but is also a non-trivial test case as its potential function is sufficiently complex, involving

non-uniform dispersion force centers, electrostatic terms, and a non-spherical shape. The main

aim of the current paper is to show how CO2 can be described, using SAFT-VR Mie equation of

state with a single-site SAFT-γ CG Mie force-field with appropriate choices of the attraction and

the repulsion parameters. The simulation and theoretical results for the CG model are in good

agreement with most of the experimental data, apart from the critical region. The description

obtained with our CG model also compares favourably with that for more sophisticated models of

CO2. One remarkable feature is the improved prediction of the vapour pressure with our model.

This is one of the most elusive properties to model with CG models, but one that is important

from an engineering perspective. Even the de facto model for CO2, the EPM2 model, fails to

provide a good description of the vapour pressure. The adequacy of our CG model of CO2 has
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also been assessed in its description of the volumetric and second-derivative properties. We have

simulated different supercritical isobars, finding good overall agreement with experiments, and

with the corresponding representation obtained with the more complex models,170 though some

deviation in the critical region is again observed.

The present methodology is not limited with respect to the type of molecule that is consid-

ered and may be applied in a straightforward fashion to large macromolecules and to mixtures.

In the forthcoming work we will demonstrate how long chain molecules such as n-alkanes can be

described as CG chains formed from Mie segments. The methodology can also be extended to

treat molecules formed from heteronuclear Mie sites of different type by using the SAFT-γ equa-

tion of state which is an extension of the homonuclear SAFT-VR approach, suitable for molecules

comprising chemically distinct groups (e.g., see references35,36 for a description of the group con-

tribution theory for molecules formed from different square-well segments). The algebraic SAFT-γ

equation of state thus enables the development of force-fields for both coarse-grained and united-

atom representations of complex molecules. We are currently expanding the SAFT-γ force field

based on Mie segments for a wide range of compounds of varying chemical nature.
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Appendix

In this Appendix, we summarize the key relations of the SAFT-VR Mie equation of state that is

used in this work to develop the CG intermolecular potential for CO2. For a complete derivation

of the theory the reader is directed to our paper.34

The general formulation of the (dimensionless) Helmholtz free energy for a non-associating

chain fluid is expressed in the usual SAFT manner as

a = aIDEAL +aMONO +aCHAIN , (27)

where a = Aβ/N, A being the total Helmholtz free energy, and N is the total number of molecules.

In this equation aIDEAL is the contribution of the ideal free energy, aMONO is the residual free

energy due to the monomer segments, and aCHAIN is the contribution due to the formation of the

chains of monomers.

A1. Ideal contribution

The ideal gas contribution is given in the usual form as

aIDEAL = ln(ρΛ3)−1, (28)

where ρ is the number density of chain molecules, and Λ is the de Broglie wavelength which in-

corporates all of the translational, rotational and vibrational kinetic contributions of the molecules.

A2. Monomer contribution

The monomer contribution for a chain composed of ms segments is

aMONO = msaM, (29)

where aM = AMβ/Ns is the residual Helmholtz free energy per monomer, and Ns is the number of
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spherical segments. This term is expressed as a series expansion in the inverse of the temperature

β up to third-order:171

aM = aHS +βa1 +β 2a2 +β 3a3. (30)

In this relation aHS is the Helmholtz free energy of a hard-sphere (HS) fluid of diameter d,

which is obtained from the Carnahan and Starling relation as172

aHS =
4η −3η2

(1−η)2 , (31)

where η = (π/6)ρsd3, ρs is the number density of spherical segments. According to the Barker

and Henderson theory,31,34,171 the effective diameter d can be obtained as

d =
∫ σ

0

[
1− exp

(
−βuMie(r)

)]
dr. (32)

The first perturbation term a1 can be obtained with the following compact expression:

a1 = C
[
xλa

0 {as
1(η ;λa)+B(η ;λa)}− xλr

0 {as
1(η ;λr)+B(η ;λr)}

]
(33)

where x0 = σ/d, C is the Mie potential coefficient defined in Eq. (3), and

B(η ;λ ) = 12ηε
(

1−η/2
(1−η)3 Iλ (λ )− 9η(1+η)

2(1−η)3 Jλ (λ )
)

. (34)

Note that in order to calculate the first- and second-order terms, as given by Eqs. (33) and (40),

one needs to obtain an analytical expression for the mean-attractive energy as
1(λ ) of a Sutherland

potential of variable range. These expressions are obtained using a SAFT-VR31,32 treatment which

gives the following compact expression:

as
1(λ ) = −12εη

(
1

λ −3

)
1−ηe f f /2
(1−ηe f f )3 , (35)
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where the effective packing fraction ηe f f is parameterized for the range 5 < λ ≤ 100. The mean-

attractive energy as
1(λ ) calculated in this way is as accurate as computer simulation results,34 with

the effective density correlated as

ηe f f = c1η + c2η2 + c3η3 + c4η4, (36)

where



c1

c2

c3

c4


=



0.81096 1.7888 −37.578 92.284

1.0205 −19.341 151.26 −463.50

−1.9057 22.845 −228.14 973.92

1.0885 −6.1962 106.98 −677.64





1

1/λ

1/λ 2

1/λ 3


. (37)

In Eq. (34) the functions Iλ and Jλ are two integrals that depend on the molecular parameters

of the Mie potential, and are given by

Iλ (λ ) =
∫ x0

1

x2

xλ dx = −(x0)
−λ+3 −1
λ −3

, (38)

and

Jλ (λ ) =
∫ x0

1

(x3 −1)
xλ dx = −(x0)

−λ+4 (λ −4)− (x0)
−λ+3 (λ −3)−1

(λ −3)(λ −4)
. (39)

The second perturbation term a2 is evaluated with a modified macroscopic compressibility

approximation (MCA)34 which can be written as function of the mean-attractive energies of hard-

core Sutherland potentials as
1 as before
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a2 =
1
2

KHS(1+ χ)ε C 2[x2λa
0 {as

1(η ;2λa)+B(η ;2λa)}

−2x(λa+λr)
0 {as

1(η ;λa +λr)+B(η ;λa +λr)}

+x2λr
0 {as

1(η ;2λr)+B(η ;λr)}), (40)

where KHS is the Carnahan-Starling172 expression for the isothermal compressibility given by

KHS =
(1−η)4

1+4η +4η2 −4η3 +η4 , (41)

and χ is an empirical function of η introduced in order to reproduce the fluctuation term of the

Mie potential obtained by Monte Carlo simulation.34 This correction is expressed as

χ = f1(α)η + f2(α)η5 + f3(α)η8 , (42)

where α represents the reduced attractive constant of the Mie potential,

α = C

(
1

λa −3
− 1

λr −3

)
. (43)

The third-order term in the Helmholtz free energy expansion is given by the following empirical

function,

a3 = ε3 f4(α)ηx3
0 exp( f5(α)ηx3

0 + f6(α)η2x6
0) , (44)

which depends on the Mie exponents λa and λr through the constant α . The functions fi are defined

as follows,

fi(α) =
n=3

∑
n=0

φi,nαn
/(

1+
n=6

∑
n=4

φi,nαn−3

)
for i = 1, ...,6 . (45)

The values of the coefficients φi,n are reported in Table 3.
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A3. Chain contribution

Assuming that the segments are bonded together at r = σ , i.e., that the model consists of freely

jointed chains of tangent segments, the residual contribution to the Helmholtz free energy is given

by

aCHAIN = −(ms −1) lngMie(σ), (46)

where gMie is the radial distribution function (RDF) at contact of the monomer Mie fluid, which is

given by the following expression:34

gMie(σ) = gHS
d (σ)exp

(
βεg1(σ)/gHS

d (σ)+(βε)2g2(σ)/gHS
d (σ)

)
, (47)

where gHS
d (σ) refers to the RDF of a fluid of HS of diameter d evaluated at diameter σ . This is

obtained using the expression of Boublík,173

gHS
d (x0) = exp(k0 + k1x0 + k2x2

0 + k3
3), (48)

where x0 = σ/d. In this expression, the density-dependent coefficients ki are given by

k0 = − ln(1−η)+
42η −39η2 +9η3 −2η4

6(1−η)3 , (49)

k1 =
(η4 +6η2 −12η)

2(1−η)3 , (50)

k2 =
−3η2

8(1−η)2 , (51)

k3 =
(−η4 +3η2 +3η)

6(1−η)3 . (52)

The first-order radial distribution function at contact in Eq. (47) is expressed in terms of the
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first-order perturbation terms of the Helmholtz free energy of Sutherland (as
1) and Mie (a1) poten-

tials as follows:

g1(σ) =
1

2πεd3

[
3

∂a1

∂ρs
−C λaxλa

0
as

1(η ;λa)+B(η ;λa)
ρs

+C λrx
λr
0

as
1(η ;λr)+B(η ;λr)

ρs

]
. (53)

The second-order term in the radial distribution function expansion is based on a corrected MCA

approximation,

g2(σ) = (1+ γc)g2
MCA(σ), (54)

where

gMCA
2 (σ) =

1
2πε2d3

[
3

1+ χ
∂a2

∂ρs
− εKHSC 2λrx

2λr
0

as
1(η ;2λr)+B(η ;2λr)

ρs

+εKHSC 2(λr +λa)x
λr+λa
0

as
1(η ;λr +λa)+B(η ;λr +λa)

ρs

−εKHSC 2λax2λa
0

as
1(η ;2λa)+B(η ;2λa)

ρs

]
. (55)

The empirical correction γc is chosen in order to capture the positive slope of the radial distribu-

tion function at contact for long-range Mie potentials at low temperature and low density. It is

dependent on both density and temperature as well as the Mie exponents (λa,λr) through:

γc = φ7,0 (− tanh(φ7,1(φ7,2 −α))+1)ηθexp
(
φ7,3η +φ7,4η2) , (56)
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where θ = exp(βε)−1, and α is given by Eq. (43), and φ7,i is in Table 3.
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Figure 1: The temperature-density vapour-liquid coexistence curve for CO2. The dashed curve
denotes the smoothed experimental data from NIST,142,143 the continuous curve the results from
SAFT-VR Mie EoS (this work), the circles are the results obtained by Monte Carlo simulation for
the SAFT-γ CG Mie model of CO2 (this work), the up and down triangles represent the simula-
tion results for the EPM and EPM2 models,103 respectively, and the squares represent the results
for the 3CLJQ model of Merker et al.102 The filled diamond represents the experimental critical
point,142,143 the filled circle the critical point obtained for our model, filled triangle the critical
point of the EPM model, and filled square the critical point of the 3CLJQ model of Merker et al.
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Figure 2: Vapour pressure for CO2. The dashed curve denotes the smoothed experimental data
from NIST,142,143 the continuous curve the results from SAFT-VR Mie EoS, the circles are the
results obtained by Monte Carlo simulation for the SAFT-γ CG Mie model of CO2 (this work),
the up and down triangles represent the simulation results for the EPM and EPM2 models,103

respectively, and the squares represent the results for the 3CLJQ model of Merker et al.102 The
filled diamond represents the experimental critical point,142,143 the filled circle the critical point
obtained for our model, filled triangle the critical point of the EPM model, and filled square the
critical point of the 3CLJQ model of Merker et al.
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Figure 3: Vaporisation enthalpy ∆Hv as a function of the temperature for CO2. The dashed
curve denotes smoothed experimental data from NIST,142,143 the continuous curve the results from
SAFT-VR Mie EoS (this work), the circles are the results obtained by Monte Carlo simulation for
the SAFT-γ CG Mie model of CO2 (this work), the up and down triangles represent the simulation
results for the EPM and EPM2 models,103 respectively, and the squares represent the results for
the 3CLJQ model of Merker et al.102
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Figure 4: Surface tension as a function of the temperature for CO2. The dashed curve denotes
smoothed experimental data from NIST,142,143 the circles are the Monte Carlo simulation results
for the SAFT-γ CG Mie model of CO2, and the squares represent the results of the SAFT-γ CG
Mie model rescaled to match the critical temperature. The vapour-liquid coexistence curves using
the original and rescaled models are shown in the inset.
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Figure 5: Temperature and pressure dependence of the density of CO2 for supercritical isobars
corresponding P = 10,20,30,40 and 50 MPa. The dashed curves denote a smooth fit to experi-
mental data from NIST,142,143 the continuous curves the results from the SAFT-VR Mie EoS, and
the symbols are the Monte Carlo simulation results for the SAFT-γ CG Mie model of CO2.
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Figure 6: Temperature and pressure dependence of the coefficient of thermal expansion αP for
CO2. Legend as in Figure 5.

52



200 300 400 500 600 700 800

T / K

0.0

0.1

0.2

0.3

0.4

0.5

0.6

κ T
 / 

(1
/M

Pa
)

P = 10 MPa
P = 20 MPa
P = 30 MPa
P = 40 MPa

P = 50 MPa

500 600 700 800
0.00

0.03

0.06

0.09

0.12

Figure 7: Temperature and pressure dependence of the isothermal compressibility κT for CO2.
Legend as in Figure 5.
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Figure 8: Temperature and pressure dependence of the constant pressure heat capacity cP for CO2.
Legend as in Figure 5.
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Figure 9: Temperature and pressure dependence of the Joule-Thomson coefficient µJT for CO2.
Legend as in Figure 5.
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Figure 10: Temperature and pressure dependence of the speed of sound ω as a function of the
temperature for CO2. Legend as in Figure 5.
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Figure 11: Comparison of the CPU time per time step as a function of the number of molecules
using our single-site SAFT-γ CG Mie model for CO2 (this work) and the EPM2 model of Harris
and Yung.103 Canonical ensemble simulations (NV T ) are performed on an 8 CPU 3GHz processor
desktop computer using DL_POLY v2.18174 compiled with gFORTRAN. The state point is at
T = 350 K and ρ = 336 kg/m3
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Table 1: Intermolecular model parameters for single-site LJ model for CO2, regressed from
different properties and data sets

Fitted property σ/
◦
A ε/kB / K Source

Viscosity 3.881 216.06 Ruckenstein and Liu 60

Viscosity 3.941 195.20 Reid et al. 59

Viscosity 4.018 194.70 Reed and Gubbins 58

Second virial coefficient 4.416 192.25 Liu et al. 61

Combined viscosity and second virial coefficient 3.832 230.56 Liu et al. 61

Self-diffusion coefficient 3.26192 500.71 Liu et al. 61

Self-diffusion coefficient 3.660 235.56 Yu and Gao 62

Self-diffusion coefficient 3.6283 195.20 Dariva et al. 63

Critical properties 3.912 225.30 Iwai et al. 64

Critical properties 3.644 231.70 Zhu et al. 65

Critical properties 3.658 232.20 Albo and Müller 20

Volumetric properties 3.720 236.10 Iwai et al. 66

Table 2: SAFT-γ Mie force field parameters for CO2

ε/kB / K σ/
◦
A λr λa Comment

361.69 3.741 23.0 6.66 Original optimizationa

353.55 3.741 23.0 6.66 Rescaled to match the critical temperature
and interfacial tension

a These parameters have been obtained using our SAFT-γ Mie EoS and the objective function given by Eq. (12). The
AAD%s calculated using this approach are 0.69% for the saturated liquid density, and 5.84% for the vapour pressure,

respectively, over the temperature range from 228 to 273 K.
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Table 3: Coefficients φi,n for Eq.(42) and (56)

n φ1,n φ2,n φ3,n φ4,n φ5,n φ6,n φ7,n
0 7.5365557 -359.44 1550.9 -1.19932 -1911.28 9236.9 10
1 -37.60463 1825.6 -5070.1 9.063632 2139.175 -129430 10
2 71.745953 -3168.0 6534.6 -17.9482 -51320.7 357230 0.57
3 -46.83552 1884.2 -3288.7 11.34027 37064.54 -315530 -6.7
4 -2.467982 -0.82376 -2.7171 20.52142 1103.742 1390.2 -8
5 -0.50272 -3.1935 2.0883 -56.6377 -3264.61 -4518.2 -
6 8.0956883 3.7090 0 40.53683 2556.181 4241.6 -
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