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Abstract
Using microscopy to investigate stomatal behaviour is a common technique in plant physiology re-
search. Manual inspection and measurement of stomatal features is a low throughput process in
terms of time and human effort, which relies on expert knowledge to identify and measure stomata
accurately. This process represents a significant bottleneck in research pipelines, adding significant
researcher time to any project that requires it. To alleviate this, we introduce StomaAI (SAI): a reli-
able and user-friendly tool that measures stomata of the model plant Arabidopsis (dicot) and the crop
plant barley (monocot grass) via the application of deep computer vision. We evaluated the reliability
of predicted measurements: SAI is capable of producing measurements consistent with human ex-
perts and successfully reproduced conclusions of published datasets. Hence, SAI boosts the number
of images that biologists can evaluate in a fraction of the time so is capable of obtaining more accurate
and representative results.

Introduction
Stomata, derived from the Greek word mouth, are small pores penetrating the epidermal surface of
plant aerial organs. In monocot grasses, such as barley or maize, the stomatal apparatus includes a pair
of subsidiary cells flanking the dumbbell-shaped guard cells surrounding the stomatal pore1,2. Dicot
plants, instead, have a pair of kidney-shape guard cells surrounding each stomatal pore. Stomatal
pores play a critical role in plant physiology by limiting the diffusion of carbon dioxide (CO2) into
leaves, which directly impacts the rate of photosynthesis. Photosynthesis produces the carbohydrates,
adenosine triphosphate (ATP), and nicotinamide adenosine phosphate (NADPH) required for plant
metabolic functions, growth and development; releasing oxygen as a by-product. At the same time,
water vapour released via stomatal pores enables water transport through plants3,4. Some plants sur-
vive during excessive heat by keeping stomata open, cooling leaves through the evaporation of water.
Conversely, stomata are closed during droughts to prevent water loss4. Stomata also respond to diel
cycles, such as light and dark, and a multitude of other signals to optimize CO2 gain and water loss5,6.
As a consequence, stomatal aperture regulation during daily light and dark cycles, or in response to
environmental stresses, directly impacts plant growth, development and survival6–8.

Due to the important role that stomata play, investigating stomatal regulation has become a com-
mon task for biologists studying plant signalling pathways and stress perception6,9,10. To study stom-
ata traits (i.e., size or density) researchers commonly use microscopy11–13. This method of examining
stomatal behavior, although commonplace, is not straightforward. Morphological differences in stom-
ata of different species (Figure 1) and variable image quality make accurate stomatal measurement
a task that requires experience and training. Traditionally, stomatal measurement requires manual
inspection of each image to identify and measure relevant features (i.e. stomatal pore area and aper-
ture). Hundreds of images need to be analyzed this way to gain sufficient statistical power to support
a biological conclusion; a time-consuming and laborious process. Although manual measurement
can be aided by image processing software such as Fuji-ImageJ14, manually tuned parameters are
required to produce acceptable performance15. An automated stomatal measurement system is thus
highly desirable and will accelerate plant physiology research.

Microscopy imaging presents a uniquely controlled environment for the application of modern com-
puter vision techniques. Images can be captured in high-resolution via calibrated optics, reducing
systematic noise, and plant anatomy enforces regularity in pattern, appearance and orientation (in
monocot grasses). These factors remove several of the common Achilles’ Heels of applied vision
systems. Previous attempts have been made to quantify stomatal attributes using traditional computer
vision techniques to predict stomatal density, width and area16–21. Although these methods demon-
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Fig. 1: The stomata of Arabidopsis thaliana and barley (Hordeum vulgare). Components of Ara-
bidopsis and barley stoma are highlighted and labelled; the scale bar equates to 10 µm for both Ara-
bidopsis and barley.

strate efficacy on their respective tasks, they rely on handcrafted and/or multi-stage processes. The
use of Convolutional Neural Networks (CNNs) to detect stomatal attributes has recently increased in
popularity22–29. CNNs enable a series of pertinent operations to be learnt from examples - acting as a
data driven approximation of a sequence of computer vision operations.

More recently, Mask Regions with Convolutional Neural Network features (Mask R-CNN) has been
used to perform identification and localisation of stomata. This involves the entire stomatal com-
plex being detected, encircled by a polygon with its orientation and stomatal complex area captured,
inferring axis length30 or stomata density31. The algorithms were successfully used across differ-
ent species with varying image quality30. Of the techniques surveyed, many studies only estimate
stomatal counts for use in density calculations,17,19,21,25,26,29,31 with Fetter et al. (2019)26 providing
a user-friendly online application named ”Stomata Counter”. Fewer studies are focused on stomatal
pore measurements, with methods that are semi-automated requiring handcrafted feature extractors
or manual post-processing following model inference18,22,24,27,28. Ellipse fitting is the common solu-
tion used among these studies for estimating the pore area, width and length through calculating the
fitted ellipse’s area, minor-axis and major-axis22,24,27,28,32. However, the fitting method is restricted to
stomata with an ovular-shaped pore (e.g. Arabidopsis stomata), and other shapes of the stomatal pore
(e.g. barley) cannot be represented correctly with an ellipse and result in under or over estimation of
pore features (Figure 1). Besides, none of the above studies offers a usable automated stomatal pore
measurement tool available for use.

Here, we present StomaAI (SAI) as an accessible automated tool that allows stomatal pore mea-
surement of microscope images. The precise stomatal pore feature measurement is the core novelty
of StomaAI (SAI), measuring pore area, length, width (i.e. aperture), and width/length ratio. We
demonstrate that measurements obtained using SAI are comparable to those taken by human experts,
providing assurance of prediction reliability. This key comparison is not provided by contemporary
studies that use traditional computer vision evaluation criteria such as F1 score or average precision
(AP) to evaluate machine performance. Due to differences in stomata morphology, SAI includes
two class-specific models: a dicot model trained with Arabidopsis data and a monocot cereal model
trained with barley data. We demonstrate that with approximately 150 annotated images containing
about 1700 stomata, SAI can be trained to measure pores of two different plant species. The online
demonstrator software where model inference can be viewed is hosted at https://sai.aiml.team.
To use SAI to measure user acquired samples, we provide a local version that can be accessed via
https://github.com/xdynames/sai-app.
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Results
SAI achieves human-level performance. Beyond assessing performance using traditional metrics,
we show that SAI produces measurements that are equivalent to human-level performance. To com-
pare independent human operators (multiple plant physiology researchers) with SAI we applied an
Average-Human/Machine Test. To reduce rater’s bias, the average measurements taken by 4 human
experts were used to provide a human-level reference. The concordance correlation coefficient (CCC;
ranging from −1 to 1) was used to evaluate the agreement between different human measurements, the
human-level reference and SAI33. Stomatal width, length, area and width/length ratio were measured
by SAI (Figure 2, Appendix Figure A1) and human experts (Appendix Figure A2). Width measure-
ments obtained from SAI, when plotted against reference measurements, generally align with y = x;
indicating that width measurements are consistent with the reference (Figure 2). Incorrectly classi-
fied samples (i.e. where the predicted opening status disagree with the reference) can be identified as
those points along the x or y axes. SAI achieves a CCC of 0.891 and 0.984 for Arabidopsis and barley
respectively. Considering that any Arabidopsis open stomata with a stomatal width of less than 1 µm
will have a minimal impact on transpiration, the Arabidopsis stomatal width achieves a CCC at 0.916
when excluding stomata that have a width of less than 1 µm human-level reference. Human experts
show an average CCCs of 0.9449 on Arabidopsis samples and 0.9853 when measuring barley (Ap-
pendix Figure A2). Measurements performed on barley samples exhibited improved correspondence
with the reference in all cases.

Relative errors (RE) in measurements from SAI are distributed in a similar pattern to those from hu-
man measurements (Appendix Figure A2). Judging aperture extent in stomata that are almost closed
is more difficult than when they are open. This creates a skew in the RE histogram where errors are
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Fig. 2: SAI prediction vs average human-level reference set in Arabidopsis and barley stomatal
width (µm). Stomata morphology measurements from 4 human experts were collected and an average
width of each stoma were calculated as the human-level reference. In upper panel, SAI predictions
were compared against the reference and the concordance correlation coefficient (CCC, ranging from
−1 to 1) was displayed as the determination of the accuracy performance. The black diagonal line
represents y = x and CCC is a measure of dispersion for the points from that diagonal line. The
corresponding relative error (RE) to human-level reference was presented at lower panel with mean
RE presented. Data points are color coded by plant species. (Arabidopsis: N > 120, barley: N >
160)
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more frequently observed in small measurements. Estimation of stomatal length were not affected
by stomatal opening status, so REs are evenly spread between under and over estimation. The mean
stomatal width, length, area and width/length ratio are calculated for each source of measurements
and compared using one-way ANOVA with Tukey HSD (Appendix Table A1). This comparison aims
to test whether measurement sources exhibit a statistically significant difference. No such signifi-
cance was found in measured stomatal features across both Arabidopsis and barley samples when
SAI was compared to the human-level reference measurements (Appendix Figure A3). Additionally,
SAI exhibits no significant difference from individual human expert measurements, except in the case
of expert 2’s length measurements for Arabidopsis. Interestingly, human expert 2’s Arabidopsis mea-
surements are significantly smaller in area, length and width to both human expert 1 and 3. In all
cases, expert 2 tends to measure stomata more conservatively compared to others.

SAI produces consistent replication of human processed datasets. SAI was used to measure two
sets of published physiological experiments. The original images from Xu et al. (2021)11 Supplemen-
tary Figure 3b & 5g were processed with SAI. Traditionally, researcher’s will exercise their discretion
by consciously measuring only stomata they deem as mature. SAI measures indiscriminately. How-
ever, we were able to emulate this practice via filtering of detections based on their estimated length.
To exclude immature stomata, we eliminate detections of Arabidopsis stomata with lengths shorter
than 2 µm and barley stomata shorter than 16 µm in length. SAI and the original manual measure-
ments were compared using ANOVA with Tukey HSD, as in Xu et al. (2021)11 (Figure 3). Scientific
conclusions drawn from the statistical tests were consistent with those of Xu et al. (2021)11. Ara-
bidopsis stomata are closed in response to 25 µM ABA in the presence and absence of 2 mM GABA,
and light induced barley stomatal opening was inhibited by the presence of 1 mM GABA.

The mean and distribution of stomatal width in each treatment group obtained using SAI were com-
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Fig. 3: SAI predicted measurements are consistent with outcomes obtained by human re-
searchers. Stomatal width in SAI predictions and human measurements collected with treatment
under 25 µM ABA with 2 mM GABA (Arabidopsis) or 1 mM GABA (barley) during a dark-to-light
transition11. All data was tested using one-way ANOVA followed by Tukey HSD (N > 140/group
in Arabidopsis, N > 150/group in barley. a and b represent groups with no difference, p ≤ 0.0001
between groups, ****p ≤ 0.0001).
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pared to the original manual measurements. SAI detected 66.37% and 91.39% of manually measured
data in Arabidopsis and barley, respectively. This indicates SAI performs better when detecting barley
stomata than Arabidopsis. Measurement distributions of stomatal width produced by SAI are simi-
lar in shape to those produced via manual inspection (Appendix Figure B1). Human expert 2, who
was identified as the most conservative measurer, performed the human measurement of Arabidopsis
stomata (Figure 3, Appendix Figure A3). Thus, the lower mean value for stomatal width obtained
from human measurements was expected. When SAI measures barley samples, the distribution of
measurements is almost identical to that of human measurements. This observation is likely due to
the more uniform structure and higher image quality present in barley images.

SAI significantly reduces human effort. Model inference time is predominantly limited by im-
age resolution and computation speed. Due to this, barley data (2880×2048 in resolution) generally
took a longer time to process than Arabidopsis data (2592×1944 in resolution) when using the same
processor. Figure 4 shows the average time required to process a microscope image on a range of
commonly available hardware.
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Fig. 4: Wall clock time measured when processing a single microscope image using SAI. All
processors are tested on the same image set of Arabidopsis and barley at the respective species native
resolution. For all tests, the confidence threshold is set to 0.5. Mean of inference time per sample
is displayed with estimated sample standard deviation. All processors were on desktop, except Intel
i5-10310U, Intel i5-7267U (MacBook Pro 2017), Ryzen 5800H and Nvidia 3070 were on a laptop.

Discussion
SAI provides a new way to analyze stomata, one of the most studied plant cell types. Our tool allows
a series of stomatal features to be extracted. Specifically, opening status, complex location, width,
length, and area of stomatal pores. Throughout testing, SAI generally produces better predictions on
barley than Arabidopsis. This is observed for both the number of true detections made and measure-
ment quality that reflected by CCC. This might due to image quality and leaf epidermis morphological
structure. Although stomata have a relatively uniform structure, the random distribution and orien-
tation of Arabidopsis stomata make the measurement task more challenging than for barley, which
has stomata that are aligned in parallel rows with fixed orientations (Figure 1). Using the criteria
outlined in Jayakody et al. (2021)30 to assess image quality, we found that Arabidopsis samples are
rated as medium quality, whereas barley samples are considered high quality. The observed disparity
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in measurement quality supports the claim made in Jayakody et al. (2021)30 that image quality has a
major impact on model performance.

The common technique used in automated stomatal pore measurement systems is to use ellipse
fitting to estimate pore area, width and length from the fitted ellipse’s area, minor-axis and major-
axis22,24,27,28,32. Ellipse fitting is limited to stomatal pores that have ovular shapes, such as those
delineated by kidney-shaped guard cells (Figure 1). Plants like barley, which have stomatal pores de-
lineated by dumbbell-shaped guard cells, do not have elliptical pores (Figure 1). Their stomatal pores
resemble a coin slot, which cannot be represented accurately with an ellipse, leading to under or over
estimation in derived measurements. In contrast, SAI uses direct mask segmentation of the stomata
pores, which is flexible to represent any pore shape and obtain pore area by calculating masked pixel
area. Moreover, the efficacy of ellipse fitting is positively correlated with the extent of stomatal pore
opening28. Therefore, ellipse fitting cannot be used effectively for stomatal assays under experimen-
tal conditions that require measurement of stomata that are partially open or completely closed, e.g.,
stomata exposed to ABA, high CO2, H2O2 and darkness to induce stomatal closure11,13. SAI classi-
fied stomata before performing the measuring task and recorded the closed stomata with width and
area as zero. This process includes closed stomata in the dataset and allows SAI to deal with the
real-world experimental design in plant research.

From our analysis we have determined that SAI achieves human-level performance and when used
leads to conclusions consistent with human researchers. However, SAI has many advantages com-
pared to manual measurement. SAI produce stable and reproducible measurements. We observed
that manual measurements contains rater’s bias in Average-Human/Machine Test, therefore, mea-
surements produced by two different experts will vary (Appendix Figure A2). In contrast, SAI’s
predictions are consistent, regardless of the researcher using it. This guarantees that measurements
are reproducible from the same set of samples. Of particular importance to the future of plant physi-
ology, SAI enables researchers to verify other’s conclusions without weeks of human effort. Provided
that the samples from which a biologist draws their conclusions are available, SAI can produce a set
of measurements within minutes. These measurements can then be used to verify claims through the
application of statistical analysis.

In our experiments, SAI detects less stomata than experts. Human experts are able to use their ex-
perience to extract measurements from some stomata that are blurry, occluded or unresolved. When
SAI views such samples, it will ascribe a low level of confidence to its associated measurements. To
prevent false positives, where SAI predicts there is a stoma present incorrectly, we discard measure-
ments corresponding to detections below a minimum value of confidence. Confidence is an arbitrary
scale from 0 to 1 that indicates how strongly the model responded to the region. In our experience, a
confidence threshold of 0.5 allows the majority of false positives to be removed while retaining valid
detections. Due to this process, stomata capable of being salvaged by experts are often discarded
by SAI. It is important to note that the extraction of measurements from every single stoma from an
image becomes less important due to SAI’s high throughput and ability to quickly measure orders of
magnitude more stomata.

Compared to manual measurement, SAI is exceptionally efficient. Depending on the confidence
threshold, SAI can produce measurements from a high-resolution image in 6-12 seconds, while run-
ning on a mid-range desktop computer’s central processing unit (CPU) (Figure 4). For a human, the
equivalent process takes between 2 and 5 minutes depending on image quality, the number of stomata
per image, measurements required and stomatal opening status. When using a graphics processing
unit (GPU), SAI further increases this disparity. On an NVIDIA GTX 1070, SAI is able to process an
image every 600 milliseconds. This means that with an entry-level GPU, SAI can process hundreds
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of images within a minute - the equivalent of 7-9 human hours. Automatically processing hundreds
of images by SAI, makes it trivial to achieve minimum measurement numbers required per treatment
group for statistical testing. In fact, SAI enables researchers to increase the statistical power of their
conclusions. Here, SAI decouples human effort from the number of measurements per treatment
group, making measuring additional pores an attractive prospect. This enables researchers to measure
previously unthinkable quantities of stomata per treatment group, allowing the law of large numbers
to provide more accurate summary statistics of stomatal response.

SAI makes it possible to produce more accurate population measurements by processing a greater
number of stomata in a shorter time period. This hassle-free, high resolution, time-efficient data ac-
quisition assistant has the potential to accelerate research that has a major impact on plant physiology.
Moreover, SAI’s ability to learn how to measure stoma in both barley and Arabidopsis gives us con-
fidence in its ability to do so in other species. Towards this, we provide an additional model with SAI
which has been trained on a combined species data set. As pores share some common visual features,
this model can be used as a starting point for researchers wishing to use SAI on a new type of plant.
To do this, a set of measured examples that conform to our annotation format could be used to fine
tune the provided combined species model. In this study, we only consider SAI’s use in measuring
pore features. However, given sufficient labelled data, extension to measurement of other relevant cell
structures would be possible. More generally, SAI could be used to measure other structures captured
via microscopy.

SAI is a reliable, fast and simple solution to automate stomatal measuring for plant biologists via
a user-friendly web app (online demo is available at https://sai.aiml.team, full version is avail-
able at https://github.com/XDynames/SAI-app). SAI is a new tool that can free researchers
from labour intensive low-throughput measuring tasks; accelerating the speed of physiology-based
research, regardless of the shape of the stomatal pore.
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Methods
Data annotation and Modeling. Arabidopsis thaliana ecotype Col-0 and barley (Hordeum vulgare,
Barke) were prepared as plant material11. Arabidopsis images were captured using Axiophot Pol
Photomicroscope (Carl Zeiss). A Nikon DS-Fi3 digital camera with a Nikon diaphot 200 inverted
microscope was used to capture barley images. All images were annotated using RectLabel (version
3.03.8, https://rectlabel.com). Creation of pore feature annotations followed the procedure of
manual measurement carried out in Fiji-ImageJ. In a given annotation, two labels were ascribed to
each stoma (Figure 5). A bounding box which contains a single stoma with associated opening status
(open or closed). Measurements of the stomatal pore were also taken. These were recorded as a
polygon or a line for open and closed stomata respectively. All information was organised for com-
patibility with Microsoft Common Objects in Context (MS-COCO); which is a widely used computer
vision benchmark34. Summary statistics of the created database of microscopy images are presented
in Table 1.

Barley

Arabidopsis

Open Stoma Closed Stoma

Fig. 5: Annotation examples of Arabidopsis and barley stomata. Bounding boxes contain a single
Arabidopsis or barley stoma (i.e. a pair of guard cells and a pair of subsidiary cells if from a relevant
plant) and its opening status is determined in different label (open stoma in cyan, closed stoma in yel-
low). The red polygon and line present defined stomatal pore in each annotation. Scale bar represents
10 µm in Arabidopsis and 20 µm in barley.

Table 1: Summary metrics for stomatal pore dataset used in model training and evaluation.

Slide Images Stoma Instances
Train Validation Train Validation

Arabidopsis 200 42
Open: 974

Closed: 293
Open: 235
Closed: 55

Barley 150 33
Open: 1000
Closed: 692

Open: 268
Closed: 89

Traditionally, researchers inspect each captured microscope image and measure relevant structures of
a stoma. The measurement procedure will depend on the pore opening status. The area of an open
stoma is measured by drawing a polygon that encloses its mouth. To determine the pore’s width and
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length, researchers either directly measure or apply fitting methods to the aforementioned polygon.
Closed pore lengths are acquired by selecting points which mark the beginning and end of their tightly
shut mouth. For a computer model to emulate a researcher performing the measurement, it must: lo-
calise target structures within a sample; comment on their state and gather relevant measurements. To
enable this, we have reformulated each one of these tasks into a computer vision task. A researcher’s
initial identification of stomata and their opening status is re-framed as object detection. Object detec-
tion consists of drawing boxes around salient objects and predicting the enclosed object’s semantics.
Drawing polygons indicating stomatal openings maps to segmentation, which highlights regions of
interest within images. Selecting end points for a stomatal pore is analogous to keypoint detection,
which reduces visual features of interest to a defining pixel. Each of these tasks has a library of pos-
sible models capable of solving them individually. By requiring an all-inclusive solution, candidates
are significantly reduced. Mask R-CNN represents an incremental change atop of an already estab-
lished series of deep-learning architectures35–38. This iteration comes armed with requisite predictive
powers for our physiological needs. Through the use of specialized predictive heads, Mask-RCNN is
capable of learning object detection, segmentation and keypoint detection in tandem.

Deep-learning models were built using Detectron 2; an open-source framework sitting on top of
Pytorch. Both of these packages were created by Facebook’s Artificial Intelligence Research division
(FAIR)39,40. Adaptions were made to FAIR’s Mask R-CNN model to better suit stomatal measure-
ment. Specifically, increasing the resolution of prediction heads responsible for segmentation and
keypoint detection. Mean average precision (mAP ), as defined in the MS-COCO challenge, was
used to evaluate and compare models on all tasks34. Justification and verification of model design
choices and training regimes are presented in Appendices C-J.

Average-Human/Machine Test. To determine whether SAI predictions were consistent with hu-
man measurement, an Average-Human/Machine Test was designed. In total, 35 microscopy images,
15 of barley and 20 of Arabidopsis, were collated as a test dataset (summarized in Table 2). Four

Table 2: Summary of Average-Human/Machine Test dataset.

Images
Stomata

Open Closed

Arabidopsis 20 129 20
Barley 15 109 66

plant stomata morphology experts participated by manually measuring the 35 random selected im-
ages. The mean measurements of 4 human experts on each stoma were used as a human-level ref-
erence. This reference was used to quantify the extent to which a single researcher may vary within
their own judgement and assess SAI. Participants used the same annotation schema outlined above
data preparation. To understand how measurements retrieved from images change with respect to
their measurers, all measurements were matched to a human-level reference at the single stoma level.
Differences between measurement sources against the human-level reference were visualized with
scatter plots and quantified by relative error. To evaluate the agreement between SAI/human experts
and human-level reference, the concordance correlation coefficient (CCC; ranging from -1 to 1) was
applied33. Furthermore, the means of each measurement, for each measurer, was compared using
one-way ANOVA with Tukey HSD.

SAI in practice. To support our claim that SAI is a replacement for traditional measurement meth-
ods, we demonstrate that scientific conclusions drawn from measurements produced by SAI align with
those of expert physiologists. Manually measured image datasets of both Arabidopsis and barley were
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obtained from Xu et al. (2021)11. Two different experimental designs were selected to evaluate SAI’s
real-world performance: the 25 µM ABA with presence and absent of 2 mM GABA for Arabidopsis
and dark-to-light transition with or without 1 mM GABA for barley. Reference measurements for the
two datasets were made by different researchers. Arabidopsis measurements were taken by human
expert 2. Barley samples were measured by human expert 4. Measurements produced by SAI were
subjected to the same statistical tests used in Xu et al. (2021)11 to examine whether SAI enables
consistent conclusions as those reached by expert measurements.

Inference time assay. The efficiency of SAI compared to manual labelling was tested on a range
of commonly available computer hardware. We do this using the same set of sample images used in
the Average-Human/Machine Test (Table 2). Time to processes each image was recorded and used to
estimate the average inference time and sample standard deviation for each processor. These measures
were then used to compare their throughput.
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