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We have constructed a public gene expression data repository and online data access and analysis, WWW and

FTP sites for serial analysis of gene expression (SAGE) data. The WWW and FTP components of this resource,

SAGEmap, are located at http://www.ncbi.nlm.nih.gov/sage and ftp://ncbi.nlm.nih.gov/pub/sage, respectively.

We herein describe SAGE data submission procedures, the construction and characteristics of SAGE tags to gene

assignments, the derivation and use of a novel statistical test designed specifically for differential-type analyses

of SAGE data, and the organization and use of this resource.

Gene expression quantifying techniques promise to

shape our understanding of the distribution and regu-

lation of the products of transcription in normal and

abnormal cell types. cDNA microarray (DeRisi 1997),

high-density oligo DNA array (Wodicka 1997) and se-

rial analysis of gene expression (Velculescu 1995) tech-

niques have all been developed to quickly and effi-

ciently survey genome-wide transcript expression.

However, each of these techniques has the potential to

produce, in a single experiment, vast amounts of data

which must be sifted and ordered for useful informa-

tion to become apparent. Additional challenges are

met when attempts are made to compare, merge and

contrast data from experiments conducted under dif-

fering conditions and locales.

As a prototype for the handling, analysis and ex-

change of gene expression data in the public forum, we

have undertaken the production of a public repository

and resource for a particular set of gene expression

data, i.e., serial analysis of gene expression (SAGE)

data. This repository was designed initially to archive

SAGE data produced through the Cancer Genome

Anatomy Project (CGAP) (Strausberg 1997; http://

www.ncbi.nlm.nih.gov/cgap) but is now capable of ac-

cepting submissions of SAGE sequence data from any

source, without fee or restriction on dissemination or

use. It is our goal to provide free and open access to raw

SAGE sequence data, precomputed tag extractions, and

several modest analysis tools.

This resource currently contains over two million

tags from 47 SAGE libraries. We call this resource

SAGEmap. Its two online components are available via

the World Wide Web (http://www.ncbi.nlm.nih.gov/

sage) and anonymous FTP (ftp://ncbi.nlm.nih.gov/

pub/sage).

RESULTS AND METHODS

SAGE Library Construction

At this time, data from 47 human SAGE libraries have

been submitted to SAGEmap. These libraries were

made from mRNA extracts from both bulk tissue and

cell lines (neoplastic and non-neoplastic). The tissue

sources of these libraries currently include human

brain, breast, colon, ovary, prostate, skin and vascular

tissue. All of the SAGE libraries currently in SAGEma-

pwere constructed as previously described in great de-

tail (Velculescu 1995; Zhang 1997). Information and

data for species other than Homo sapiens as well as

other tissue and tumor types will be posted as they

become available.

Library Information and Sequence Data Submission

and Storage

Information about the tissue and library treatment and

preparation (including organ and tissue type, neoplas-

tic state, any special treatment, tissue submitter, and

library producer) is gathered, submitted, and stored in

a Sybase relational database maintained at the Na-

tional Center for Biotechnology Information (NCBI),

National Institutes of Health. A unique library name is

assigned by NCBI and is used to track submitted SAGE

sequences as they are archived. This sequencing infor-

mation is submitted using the same format and general

guidelines governing the submission of expressed se-

quence tag (EST) sequence information to NCBI’s EST

data repository, dbEST (Boguski 1993; http://

www.ncbi.nlm.nih.gov/dbEST). Information about

SAGE library and sequencing data submission can be

gained from the SAGEmap website or by sending email

to sage@ncbi.nlm.nih.gov. All library and sequence in-

formation is made publicly available through the

SAGEmap web and FTP sites within days of its success-

ful submission.
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SAGEmap Submission Tool

In order to facilitate submissions, a program called

SAGEmap Submission Tool, or SST, has been written in

the Java programming language. SST not only makes

submissions from small laboratories easier by allowing

direct submitter annotation of library and reference

information, but performs the extraction procedure

detailed below. SST has been successfully operated on

Windows 95/98/NT and Sun Solaris (UNIX) operating

systems running Sun Microsystems’s Java Runtime En-

vironment version 1.2.2 (http://java.sun.com/

products/jdk/1.2/jre/). A beta version of SST is freely

available from the SAGEmap web and FTP sites.

Sequence Data Processing—Tag Extraction

The primary data product of the SAGE technique is the

clone insert sequence, which represents the concat-

enated tags, in pairs (ditags), separated by four base

punctuation signals (e.g., NlaIII sites). Processing of the

sequence data from the SAGE libraries described in this

paper was performed as previously described (Zhang

1997), using the SAGEnet SAGE extraction software

(currently called SAGE300, and freely available at

http://www.sagenet.org/), as well as by a number of

highly customized UNIX operating system shell scripts

and C programs at NCBI. All of the data represented by

the SAGEmap resource was derived using the latter

method. Briefly, the steps in the latter algorithm are as

follows:

1. Locate the NlaIII sites (i.e., CATG “punctuation sig-

nals”) within the ditag concatemer,

2. extract ditags of length 20–26 bases which fall be-

tween these sites,

3. remove repeat occurrences of ditags, including re-

peat occurrences in the reverse-complemented ori-

entation,

4. define tags as the end-most 10 bases of each ditag,

reverse-complementing the right-handed tag,

5. remove tags corresponding to linker (e.g., TCCCC-

GTACA and TCCCTATTAA), as well as those with

unspecified bases (i.e., bases other than A, C, G, or

T), and

6. for each tag, count its number of occurrences.

The product of this processing is a list of tags with their

corresponding count values, and thus is a digital rep-

resentation of cellular gene expression.

Tag-to-Gene Assignments

The UniGene project (http://www.ncbi.nlm.nih.gov/

UniGene) is an experimental system for automatically

partitioning GenBank transcript-source sequences

(e.g., proteins, well-characterized mRNA/cDNA se-

quences and ESTs) into a non-redundant set of gene-

oriented clusters. Each UniGene cluster fundamentally

contains a group of sequences which are sequence-

similar, and therefore represents a unique trancript.

The UniGene project thus provides a single identifier

and gene description for each cluster of sequence-

similar, transcript-source sequences. These identifiers

are used in the construction of a SAGE tag to gene

mapping. The construction process of the tag to Uni-

Gene cluster assignments (hereafter called tag-

UniGene assignments or pairs) itself is a multistep, au-

tomated process which consists of a number of highly

customized UNIX operating system shell scripts and C

programs designed for system-dependent file manipu-

lations. UniGene-represented EST sequences and well-

characterized mRNA/cDNA sequences are treated simi-

larly, but separately. The reasons for separately process-

ing sequences of different types will be described later.

The following steps detail the construction process for

making tag-UniGene assignments based on the SAGE

anchor enzyme NlaIII.

1. Separate out individual human sequences from

GenBank submission records which are represented

in UniGene,

2. assign sequence orientation through a combination

of identification poly-adenylation signal (ATTAAA

or AATAAA), poly-adenylation tail (minimum of

eight A’s), and orientation annotation (3� or 5�),

3. extract a 10-base tag which is 3�-adjacent to the 3�-

most NlaIII site (CATG),

4. assign a UniGene identifier to each human se-

quence with a SAGE tag, and

5. for each tag-UniGene pair, calculate two frequencies

from the number of times this tag-UniGene pair has

been seen divided by, separately, the number of se-

quences with this tag, and the number of sequences

with tags in this UniGene cluster.

The result of this process is a “full” tag to gene map-

ping, with forward and reverse sequence frequency

weights given to the edges. Full mappings for human,

rat and mouse, based on NlaIII (CATG) or Sau3A

(GATC) anchor enzymes, are available for download

from the SAGEmap web and/or FTP sites.

Reliable Assigments

When extracting tags, five arbitrary sequence “classes”

can be defined to describe the reliability of the tag-

UniGene assignment (Table 1). Of highest reliability

are tag-UniGene pairs derived from well-characterized

mRNA/cDNA sequences from GenBank. Of less reli-

ability are tags extracted from EST sequences, which

can be further partitioned into four classes based upon

sequence orientation identifiers and annotations.

Among the EST sequences, sequences with a polyade-

nylation signal and/or polyadenylation tail and anno-

tated as 3� sequences are the most reliable. Next are

sequences with a polyadenylation signal and/or poly-

adenylation tail, but without a 3� or 5� annotation. Of

Lash et al.

1052 Genome Research
www.genome.org

 Cold Spring Harbor Laboratory Press on August 4, 2022 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/
http://www.cshlpress.com


the third level of reliability are EST sequences with a

polyadenylation signal and/or polyadenylation tail,

but annotated as 5� orientation. Of lowest reliability

are EST sequences without a polyadenylation signal or

tail but annotated as having a 3� orientation.

Well-characterized mRNA/cDNA sequences are as-

sumed to have no sequencing errors. However, since

EST sequences are sequenced in a single pass, a certain

measurable error rate must be assumed. Previous stud-

ies of EST sequences have calculated this error rate to

be approximately 1 out of 100 bases, or 1%, on average

(Hillier 1996). Assuming an overall error rate of 1%, the

resultant chance for one or more sequence errors over

10 bases is 1.00–(0.99)10 = 0.096, or approximately

10%. Therefore, we expect 10% of the tag-UniGene

pairs in the full tag-to-gene mapping to be due entirely

to sequencing error. Since the most infrequent tag-to-

gene assignments are most likely due to error, the most

suspect group of tag-UniGene assignments consists of

the 10% most infrequent tag-UniGene assignments.

Conservative removal of these most infrequently seen

tag-UniGene assignments from the “full” tag-to-gene

mapping produces “reliable” tag-to-gene mapping. The

reliable mappings for human, mouse, and rat, based on

NlaIII (CATG) or Sau3A (GATC) anchor enzymes, are

also available for download from the SAGEmap web

and FTP sites.

Virtual Northern Tool

In order to support mRNA sequence-based queries of

the SAGE data in the repository, we have constructed a

“virtual Northern” tool which extracts possible SAGE

tags and orientation signals (i.e., polyA signal and tail)

from any entered mRNA/cDNA sequence. The most

likely tag for this sequence may then be selected based

on the orientation. These tags are hotlinked to the tag

display tool (described below) which, among other

things, displays absolute and relative tag abudance in

currently held experimental SAGE data (hence the

name virtual Northern). In order for this tool to ex-

tract, display and link to the correct tag, the submitted

sequence must contain the 3� end of an mRNA se-

quence. Because it is possible for the same SAGE tag to

be present in the transcriptome ambiguously (i.e., the

same tag is present in more than one dissimilar tran-

script), results from the use of this tool should be con-

firmed with independent methods.

Tag and Gene Display Tools

The tag and gene display tools are used to query mul-

tiple data sets. The tag display tool shows the tag’s

relative and absolute representation in the currently

held SAGE libraries, as well as its most reliable gene

assignment(s) (via the “reliable” tag-to-gene mapping)

and its representation in all of the sequences repre-

sented in UniGene (via the “full” tag-to-gene map-

ping).

Conversely, the gene display tool uses an index

based upon the set of valid UniGene cluster ids, and

displays the gene’s reliable tag assignments (via the

“reliable” gene-to-tag mapping) and their absolute and

relative representations in the currently held SAGE

data, as well as all possible tags extracted from the se-

quences representing that UniGene cluster (via the

“full” gene-to-tag mapping).

Differential SAGE Data Analysis Statistics

Several statistical approaches can be used to test for

differential expression in SAGE data. Assume that

within two types of cells Y and Z, a particular mRNA

species has unknown respective concentrations y and

z. A total of A tags are sequenced from cell type Y, and

B tags from cell type Z, and among these, a and b tags,

respectively, correspond to the mRNA of interest.

What may be inferred about the relative size of the

actual concentrations, y and z?

Audic & Claverie (1997) have described a classical

statistical approach. They consider the null hypothesis

H0 that y=z, and the alternative that y�z, and derive

formulas based upon the observed data for rejecting H0

with various degrees of confidence. If a/A and b/B differ

significantly, one rejects H0, concluding that the ex-

pression levels y and z are unequal.

An alternative Bayesian approach was described by

Chen et al. (1998). They consider the quantity x = y/

(y +z), and assume it has a prior probability density

function f(x) over the interval [0,1]. If the total number

of tags sequenced for each cell type is equal, i.e., if A =

B, the posterior probability density for x is, up to a

normalizing constant, g(x) = f(x)xa(1-x)b. The concen-

tration y exceeds z by a factor of at least F when x � L,

where L = F/(F +1). The posterior probability P of this

being the case is given by

Table 1. Sequence Classes

Class Sequence type
PolyA signal
and/or tail Annotation

1 well-characterized
mRNA/cDNA

n/a n/a

2 EST yes 3�

3 EST yes none
4 EST yes 5�

5 EST no 3�

P�x � L� =

�
L

1

g�x�dx

�
0

1

g�x�dx
.
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The application of this equation is illustrated in

Figure 1.

This approach may be generalized to the case

where A � B (Lal et al. 1999). Some simple calculus,

omitted here, shows that the posterior probability den-

sity function is given, up to a normalizing constant, by

the equation

When A = B, this reduces to the formula for g(x)

given previously (Chen et al. 1998).

The Bayesian approach has both advantages and

disadvantages. Rather than simply rejecting the hy-

pothesis that the concentrations y and z are equal, one

can estimate the probability that they differ by any

desired factor. However, this ability depends upon the

assumption of a prior probability density function f(x).

It is clearly desirable that f(x) be peaked at and sym-

metric about 0.5. For mathematical convenience, f(x)

may be chosen to be a beta function with both param-

eters equal (Chen 1998). Ignoring the normalizing

constant as usual, this function has the form f(x) =

xc(1-x)c. The larger the value specified for c, the more

peaked the prior distribution is about 0.5, and the

more evidence needed to infer a statistically significant

departure from near-equal expression levels.

An appropriate value for the c parameter depends

upon the distribution of mRNA expression level

changes between cells under various experimental con-

ditions. Chen et al. (1998) proposed choosing c=1, but

an analysis of data from other studies (Polyak 1997;

Zhang 1997) suggests that a higher and therefore more

conservative value, closer to c=3, might be appropriate

(Lal 1999).

The value of c is relevant mainly for mRNA species

for which little data is available. When the numbers of

observed copies a and b of a given tag are large, the

data overwhelm prior assumptions. If one is interested

mainly in ordering mRNA species for further study, the

absolute probabilities estimated for various tags are less

important than their relative size. The choice of c is

then largely irrelevant, and the classical and Bayesian

approaches also are likely to yield very similar order-

ings by significance.

Online Comparison Tool

We have constructed a differential display-type library

comparison tool using the statistical method described

above. Counts for a particular tag from individual li-

braries placed in the same group may be filtered first

for homogeneity by using a cutoff value for relative

coefficient of variance. The coefficient of variance is a

scalar value and is calculated in the usual way as the

standard deviation divided by the arithmetic mean,

but the frequency of tag expression within the library

or group is used in this calculation, rather than abso-

lute tag counts. This cutoff is initially disabled with a

value of 0%, but may be altered by the user. As an

example, if this cutoff were set to a value of 30%, the

standard deviation of the expression frequency of a

particular tag within a group differs from the mean by

no more than 30%. Once a tag passes this filter, the

counts are summed within the group. This filter may

be used to reduce the effects of outliers, and thereby

imposes a certain degree of homogeneity within each

group.

Following the summation of tag count values

within each of the groups, the expression levels of the

tags within each of the groups are compared using the

statistical test described above. The factor used for in-

ter-group comparison is initially set at a 2.0-fold differ-

ence, but may be altered by the user. A statistic equiva-

lent to the probability that the two levels differ by at

least the given factor is used to order the results.

In order to allow browsing of the results, without

requiring a large “download investment” up front

(since results may include many tens of thousands of

tags), the first 100 tags with their associated gene as-

signments, tag counts and statistics are displayed in

the browser window (in linked HTML), in an abbrevi-

ated format. If complete results are desired, a tab-

delimited text file of the results may be downloaded

from this results webpage, to the user’s local computer,

Figure 1 The solid curve represents an assumed prior probabil-
ity density for x, given within a normalizing constant by f(x) =
x3(1-x)3. The prior probability that the mRNA concentration y is
at least 4 times z is represented by the area beneath this curve
and to the right of the vertical line at x=0.8, or about 3.3%.
Assume that 25 tags corresponding to the mRNA in question are
then sequenced from the Y cells, and two tags from the Z cells, in
an experiment in which the same total number of tags are se-
quenced from each of the two cell types. The posterior probabil-
ity density for x is then proportional to g(x) = x28(1-x)5, repre-
sented by the dotted curve. The posterior probability that x �0.8
is approximately 70.0%.

g�x� = f�x�
xa

�1 − x�
b

�1 + �A�B − 1�x�
a+b

.
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where it can be manipulated using spreadsheet and

database computer programs.

DISCUSSION
SAGE is a technique designed to take advantage of

high-throughput sequencing technology to obtain a

quantitative profile of cellular gene expression. Essen-

tially, the SAGE technique measures not the expression

level of a gene, but quantifies a “tag” which represents

a gene transcript. A tag, for the purposes of SAGE, is a

nucleotide sequence of a defined length, directly 3�-

adjacent to the 3�-most restriction site for a particular

restriction enzyme. As originally described (Velculescu

1995), the length of the tag was nine bases, and the

restriction enzyme was NlaIII. Current SAGE protocols

produce a 10- to 11-base tag (Zhang 1997), and, al-

though NlaIII remains the most widely used restriction

enzyme, enzyme substitutions (e.g., Sau3A) are pos-

sible.

The SAGE technique, as was noted earlier, pro-

duces a digital output. This is not to imply that no loss

of fidelity occurs from the conversion of an actual tran-

script and its expression level to a tag and its count

value. Accuracy in both the assignment of tags to genes

as well as the ability to quantify a gene’s expression

level are sacrificed in order to increase throughput, and

therefore increase the speed and lower the cost of

analysis. A ten-base tag is by no means a perfect repre-

sentation of a gene’s entire transcript. There will be

instances in which two or more genes share the same

tag (i.e., the tag-to-gene assignment is ambiguous), and

instances in which one gene has more than one tag

(i.e., through alternate termination in an individual, or

polymorphism in a population, the gene-to-tag assign-

ment is not specific). However, some of the tag-to-gene

ambiguities may be resolved using the 11th and 12th

bases of the SAGE tag, where present, or independent

transcript quantitation methods (e.g., Northern blot

analysis).

Sequencing Error Effects on SAGE Data

Single-pass sequencing error plays an important role in

tag production. An error, if it occurs in the generation

of a SAGE tag datum, will, of course, lower the correct

tag count by one, but will also either increase the tag

count of an already established tag by one, or will es-

tablish and count a tag which does not, in reality, exist.

The former effect is not of great concern when drawing

conclusions from tags with relatively high counts,

since raising or lowering a tag count by one or two

should, overall, have no great effect. The former and

latter effects, on the other hand, do much to increase

suspicion of the tags with low counts, particularly

those with a count of 1. The only compensation for

counting errors of this type to date has been to remove

tags counted only once from the data. This empirical

approach has been used in the past for libraries in

which roughly 250,000 total tags have been se-

quenced. For libraries or pools of libraries with, for ex-

ample, over one million total tags sequenced, it might

be necessary to exclude tags with counts of less than 2,

3 or more. This method of compensation for counting

errors due to sequencing error may not be an optimal

approach, and investigations are currently underway

to determine whether a better approach exists.

One such possible approach is to calculate, and

make use of, the expected number (or percentage) of

nearest neighbors (i.e., one base substitution, insertion

or deletion) with a count of one, two, etc., given the

number of total tags sequenced, and the actual tags in

the data set. Another possible approach is to make use

of automated sequencer trace quality scores, such as

those generated by the phred algorithm (Ewing 1998).

For the data represented on the SAGEmap website, we

chose not to attempt these more sophisticated se-

quencing error compensation steps until we have an

opportunity to study this further.

Tag-to-Gene Assignments

It would be preferable if specific and unambiguous

gene assignments could be made for every experiment-

derived tag, but this is definitely not the case. The dif-

ficulties are several, and begin with the set of se-

quences from which tags are derived. The sets of tran-

scripts from Homo sapiens, Mus musculus, and Rattus

norvegicus have yet to be sequenced, let alone charac-

terized. Until they are, there is only an incomplete set

of sequences from which to derive tags. Next, consid-

ering the nature of the roughly 1.3 million transcript-

source human sequences used for the mapping de-

tailed here, only about 19,000 (0.1%) are well-

characterized mRNA/cDNA sequences, while the vast

majority are expressed sequence tag (EST) sequences.

The problem with using EST sequences for the deriva-

tion of 10-base tags is that they are, as SAGE sequences

are, usually only single-pass sequenced, and therefore

have a 1% error rate on average (Hillier 1996). This

means that there is roughly a 10% chance that a 10-

base tag will include one or more errors. Considering

that tag-to-UniGene assignments are based upon the

sequence from these tags, it stands to reason that

roughly 10% of the assignments that are extracted

from these sequences will be incorrect. This com-

pounds the “naturally” unspecific and ambiguous tag-

to-gene assignments which are already expected with-

out considering sequencing error.

The naturally occurring unspecific and ambiguous

tag-to-gene assignments for human might be reason-

ably approximated by extracting SAGE tags from the

19,000 or so, nearly errorless, well-characterized mRNA/

cDNA sequences in GenBank, and matching those

tags to some set of defined gene-units. As noted above,
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since the set of transcripts from Homo sapiens has not

yet been sequenced or characterized, an artificial

method for defining gene-units must be chosen. This

may be as simple as taking the title of the GenBank

sequence entry, or as complicated as using a set of gene

contigs, or using gene-based sequence clusters, such as

the UniGene gene set (http://www.ncbi.nlm. nih.gov/

UniGene). The latter approach was the one adopted for

SAGEmap. When tags are extracted from these nearly

errorless sequences, two distributions of the tag-to-

gene assignments give an idea of baseline specificity

and ambiguity before higher sequencing error rates are

considered (Fig. 2A,B). Tags can be derived from error-

prone EST sequences, but some consideration should

be made to how sequencing error might affect tag-to-

gene assignments.

Perceived sequence errors are not removed from or

corrected in GenBank, UniGene or this SAGE tag map-

ping, for the very reason that it is difficult—perhaps

impossible—to separate these errors from tags resulting

from alternative termination, and sequence polymor-

phisms. However, in this mapping, we can use certain

assumptions about the error rates given above to “rec-

ommend” certain connections between tags and

genes, and not others. We have constructed “reliable”

mapping by accepting a certain fraction of the most

frequently occurring tag-to-gene assignments, and

have based this fraction on an estimation of the se-

quencing error rate (i.e., a 10% chance of one or more

sequencing errors in 10 bases; see Results and Methods

section). Two sets of distributions of the tag-to-gene

assignments in this mapping give an idea of the effect

of adding in error-prone EST sequences before (Fig.

2C,D) and after (Fig. 2E,F) the sequencing error correc-

tion is performed.

In Figure 2, A and B represent the best pos-

sible outcome of our sequencing error correction al-

gorithm (being the distribution of tags to genes for

well-characterized sequences), and C and D, the worst

possible outcome (being the distribution of the un-

corrected, full mapping). Realistically, we expect

our correction algorithm to result in mappings some-

where in between these two extremes, which it does.

However, in both the tag-to-gene and the gene-to-

tag mappings, we would prefer our correction to

remove the erroneous tags, and thereby reduce the

number of tag-UniGene and UniGene-tag pairs, but

leave the number of unique tags and the number of

unique genes represented in the reliable mappings un-

changed.

This correction works reasonably well on the tag-

to-gene mapping (Fig. 2A,C, and E). For example, 96%

of tags derived from well-characterized sequences map

to one, and only one, UniGene cluster (Fig. 2A), and

85% of tags derived from ESTs and well-characterized

sequences (full mapping) map to only one cluster (Fig.

2C). After the correction is imposed on the full map-

ping, 87% of tags map to only one cluster (Fig. 2E). In

this correction process, the total number of tag-

UniGene pairs is reduced by 9.9% from 158,332 to

143,700 while the number of unique tags is reduced a

mere 0.065% from 123,978 to 123,898.

This correction also works reasonably well on the

gene-to-tag mapping (Fig. 2B, D, and F). For example,

0.52% of UniGene clusters derived from well-

characterized sequences map to more than four tags

(Fig. 2B), with the mean being 1.8 tags/cluster, and

11% of clusters in the full mapping map to more than

four tags (Fig. 2D), with the mean being 2.5 tags/

cluster. After the correction is imposed on the full map-

ping, 11% of clusters map to greater than four tags (Fig.

2F), with the mean being reduced to about 2.3 tags/

cluster. In this correction process, the total number of

UniGene-tag pairs is reduced by 5.7% from 158,332 to

149,368 while the number of unique genes remains

unchanged at 63,776.

While the mean tag/cluster and cluster/tag ratios

were lowered, it is somewhat surprising that the cor-

rection algorithm did not appreciably change the dis-

tribution patterns of the reliable tag-to-gene and

gene-to-tag mappings from those of the full mappings

towards a distribution which more closely resembled

that derived from the well-characterized sequences.

In this sense, the estimate of an EST error rate of

10% over 10 bases could be thought to be too conser-

vative. However, it is also possible that the well-

characterized sequences represent a biased sample, be-

cause they have not been randomly chosen, and so

comparing mappings derived from them with the

more randomly-derived EST sequences is not entirely

appropriate.

Since these mappings are based upon the UniGene

sequence clustering algorithm, any artificial “lump-

ing” of sequences belonging to disparate gene units

into the same cluster, and “splitting” of sequences be-

longing to the same gene unit into different clusters

will have an effect on the mappings which will not be

corrected through sequencing error estimation and

correction schemes, such as that which we employed

here. If it occurs at an appreciable level, lumping would

have the effect of increasing the mean tag/cluster ratio,

and skew the gene-to-tag mapping distribution away

from 1 tag/cluster. Likewise, if splitting occurs at an

appreciable level, the mean cluster/tag ratio would be

increased, and the tag-to-gene mapping distribution

would be skewed away from 1 cluster/tag. Unlike se-

quencing errors, these lumping and splitting anomo-

lies, if present at an appreciable level, would be very

difficult to correct or compensate for at the mapping

level.

An STS-based estimate of lumping and splitting in

UniGene suggests that both rates are below 5% (Wag-
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ner, unpubl.). This is likely to be an underestimate,

because STSs like SAGE tags may be repeated in several

members of a gene family, though not necessarily in

exactly the same way.

A third source of discrepancies between identically

SAGE-tagged sets of sequences and Unigene clusters

is 3� ESTs terminating elsewhere than the terminus

of the single longest consensus sequence. There are

several causes for such ESTs. Biologically relevant

are the familiar phenomena of alternative splic-

ing (though only alternately spliced terminal exons

would affect SAGE tagging) and termination at mul-

tiple cleavage sites on a single transcript (these seem

to occur in 25% of Unigene clusters). In addition,

there are artifacts of library preparation: chimeric

sequences, internally primed sequences, reversed in-

serts, and clones terminating at a restriction binding

site internal to the transcript (Hillier 1996; Aaronson

1996). The combined effect of these phenomena is

estimated to be 5%–10% (both from an inspection of

sequences in UniGene and from the studies cited

above).

Figure 2 (A,B) The percent distributions of the tag-to-gene and gene-to-tag mappings, respectively, from October 1999, for well-
characterized mRNA/cDNA sequences only (i.e., no EST sequences). (C,D) The distributions for the “full” mappings (including data from
tags paired to UniGene clusters). (E,F) The distributions for the “reliable” mappings (see text).
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Virtual Northern Tool

We envisioned the virtual Northern tool as a sequence-

based query mechanism into the experimentally-

derived SAGE data and the UniGene-based tag-to-gene

and gene-to-tag, mappings. This tool allows the user to

use any mRNA/cDNA sequence (even one which is not

represented in the public repositories) with an intact 3�

end to link to a SAGE tag, and then to both relative and

absolute abundance and tag-to-gene mapping infor-

mation. An example of the use of this tool is shown

graphically in Figure 3.

Online Comparisons

One of the major uses of performing differential analy-

ses of gene expression between a tumor and its corre-

sponding normal tissue is to identify candidate tumor

suppressor genes and oncogenes, which can then be

studied in depth. Of course, since tumor cells and nor-

mal cells have different growth and cellular differen-

tiation characteristics, one always runs the risk of iden-

tifying instead abnormally expressed growth factors or

cell cycle constituents, or factors expressed only in nor-

mal, terminally differentiated cells. We can neverthe-

less gain some insight into the expression differences

of cancer-related genes between examples of changes

in neoplastic state (i.e., normal cells into tumor cells).

Perhaps we can also draw some conclusions about the

likelihood that any given SAGE tag from an uncharac-

terized transcript which shows differing expression in

these two cellular states might also represent a hereto-

fore uncharacterized transcript important in tumori-

genesis. Examples of differential comparisons of this

sort are highlighted on the SAGEmap website, and one

such example of the comparison tool is shown graphi-

cally in Figure 4. Example comparisons of this sort us-

ing this SAGEmap resource and detailed conclusions of

such analyses are described elsewhere (Lal 1999).

Gene expression technologies allow us to confront

large amounts of data with which we endeavor to

glimpse the inner workings of the cell (transcriptome

analyses), or differentiate one cellular state from an-

other (differential expression analyses). However, such

vast amounts of data greatly complicate attempts to

analyze the data produced and compare the data to

what has already been produced. We have attempted

to construct a public, user-friendly expression data re-

source which goes beyond being merely a gene expres-

sion repository, by providing efficient, online analysis

tools to users world-wide. The NCBI SAGE repository

and the SAGEmap website are some of the first forays

Figure 3 Pasting text sequence information into the text box and clicking on the “Submit” button (left) retrieves the tag and orientation
information given below the text box. Tags are given in four possible sequence orientations, the top two orientations being the most
common. The correct tag and orientation can be chosen based on the poly-adenylation signal and tail location/presence information.
Clicking on the tag (left) will retrieve tag-to-gene mapping information (right) including reliable gene assignment; relative and absolute
tag abundance in the SAGE libraries currently in the NCBI SAGE repository; and every UniGene identifier, type, orientation, frequency, and
GenBank Accession numbers for each GenBank and dbEST sequence which contained that tag. The information in the right panel can
also be retrieved by typing in the 10-base tag sequence in the search box at the top of the page. This same information for UniGene
clusters can be retrieved with a similar search interface (not shown) which is located at http://www.ncbi.nlm.nih.gov/SAGE/SAGEcid.cgi.
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into the world of publicly accessible gene expression

data and analysis tools, and we believe they provide a

glimpse of what may be accomplished in the field of

genomics.
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