
Vol. 23 no. 2 2007, pages 232–239

doi:10.1093/bioinformatics/btl571BIOINFORMATICS ORIGINAL PAPER

Data and text mining

SAGA: a subgraph matching tool for biological graphs
Yuanyuan Tian1, Richard C. McEachin2, Carlos Santos3, David J. States3 and
Jignesh M. Patel1,�
1Department of Electrical Engineering and Computer Science, 2National Center for Integrative Biomedical
Informatics and 3Department of Human Genetics and Bioinformatics Program, University of Michigan,
Ann Arbor, MI 48109, USA

Received on August 22, 2006; revised on November 7, 2006; accepted on November 8, 2006

Advance Access publication November 16, 2006

Associate Editor: Martin Bishop

ABSTRACT

Motivation:With the rapid increase in theavailability of biological graph

datasets, there is a growing need for effective and efficient graphquery-

ing methods. Due to the noisy and incomplete characteristics of these

datasets, exact graphmatchingmethods have limited use and approxi-

mate graph matching methods are required. Unfortunately, existing

graph matching methods are too restrictive as they only allow exact

or near exact graphmatching. This paper presents a novel approximate

graphmatching techniquecalledSAGA.This techniqueemploysa flexi-

ble model for computing graph similarity, which allows for node gaps,

node mismatches and graph structural differences. SAGA employs an

indexing technique that allows it to efficiently evaluate queries even

against large graph datasets.

Results:SAGA has been used to query biological pathways and litera-

ture datasets, which has revealed interesting similarities between

distinct pathways that cannot be found by existing methods. These

matches associate seemingly unrelated biological processes, connect

studies in different sub-areas of biomedical research and thus pose

hypotheses for new discoveries. SAGA is also orders of magnitude

faster than existing methods.

Availability: SAGA can be accessed freely via the web at http://www.

eecs.umich.edu/saga. Binaries are also freely available at this website.

Contact: jignesh@eecs.umich.edu

Supplementary material: Supplementary material is available at

http://www.eecs.umich.edu/periscope/publ/saga-suppl.pdf.

1 INTRODUCTION

Graphs provide a powerful primitive for modeling biological data,

such as pathways and protein interaction networks. Naturally, the

biomedical community has created many graph databases. For

example, PathGuide (http://www.pathguide.org) lists more than

200 pathway databases. Many of these databases are large and

rapidly growing in size. To fully exploit the wealth of information

in these graph databases, effective and efficient graph querying tools

are critical.

Previous graph querying tools have largely focused on relatively

simple graph operations, such as retrieving matches based on the

node attributes or finding linear paths. However, in practice, more

sophisticated approximate graph matching methods are often

needed. Note that the emphasis here is on approximate matching,

as biological graphs are often noisy and incomplete, which makes

approximate matching much more useful than exact matching. This

paper presents a tool called the Substructure Index-based Approxi-

mate Graph Alignment (SAGA), which addresses this need.

More formally, the problem that we address is approximate

subgraph matching: Given a query graph and a database of graphs,

we want to find subgraphs in the database that are similar to the

query, allowing for node mismatches, node gaps (node insertions or

deletions), as well as graph structural differences. Node mismatches

model the behavior that two nodes representing different cellular

entities can exhibit similar functionality. For example, two different

proteins may be in the same protein orthologous group, which

indicates similar functionality. Node gaps represent the situation

where a certain node in one graph cannot be mapped to any node in

the other graph. Graph structural differences allow for differences in

node connectivity relationships. For example, two nodes may be

directly connected in one graph, whereas the corresponding match-

ing nodes in the other graphs may be indirectly related through one

or more additional nodes.

As a motivating example for the approximate subgraph operation,

consider the following scenario: a scientist working on a certain

disease has constructed a small portion of a pathway based on

analysis of various experimental data. This pathway fragment,

which is modeled as a graph, contains nodes that represent cellular

entities (proteins, genes, mRNA, etc.) and edges that represent

interactions. The scientist is interested in finding the biological

processes that may be affected by the disease. This task can be

expressed as a query that searches a database of known pathways

using the query graph. Furthermore, the search can identify similar

subcomponents shared between the query and graphs in the

database, which may reveal clues about what information might

be missing or spurious in the query graph, and provide a way of

generating additional hypotheses.

While there is a long history of research on graph matching, most

of this work has focused on exact subgraph matching, i.e. the

subgraph isomorphism problem, which is known to be NP-

complete. GraphGrep (Shasha et al., 2002) and GIndex (Yan

et al., 2004) are index-based filtering methods for exact subgraph�To whom correspondence should be addressed.

� 2006 The Author(s)
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/23/2/232/205026 by U
.S. D

epartm
ent of Justice user on 17 August 2022

http://www
http://www.eecs.umich.edu/periscope/publ/saga-suppl.pdf
http://www.pathguide.org
http://creativecommons.org/licenses/

matching. Grafil (Yan et al., 2005), PIS (Yan et al., 2006) and

Closure-Tree (He and Singh, 2006) introduce some approximation

for subgraph isomorphism. However, these approximate models are

very limited. None of these tools allow node gaps in their models.

PathAligner (Chen and Hofestaedt, 2004) is a tool for aligning

pathways. However, it assumes that all pathways are linear

paths. The tools most closely related to our work are PathBlast

(Kelley et al., 2004) and the successive NetworkBlast (Sharan

et al., 2005), which are designed for aligning protein interaction

networks. Their graph similarity model allows node mismatches

and node gaps, but graph structural differences are largely confined

to short paths. As shown in Section 3.5, our graph similarity model

tolerates more general structural differences, and can find biologi-

cally relevant matches, when both PathBlast and NetworkBlast fail.

Another related method (Koyuturk et al., 2005) has been proposed

for aligning protein interaction networks. However, the match tech-

nique used in this method largely focuses on capturing the penalty

associated with gene duplication. Finally, PathBlast, NetworkBlast

and the method proposed in Koyuturk et al. (2005) can only perform
one graph comparison at a time. To match a query against a database

of graphs, the matching algorithms must be run for each graph in the

database. As a result, these methods are not computationally

efficient when querying large graph databases.

In this paper, we present a novel approximate subgraph matching

technique called SAGA. At the heart of SAGA is a flexible model

for computing graph similarity, which permits node gaps, node

mismatches and graph structural differences. To speed up the

execution of queries with this powerful matching model, we employ

an indexing method for efficient query evaluation. Through experi-

mental evaluation, we demonstrate that SAGA is more flexible and

powerful than existing models. SAGA allows additional informa-

tion derived from the relationships between entities in pathways to

be incorporated into comparative analysis. Our experimental results

show that SAGA finds expected associations, like Insulin signaling

in Type 2 Diabetes Mellitus (T2DM). SAGA also finds less well

studied associations, like the Toll-like receptor, T-cell receptor

and Apoptosis pathways in Helicobacter pylori (H. pylori) infection,

as well as Calcium, Wnt and Hedgehog signaling in Bipolar Dis-

order. In addition, SAGA provides a powerful tool for biomedical

text comparison.

2 SYSTEM AND METHODS

2.1 Graph model

In our model, a graph, G, is a 3-tuple G ¼ (V,E,f). V is the set of nodes and

E � V · V is the set of (directed or undirected) edges. Nodes in the graphs

have labels specified by the mapping f :V! L, where L is the set of node

labels. This model captures the features that are commonly present in most

biological graph datasets, in which nodes represent molecules/complexes,

labels denote molecule/complex names and edges indicate relationships

between nodes. We assume that each node in the graph has a unique ID.

This ID is used to establish a total order among the nodes.

In the example graph in Figure 1(a), vi is used to represent the unique node
ID and Lk is the node label. Note that two different nodes in a graph can have

the same label.

Our distance model and matching algorithm (discussed below) support

both directed and undirected graphs. We present our method using

undirected graphs; adaptations of the distance measure and the matching

algorithm for directed graphs are straightforward and omitted here.

2.2 Distance measure for subgraph matching

Our model measures similarity by a distance value, so graphs that are more

similar have a smaller distance. Formally, the subgraph matching is defined

as follows: Let G1 ¼ (V1,E1,f1) and G2 ¼ (V2,E2,f2) be two graphs. An

approximate matching from G1(the query) to G2(the target) is a bijection

mapping function l:V̂V1 $ V̂V2, where V̂V1 j V1 and V̂V2 j V2.

An example match is shown in Figure 1. The dashed lines indicate the

matched nodes in the two graphs. Note that nodes can be mapped even if they

have different labels. Also, note that not all nodes are required to be mapped,

e.g. v5 in G1 has no mapping in G2, and is a gap node.

The subgraph distance (SGD), with respect to l, is defined as:

SGDlðG1‚G2Þ ¼ we · StructDistl

þ wn · NodeMismatchesl

þ wg · NodeGapsl

ð1Þ

where

StructDistl ¼
X

u‚ v2V̂1‚u<v

j dG1
ðu‚vÞ � dG2

ðlu‚lvÞ j ð2Þ

NodeMismatchesl ¼
X

u2V̂1

mismatchðf1ðuÞ‚f2ðluÞÞ ð3Þ

NodeGapsl ¼
X

u2V1�V̂1

gapG1
ðuÞ ð4Þ

The distance model contains three components. The StructDist compo-

nent measures the structural differences of the match, the NodeMismatches

component is the penalty associated with matching two nodes with different

labels, and the NodeGaps component is used to measure the penalty for the

gap nodes. (Gap nodes are nodes in the query that cannot be mapped to any

nodes in the target graph.) Each of these components is described in more

detail in subsections 2.2.1 through 2.2.3.

In Equation (1), we, wn and wg are the weights for each component in this

matching model, and can be used to change the emphasis on the different

parts of the similarity model. While Equation (1) computes the subgraph

distance for a specific matching l, the actual subgraph distance from a query

to its target is the minimum distance over all possible matchings, namely:

SGDðG1‚G2Þ ¼ min
l

SGDlðG1‚G2Þ ð5Þ

2.2.1 The StructDist component The StructDist component mea-

sures the structural differences for the matching node pairs in the two graphs.

In Equation 2, the dGi
(u,v) function measures the ‘distance’ between node

u and node v in graph Gi, and is defined as the length of the shortest path

between u and v. The StructDist component compares the distance between

each pair of matched nodes in one graph to the distance between the

corresponding nodes in the other graph, and accumulates the differences.

2.2.2 The NodeMismatches component The NodeMismatches com-

ponent in Equation (3) is the sum of the penalties (quantified by themismatch
function) associated with matching nodes with different labels.

A common and biologically intuitive mismatch penalty model is to

implicitly group node labels based on similarity, allowing for a node

Fig. 1. (a) An example graph. (b) An example subgraph match.

SAGA: a subgraph matching tool

233

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/23/2/232/205026 by U
.S. D

epartm
ent of Justice user on 17 August 2022

label to be associated with more than one group. Nodes can then be

compared based on the group labels. This model of node comparison is

quite general and practical for many biological applications. For example,

the functional similarity between two enzymes can be determined based on

the length of the common prefix of the corresponding Enzyme Commission

(EC) numbers. For general proteins, one can use databases like KEGG

(Kanehisa et al., 2006) and COG (Tatusov et al., 1997) which organize

proteins into orthologous groups, and consider two proteins to be function-

ally similar only if they are in the same group. This mismatch model can also

be generalized to other settings, such as comparing nodes belonging to

different classes based on the positions of the two classes in a classification

hierarchy, such as Gene Ontology (http://www.geneontology.org).

Weutilize the concept of orthologous groups for our nodemismatchmodel.

Themapping from a node label to a set of orthologous groups, allowing a node

to belong to more than one orthologous group, is defined as r: L ! P(GL),

where L is the set of node labels, GL is the set of group labels, and

P(GL) is the power set of GL. Under this model, mismatch(Li, Lj) ¼ 1
if r(Li) \ r (Lj) ¼ ;, and mismatch(Li, Lj) < 1, otherwise.

2.2.3 The NodeGaps component The NodeGaps component in

Equation (4) measures the penalties associated with the gap nodes in the

query graph, thereby favoring matches that have fewer gap nodes. In our

model, different nodes in the query graph can have different penalty values,

and nodes with the same label can have different penalties as well.

The model also gives users the freedom to choose between gapped

matches (matches that allow gap nodes) and ungapped matches. If

gapG(u) is set to 1 for every node, then the model only supports ungapped

matches, otherwise it allows gapped matches.

For simplicity, for the rest of the discussion, we will assume that all nodes

have the same gap penalty value denoted as SingleGapCost.

2.2.4 Characteristics of the subgraph distance model Our sub-

graph matching model is very flexible and allows for incorporation of

domain knowledge into the scoring criteria. The only restriction is

that the gap penalty must be positive and the mismatch penalty must be

non-negative. These restrictions ensure that the subgraph distance is a non-

negative value. With these restrictions, if the query graph is subgraph-

isomorphic to the target graph, the subgraph distance is 0, and vice versa.

2.3 The index-based matching algorithm

A naı̈ve technique for evaluating subgraph matching queries is to compare

the query with every graph in the database and report the matches, which

is prohibitively expensive. We propose a novel index-based heuristic

algorithm that allows for a much faster evaluation of the approximate

subgraph matching operation.

First, an index is built on small substructures of graphs in the database.

This index is then used to match fragments of the query with fragments in the

database. Finally, the matching fragments are assembled into larger matches.

The actual method is described in detail below.

2.3.1 The index structures The index on small substructures of

graphs in the database is called the FragmentIndex. It is probed by the

matching algorithm to produce hits for substructures in the query.

The indexing unit is a set of k nodes from the graphs in the database. We

call each such set a fragment. Here k is a user specified parameter, and is

usually a small number like 2, 3 or 4. However, simply enumerating all

possible k-node sets is expensive in terms of both time and space. At

the same time, if any pair of nodes in a fragment is too far apart by the

pairwise distance measure (refer to Section 2.2.1), this fragment does not

correspond to a meaningful substructure, thus is not worth indexing.

Therefore, a parameter dmax is specified to control whether a fragment is

to be indexed. For a given k-node set v1,v2, . . . , vk, if any two nodes vi and vj
satisfy d(vi, vj)� dmax, we connect the two nodes by a pseudo edge. Then, we

index this fragment only if the k nodes form a connected graph by the pseudo

edges. Using this heuristic, we can dramatically reduce the size of the

FragmentIndex.

Note that in contrast to existing methods, which index connected

subgraphs, the fragments in SAGA do not always correspond to connected

subgraphs. The reason for using the more general definition of fragments is

to allow node gaps in the match model. For example, in Figure 1(b), nodes

�3 and �4 in G1 can be matched to nodes �3 and �4 in G2, respectively.

Although �3 and �4 do not form a connected subgraph inG2, they correspond

to a fragment that needs to be indexed so that this match can be detected.

An entry in the FragmentIndex has the following format: {nodeSeq,

groupSeq, distSeq, sumDist, gid}, where nodeSeq is the sequence of

node IDs for the nodes in the fragment, groupSeq is the sequence of

group labels associated with the nodes, distSeq is the sequence of pairwise

distances between the nodes in the fragment, sumDist is the sum of these

pairwise distances, and gid is a unique graph ID. Recall that a node label can

be associated with multiple group labels. In this case, we generate all

possible group label sequences for a fragment, and index each one. An

example showing the FragmentIndex on a sample database is presented

in Section 1 of the supplemental material.

To efficiently evaluate the subgraph distance between a query graph and

a database graph, an additional index called DistanceIndex is also main-

tained. This index is used to look up the precomputed distance between any

pair of nodes in a graph (Section 2.2.1).

2.3.2 The matching algorithm The matching algorithm proceeds

as follows: First, the query is broken into small fragments and the

FragmentIndex is probed. Then, the hits from the index probes are combined

to produce larger candidate matches. Finally, each candidate is examined to

produce the actual results. Each of these three steps is described in detail

below.

Step 1: finding small hits. In this step, the query is broken into small

fragments and the FragmentIndex is probed to find database fragments that

are similar to the query fragments.

Given the query, fragments (k-node sets) are enumerated in the same way

as we did for the database graphs. Next, for each query fragment, the

groupSeq, nodeSeq, sumDist, and distSeq values are computed. Then, the

FragmentIndex is probed with each of these query fragments.

The actual index probe uses the following multi-level filtering strategy:

First, the groupSeq and sumDist values are used to filter out fragments that

cannot match. Next, additional false positives are removed using the distSeq

values.

In the first level of filtering, database fragments are fetched only if they

have the same groupSeq as the query fragment and their sumDist values are

within the safe bounds that we have developed. Formally, the probe criteria is:

ft j t 2 FragmentIndex‚ t:groupSeq ¼ f q:groupSeq‚ f q:sumDist � kðk � 1Þ
2

·
MaxPairDist

we
� t:sumDist � f q:sumDist + kðk � 1Þ

2
· MaxPairDist

we
g‚ where fq is the

query fragment, and k is the fragment size. MaxPairDist is a user-defined

parameter which restricts the weighted pairwise distance difference between

the query and the database fragments as we · j dG1
ðu‚vÞ � dG2

ðlu‚lvÞ j �
MaxPairDist. (See Section 2 of the supplemental material for details.)

After the first level of filtering, we get a list of candidate database frag-

ments for every query fragment. This list can be further refined by using the

distSeq information (which contains the pairwise distances) to check that all

pairwise distances satisfy the MaxPairDist criterion defined above.

Step 2: assembling small hits. Step 1 produces a set of small fragment

hits. These smaller hits are assembled into bigger matches as follows: First,

the hits are grouped by the database graph IDs. Then, a hit-compatible graph

is built for each matching graph. Each node in a hit-compatible graph

corresponds to a pair of matching query and database fragments. An

edge is drawn between two nodes in the hit-compatible graph if and only

if two query fragments share 0 or more nodes, and the corresponding data-

base fragments in the hit-compatible graph also share the same correspond-

ing nodes. An edge between two nodes tells us that the corresponding two

Y.Tian et al.

234

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/23/2/232/205026 by U
.S. D

epartm
ent of Justice user on 17 August 2022

http://www.geneontology.org

hits can be merged to form a larger match, since they have no conflicts in the

union. Therefore, a clique in the hit-compatible graph represents a set of hits

that can be merged without any conflicts.

After forming the hit-compatible graph, the hits assembling problem

reduces to the maximal clique detection problem, which can be solved

using existing efficient implementations, such as (Born and Kerbosch,

1973), or approximate methods such as (Hochbaum, 1997). The set of

hits in each maximal clique is a candidate match. A detailed example of

this second step for a sample query is illustrated in Section 1 of the

supplemental material.

Step 3: examining candidates. This step examines each candidate

match and produces a set of real matches. Here, we allow users to specify

a threshold Pg to control the percentage of gap nodes in the subgraph match.

With a given Pg value, the desired matches are those with at most Pg

percentage of gap nodes in the query.

For each candidate match obtained from Step 2, we first check whether the

percentage of the gap nodes exceeds the threshold Pg. If so, we ignore the

candidate. Otherwise, we probe the DistanceIndex and calculate the real

subgraph matching distance as defined in Section 2.2. Recall that the

required subgraph matching is the one that minimizes the matching distance

(cf. Equation 5). We also further examine the submatches of the candidate.

A submatch can be obtained by removing one or more node mappings from

the original match. This introduces more gap nodes to the query, and thus

increases the subgraph distance by additional gap penalties. However, at the

same time, the StructDist and NodeMismatches may be reduced according to

its definition in Equations (2) and (3). Therefore, if the decreased amount

exceeds the increased amount, the overall matching distance will be lower

than the original one, which also means that a better match is found for the

query. If twomatches have the samematching distance and one is a submatch

of the other, only the supermatch is considered.

2.4 Fragment size parameter

The fragment size parameter (k in Section 2.3.1) controls the size of

fragments in the FragmentIndex. This parameter affects the size of the

index, query performance and sensitivity of search results. A larger fragment

size results in a larger FragmentIndex, which increases the index probe cost.

However, a large fragment size may also results in fewer false positives in

the hit detection phase (and lower query sensitivity), which reduces the cost

of the remaining steps. A practical way of picking a fragment size is based on

the selectivity of the queries. If queries are expected to have manymatches in

the database, then a smaller fragment size is preferred as it may not introduce

many false positives, and also potentially lead to smaller sizes of hit-

compatible graphs. However, when queries tend to have very few matches,

a large fragment size may be favored to prune false positives in the early

stages of the matching algorithm.

2.5 Statistical significance of matching results

The Monte Carlo simulation approach is employed to assess the statistical

significance of the matches. A P-value is computed for each match based on

the frequency of obtaining such a match, or a better match, when applying

SAGA with randomized data. Random graphs are generated by random

shuffling of edges of the graphs preserving the node degrees, and random-

izing the orthologous groups of each node preserving the number of ortholo-

gous groups that each node belongs to. For a given query, in addition to

querying the real database, we run SAGA on a large number of random

graphs, and estimate the P-value of a match from the real database as the

fraction of matches from the random graphs with the same or a larger size

(in number of nodes) and the same or a smaller distance value.

3 IMPLEMENTATION AND RESULTS

In this section, we describe the implementation of SAGA and

present results demonstrating its effectiveness and efficiency.

The well-known KEGG pathway database (Kanehisa et al.,

2006) is used for the experiments. In addition, we use a dataset,

called bioNLP, which contains parsed PubMed documents repre-

sented as graphs. In these graphs, nodes represent genes and edges

denote that two genes were discussed in the same sentence some-

where in the document. With bioNLP, graph similarity can be used

to identify related documents.

3.1 Implementation

We have implemented SAGA using C++ on top of PostgreSQL

(http://www.postgresql.org). For detecting maximal cliques, we

use the version 2 algorithm described in (Born and Kerbosch,

1973). The DistanceIndex and FragmentIndex are implemented

as clustered B+-tree indices. The fragment size was set to three.

The execution times reported correspond to the running time of the

C++ program (which includes reading the query specifications and

issuing SQL queries to the DBMS to fetch index entries and related

database tuples). All experiments were run on a 2.8 GHz Pentium 4,

Fedora 2 machine equipped with a 250 GB SATA disk. We used

PostgreSQL version 8.1.3 and set the buffer pool size to 512 MB.

For all the experiments with KEGG, the values for the SAGA

parameters are: we ¼ wg ¼ wn ¼ 1, SingleGapCost ¼ 3, dmax ¼
3 and MaxPairDist ¼ 3. The Pg value is set for every query so that

each match contains at least four node mappings. For the node

mismatch penalty, we use a simple model: if two nodes belong

to the same KEGG orthologous group or they have the same EC

number, then the mismatch penalty is 0, and 1 otherwise. For the

significance test, we generate 100 random graphs for each graph in

the database, so there are totally n · 100 random graphs, if n is the

number of graphs in the database. We only retain matches with

0.01 significance level or better. When a query graph is also

included in the database, we always exclude the self-match

(the query graph matching itself) from the results. For the experi-

ment with the bioNLP dataset, the SAGA parameter settings are:

we¼wg¼wn¼1,SingleGapCost¼0.5,dmax¼3,andMaxPairDist¼
3. For the node mismatch model, nodes with the same label have

0 penalty, otherwise the mismatch penalty is 1.

3.2 Finding conserved components across pathways

Two experiments are used to investigate components that are shared

across different pathways.

3.2.1 Querying disease-associated pathways This experiment is

an exploratory analysis to find biological processes that are involved

in, or are affected by, a particular disease. We use all 162 KEGG

human pathways (downloaded on July 4, 2006) as the database and

chose the 10 disease-associated human pathways as queries. This

query set is a subset of the 162 human pathways and it includes three

metabolic disorder pathways, six neuro-degenerative disorder path-

ways, and one infectious disease pathway. Of these pathways, only

two query pathways produced significant hits (P-value �0.01): the

T2DM pathway (hsa04930) and the ‘Epithelial cell signaling in

H. pylori infection’ pathway (hsa05120). Results for these two

pathways are presented in Table 1. The full list of the database

and query pathways can be found in the supplemental material.

Table 1 shows both the P-values and the number of PubMed

references for the matches, as a measure of how well the disease as-

sociation has been studied in previous literature. We are particularly

interested in disease-associated pathwaymatches that are significant

but are not yet well studied.

SAGA: a subgraph matching tool

235

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/23/2/232/205026 by U
.S. D

epartm
ent of Justice user on 17 August 2022

http://www.postgresql.org

As can be seen in Table 1, SAGA finds that the T2DM pathway

(hsa04930) is significantly associated with both Insulin signaling

(hsa04910) and Adipocytokine signaling (hsa04920). In the case of

Insulin signaling, we find a match of eight nodes of Insulin signaling

in the T2DM pathway. The number of PubMed references for

‘Type II diabetes mellitus AND Insulin’ is 21 326, consistent

with the well-studied nature of Insulin signaling in T2DM. This

result demonstrates that SAGA finds pathway matches that would

be expected by researchers experienced in disease-related pathways

research. In the case of Adipocytokine signaling in T2DM, we find

a match of five nodes and the number of references is 37, in agree-

ment with the less well-studied nature of Adipocytokine signaling

in T2DM.

The H. pylori pathway (hsa05120) demonstrated significant

matches to the Toll-like receptor, T-cell receptor and Apoptosis

pathways. The association between H. pylori infection and Apop-

tosis is relatively well studied (130 PubMed references), while the

association with Toll-like receptor signaling is less well studied

(12 references) and the association with T-cell receptor signaling

shows only two references. This result suggests that T-cell receptor

signaling is potentially a significant but relatively unstudied avenue

for research into the etiology of H. pylori infection.

3.2.2 Querying signal transduction pathways In this experi-

ment, we use the same database of pathways as in section 3.2.1

(162 KEGG human pathways) but we choose all the 12 signal

transduction pathways (KEGG IDs: hsa04010, hsa04020,

hsa04070, hsa04150, hsa04310, hsa04330, hsa04340, hsa04350,

hsa04370, hsa04630, hsa04910 and hsa04920) as the query set to

demonstrate additional benefits to be derived from identifying path-

ways matches. Many of the matches are intuitive for researchers

familiar with specific cellular, tissue or disease phenomena (as

expected). However, pairs of pathways between which the similari-

ties are not intuitive can be useful in both pathway annotation and

disease association research. In the following discussion, we present

two examples of such matches.

In the first example, Figure 2 shows components that are shared

by the Hedgehog (hsa04340) and Wnt (hsa04310) signaling

pathways (P-value 0.005). Note that nodes are matched based on

functionality. For example, Slimb is matched with B-TrCp as both

are SCF complex F-box proteins (KEGG Orthology, KO:K03362).

While SAGA can find this orthologous match, the difference in

terminology seen in the KEGG pathways database might make

it difficult for many researchers to find the match. These similarities

between Hedgehog and Wnt signaling are consistent with http://

www.stanford.edu/�rnusse/pathways/WntHH.html, as well as

Kalderon (2002) and Nusse (2003).

In the second example, the Wnt and Calcium signaling pathways

share four enzymes (Fig. 3, P-value 0.007). However, the Calcium
signaling pathway has two additional components (CALM and

IP3R) that arguably belong to the Wnt pathway. By identifying

the common components, we can provide information to improve

the annotation of the Wnt pathway.

Based on the significant similarities between the Wnt/Hedgehog

andWnt/Calcium pathways, we hypothesize that the three pathways

(Wnt, Calcium and Hedgehog signaling) could share disease asso-

ciations. Calcium signaling has been investigated in relation to

Bipolar Disorder (BD) for more than 40 years (Coppen, 1967).

After examining the Wnt/Calcium and Wnt/Hedgehog matches,

we conducted a literature search and found 335 PubMed references

investigating Calcium signaling in BD, as well as 15 PubMed ref-

erences for Wnt signaling in BD, consistent with our hypothesis.

However, when looking for BD association with Hedgehog signal-

ing, we found zero PubMed reference, which suggests that the

Hedgehog signaling pathway has been largely overlooked in BD

research, although it uses BD-associated components. This result

poses new hypotheses for exploring the relationship between BD

and Hedgehog signaling, and shows how SAGA can be useful in

disease research.

3.3 Reactome pathways vs. KEGG pathways

SAGA can also be used to compare pathways in different databases

(e.g. as a precursor to integrating data from different pathway

databases). In this experiment, we compare two well-known path-

way databases: Reactome (Joshi-Tope et al., 2005) and KEGG.

We use the same 162 KEGG human pathways as the database.

The queries are the eight newly updated pathways in Reactome

version 17. The query set includes TGF-b (Reactome ID:

170834), RIG-I (168928), Toll-like receptors 3 (168164) and

4 (166016), the conjugation phase of xenobiotic metabolism

(156580), aspects of the metabolism of lipoproteins (174824),

cell cycle regulation by the anaphase-promoting complex (APC)

(174143) and ATR activation in response to replication stress

(176187).

Table 1. Significant matches for the T2DM and H. pylori disease associated

KEGG pathways

Query Match No. of nodes

matched

P-value Refs

T2DM

(hsa04930)

Insulin (hsa04910) 8 0.0009 21 326

Adipocytokine

(hsa04920)

5 0.0009 37

H.pylori
(hsa05120)

Toll-like receptor

(hsa04620)

7 0.001 12

T-cell receptor

(hsa04660)

4 0.001 2

Apoptosis (hsa04210) 4 0.006 130

The number of PubMed references is simply produced by querying PubMed with the

keywords in the pathway names.

GSK-3β GSK-3β

β-catenin

β-TrCP

Fig. 2. Hedgehog pathway matched the Wnt pathway.

Y.Tian et al.

236

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/23/2/232/205026 by U
.S. D

epartm
ent of Justice user on 17 August 2022

http://

Naturally, the TGF-b pathway (with 23 nodes and 25 edges) in

Reactome matches the TGF-b (hsa04350) pathway (with 65 nodes

and 45 edges) in KEGG. However, pathways in the two databases

are not perfectly matched (graph distance >0). Each of the pathways
contains some details missing in the other. Also, as shown in

Figure 4, there are some differences even in the shared similar

components between the two pathways. By identifying the similar

subcomponents using SAGA, researchers can combine the two

databases and produce more complete data.

The two databases also organize pathways in different ways.

Reactome represents pathways in a hierarchy (i.e. a pathway

consists of several subpathways and subpathways again can be

made of subpathways). On the contrary, KEGG stores pathways

in a flat fashion. As examples of the organizational difference,

the Toll-like receptors 3 and 4 pathways in Reactome match the

Toll-like receptor (hsa04620) pathways in KEGG, and both cell

cycle regulation by the Anaphase-promoting complex (APC) and

ATR activation in response to replication stress pathways in Reac-

tome hit the cell cycle pathway in KEGG. Thus, SAGA can be used

for graph data integration even if databases organize the same

information in different ways.

3.4 SAGA for querying parsed literature graphs

This experiment examines how SAGA can be applied within an

information retrieval setting. While traditional IR methods employ

term-based comparisons and the cosine similarity measure (Salton

and McGill, 1983) for comparing documents, we look at the docu-

ment comparison problem specifically in the biomedical domain

and address it using a graph matching method. Each PubMed docu-

ment is represented by a graph in which a node indicates a gene

studied in that document. A link is drawn between two genes if they

are discussed in the same sentence (indicating there is potentially

association between the two genes). The graph presentation sum-

marizes the genes and gene associations derived from a document.

By querying the graph representation of a document against those of

other documents, documents that address the same topics as the

query document can be identified, even if they are published in

different areas of research. For example, we queried the publication

(Tourigny et al., 2002) (five nodes and six edges) against 48 444

PubMed documents using the cut-off value Pg ¼ 50%. (This dataset

has an average of 5.0 nodes and 18.8 edges per graph, and the

list of documents in this set can be accessed at http://

enigma.eecs.umich.edu/doc.txt.) Among the 11 matches found by

SAGA, the top hit is (Luedde et al., 2003), which does not have

a citation to (Toruigny et al., 2002). The shared components

between the two graphs are three genes: CDK inhibitor

p18(INK4c), 0610007C21Rik and Stmn1, as well as their three

pairwise associations. The query publication (Toruigny et al.,
2002) explored p18(INK4c) in the generation of functional plasma

cells, while (Luedde et al., 2003) investigated the role of this gene in
the regenerating liver. Thus, SAGA can be used to connect related

studies even in different sub-areas of biomedical research.

3.5 Comparison with existing tools

GraphGrep (Shasha et al., 2002) and Gindex (Yan et al., 2004) are
designed to match one graph against a collection of graphs. How-

ever, they only support exact subgraph isomorphism. Given the

noisy and incomplete characteristics of biological graphs, exact

matching cannot help much in our target applications. Grafil

(Yan et al., 2005), PIS (Yan et al., 2006), and Closure-Tree (He

and Singh, 2006) disallow gap nodes in their match models, which

prohibits them from getting results that SAGA can find. For exam-

ple, none of the 12 signal transduction pathways queries produce

any matches (excluding self-matches) in the KEGG human pathway

database using these three tools.

As discussed in Section 1, NetworkBlast is a tool for aligning

large protein interaction networks. On the other hand, SAGA is

designed for matching relatively small graph queries (sparse graphs

with less than 100 nodes) against a large set of (large or small)

graphs. Although NetworkBlast and SAGA have different charac-

teristics, it is interesting to consider applying NetworkBlast to path-

way matching. To query the set of pathways in KEGG (cf. Section

3.2.2), we have to run NetworkBlast once for each pathway in the

database. In other words, for the experiment in Section 3.2.2, for

each query, we need to invoke 162 calls to NetworkBlast. For the

Wnt signaling pathway (hsa04310) with 73 nodes and 92 edges, the

162 runs of NetworkBlast takes more than 20 hours, while SAGA

only takes about 8 minutes! Besides the more than two orders of

magnitude speedup, SAGA produces results with higher quality.

First, SAGAnevermisses anymatching pathways thatNetworkBlast

PLCβ

Fig. 3. Wnt pathway matched the Calcium pathway.

Fig. 4. The shared components between KEGG and Reactome TGF-b

pathway.

SAGA: a subgraph matching tool

237

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/23/2/232/205026 by U
.S. D

epartm
ent of Justice user on 17 August 2022

http://

can find. Second, SAGA can find matches that NetworkBlast

cannot find. The reason is that graph structural differences in

NetworkBlast are largely confined to short paths, while SAGA

tolerates more general structure differences. For example, neither

of the two matches shown in Figures 2 and 3 can be found by

NetworkBlast.

3.6 Efficiency evaluation

This experiment evaluates the efficiency of SAGA. To measure the

raw performance, we only measure the time it takes for SAGA to

produce matches, and do not include the time for generating the

P-value statistics.

We choose as queries the 10 disease associated KEGG pathways

(mirroring the experiment in Section 3.2.1). To vary the database

sizes, we add pathways for other species to the database. The details

of the databases are described in Table 2.

The query execution times for the 10 queries with increasing

database sizes are shown in Table 3. Even for the largest database,

the query execution times using SAGA are less than 1 second.

Besides the database sizes, the query execution times also depend

on the number of nodes and edges in the query, the actual query

graph structure, and the number of hits in the database. Almost all

the 10 human disease pathways have matches in the human, mouse

and rat pathways, but no matches exist for them in the worm and

yeast pathways. This explains why the execution times for the

queries on the databases d4 and d5 are similar to the execution

times against the database d3. For the databases d1 through d3,

even though the database sizes roughly doubles at each step, the

query execution times grow at a slower rate, since the index match-

ing components grow at at rate that is slower than the database

growth rate.

Another observation is that a larger query does not necessarily

result in a larger execution time. For example, hsa05040 is a single

connected graph with more matches in the databases than hsa04950,

which is a graph with several connected components. The execution

times with hsa05040 are more than hsa04950, although hsa04950

has more nodes and edges than hsa05040.

4 DISCUSSION

This paper discusses SAGA, a powerful method for approximate

subgraph matching. SAGA employs a match model that can be used

to accurately incorporate domain knowledge for capturing the

domain-specific notion of graph similarity. An index-based algo-

rithm makes approximate subgraph matching queries very efficient.

Our evaluations using a number of actual biomedical applications

show that SAGA can produce biologically relevant matches on

actual examples, whereas existing tools fail. In addition, we have

demonstrated the efficiency of the SAGA approach.

SAGA is very effective and efficient for querying relatively small

graphs (ideally sparse graphs with less than 100 nodes) against very

large databases, and there are many compelling applications in this

setting (cf. Section 3). However, we do not recommend using the

existing tool when the query graph is very dense and/or has a large

number of nodes. For such large query graphs, the performance of

the existing SAGA method degrades since potentially a large num-

ber of small hits can be produced by Step 1 of the matching algo-

rithm (cf. Section 2.3.2). Assembling these hits is computationally

expensive with the existing SAGA algorithm. To improve the

performance of SAGA for large query graphs, one can leverage

the observation that biological graphs have very strong modular

structures (Tornow and Mewes, 2003). In other words, these graphs

can be naturally divided into groups with dense intra-group

connections and very sparse inter-group connections. As part of

future work, we plan on making use of the modular property and

employ a divide-and-conquer strategy to handle large queries. More

specifically, we can divide the queries into several sub-queries (the

union of the sub-queries should cover the original query), then use

SAGA to match each sub-query. Finally, we can assemble the

results for the sub-queries to produce the final matches.

In the current version of SAGA, the Monte Carlo simulation

approach is employed to evaluate the statistical significance of

the matching results. As the simulation is applied to a large number

of random graphs, the cost of computing this statistical significance

can be much higher than the query execution cost itself. However,

due to the efficiency of the SAGA indexing and matching mecha-

nism, in many cases, the significance test can still be computed

quickly. For example, we generated 654 · 100 ¼ 65 400 random

graphs for our largest database d5. The P-value evaluation for the

10 disease associated queries, on these random graphs, ranges from

1 millisecond for query hsa04940 to 19 seconds for query hsa04930.

However, as the number of random graphs used for significance test

increases, the overhead will become more significant. In the future,

we plan on developing efficient analytical methods for assessing

significance of the SAGA matching results.

Table 3. Execution time (in milliseconds) for the 10 disease-associated

pathways in KEGG when querying the databases listed in Table 2

Query No. of

nodes

No. of

edges

d1 d2 d3 d4 d5

hsa05050 8 10 25.6 28.6 37.1 37.3 37.4

hsa05060 11 15 45.4 53.6 62.0 62.1 62.1

hsa05020 19 10 26.8 36.9 53.7 53.7 53.7

hsa04940 22 2 0.2 0.2 0.2 0.2 0.2

hsa05010 23 17 45.2 58.0 61.9 62.1 62.1

hsa05030 24 13 42.3 42.4 52.9 52.9 53.1

hsa05040 24 28 347.2 431.3 457.4 459.1 462.4

hsa04930 33 36 243.6 411.7 540.6 541.4 546.2

hsa04950 34 33 29.6 29.6 29.6 29.7 29.7

hsa05120 57 26 116.5 160.6 182.8 183.1 183.7

Table 2. Characteristics of various databases used for the scalability

experiment

Dataset Pathways No. of

graphs

Avg. no.

of nodes

Avg. no.

of edges

FragmentIndex
Size

(no. of entries)

d1 human 162 86.0 35.3 1.38 · 107

d2 d1 + mouse 320 86.3 34.8 2.94 · 107

d3 d2 + rat 470 86.6 31.7 4.07 · 107

d4 d3 + worm 567 89.0 28.5 5.34 · 107

d5 d4 + yeast 654 91.3 27.3 6.08 · 107

This table shows the number of graphs in each database, the average number of nodes and

edges per graph in the databases, and the number of entries in the FragmentIndex.

Y.Tian et al.

238

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/23/2/232/205026 by U
.S. D

epartm
ent of Justice user on 17 August 2022

ACKNOWLEDGEMENTS

The authors thankYou Jung Kim for providing valuable feedback on

this work. This research was primarily supported by the National

Institutes of Health under grant 1-U54-DA021519-01A1, by the

National Science Foundation under grant DBI-0543272, and by

an unrestricted research gift from Microsoft Corp. Additional

funding was provided by grant GR687 from the Michigan

Economic Development Corporation, and grant R01-LM008106

from the National Library of Medicine. Funding to pay the Open

Access publication charges for this article was provided by the

National Institutes of Health under grant 1-U54-DA021519-01A1.

Conflict of Interest: none declared.

REFERENCES

Bron,C. and Kerbosch,J. (1973) Algorithm 457: finding all cliques of an undirected

graph. CACM, 16, 575–577.

Coppen,A. (1967) The biochemistry of affective disorders. Br. J. Psychiatr., 113,

1237–1264.

Chen,M. and Hofestaedt,R. (2004) PathAligner: metabolic pathway retrieval and align-

ment. Appl. Bioinformatics, 3, 241–252.

He,H. and Singh,A.K. (2006) Closure-tree: an index structure for graph queries. In

Proceedings ICDE 2006, pp. 38–49.

Hochbaum,D.S. (1997) Approximation Algorithms for NP-Hard Problems. PWS

Publishing Co., Boston, MA, USA.

Joshi-Tope,G. et al. (2005) Reactome: a knowledgebase of biological pathways.

Nucleic Acids Res., 33, D428–D432.

Kalderon,D. (2002) Similarities between the hedgehog and wnt signaling pathways.

Trends Cell Biol., 12, 523–531.

Kanehisa,M. et al. (2006) From genomics to chemical genomics: new developments in

KEGG. Nucleic Acids Res., 34, D354–D357.

Kelley,B.P. et al. (2004) Pathblast: a tool for alignment of protein interaction networks.

Nucleic Acids Res., 32, W83–W88.

Koyuturk,M. et al. (2005) Pairwise local alignment of protein interaction

networks guided by models of evolution. In Proceedings of RECOMB 2005,

48–65.

Luedde,T. et al. (2003) p18(INK4c) collaborates with other CDK-inhibitory proteins in

the regenerating liver. Hepatology, 37, 833–841.

Nusse,R. (2003) Wnts and hedgehogs: lipid-modified proteins and similarities in sig-

naling mechanisms at the cell surface. Development, 130, 5297–5305.

Salton,G. and McGill,M. (1983) Introduction to Modern Information Retrieval.

McGraw-Hill, New York.

Sharan,R. et al. (2005) Conserved patterns of protein interaction in multiple species.

Proc. Natl Acad Sci. USA, 102, 1974–1979.

Shasha,D. et al. (2002) Algorithmics and applications of tree and graph searching. In

Proceedings of PODS 2002, pp. 39–52.

Tatusov,R.L. et al. (1997) A genomic perspective on protein families. Science, 278,

631–637.

Tornow,S. and Mewes,H.W. (2003) Functional modules by relating protein interaction

networks and gene expression. Nucleic Acids Res., 31, 6283–6289.

Tourigny,M. et al. (2002) CDK inhibitor p18INK4c is required for the generation of

functional plasma cells. Immunity, 17, 179–189.

Yan,X. et al. (2004) Graph indexing: a frequent structure-based approach. In Proceed-

ings of SIGMOD 2004, pp. 335–346.

Yan,X. et al. (2005) Substructure similarity search in graph databases. In Proceedings

of SIGMOD 2005, pp. 766–777.

Yan,X. et al. (2006) Searching substructures with superimposed distance. In Proceed-

ings of ICDE 2006, pp. 88–99.

SAGA: a subgraph matching tool

239

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/23/2/232/205026 by U
.S. D

epartm
ent of Justice user on 17 August 2022

