
SAIL: A System for Generating, Archiving, and Retrieving
Specialized Assignments Using E TEX*

Stina Bridgeman
Brown University
ssb@cs.brown.edu

Michael T. Goodrich
Johns Hopkins Univ.

goodrich@jhu.edu

Stephen G. Kobourov
Johns Hopkins Univ.
kobourov@cs.jhu.edu

Roberto Tamassia
Brown University
rt@cs.brown.edu

Abstract

In this paper we present a package for the creation of
Specialized Assignments In I.$TEX, SAIL. We describe
several features which allow an instructor to create suf-
ficiently different instances of the "same" problem so as
to encourage student cooperation without fear of pla-
giarism. The SAIL package also provides support for
grading aids and grading automation. In addition, we
describe an on-line system for archiving homework prob-
lems in a database that can be easily searched and to
which new parametrized problems can be easily added.
Together, the SAIL package and the searchable database
of problems offer a powerful tool for generating, archiv-
ing, and retrieving homework assignments (as well as
tests and quizzes).

1 Introduction

Recent education research has shown the value of as-
signing homework problems that are specialized so that
each student is given a different problem that tests
knowledge of the same subject matter. Such special-
ized problems enable an instructor to allow students to
collaborate without fear of plagiarism, for discussions
between students must necessarily be at a higher level
than simply answer syntax. That is, it is not opera-
tire for a student to ask another, "What was your an-
swer to Problem number 7?" A more appropriate ques-
tion would be, "Could you remind me how QuickSort

*Research supported in part by the National Science
Foundation under grant CC1:t-9732300 and by the U.S. Army
Research Office under grant DAAH04-96-1-0013.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advant
-age and that copies bear this notice and the full citation on the first page.
To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
SIGCSE 2000 3•00 Austin, TX, USA
© 2000 ACM 1-58113-213-1/0010003...$5.00

works?" or "Would you please teach me how deletion
in a red-black tree works?"

Given the proven value of specialized homework assign-
ments, we feel that the next natural issue to address is
the development of tools to allow instructors to easily
prepare specialized assignments. This paper describes
one such tool, which we call tl~e SAIL package. In ad-
dition to this tool for generating specialized problems,
we have also developed an on-line system for archiv-
ing and retrieving such problems. Thus, we describe a
complete system that allows an instructor (or group of
instructors and teaching assistants) to easily assemble
complete sets of assignments, exams, and quizzes that
include specialized problems.

1.1 Previous Work

As mentioned above, recent research has shown the
benefit of individualized assignments as a means of
achieving higher level of collaboration among students.
Examples include research on their use in chemistry
classes [8], statistics classes [9], and introductory com-
puter science courses [10]. This prior work points to
evidence that such use of specialized assignments pro-
vides better learning of fundamental material rather
than aiming to get simply a correct answer.

Our approach of eliminating the usefulness of plagia-
rism contrasts with some interesting prior research on
creating tools that can detect plagiarism. This detec-
tion approach naturally assumes that assignments are
identical and attempts to detect plagiarism rather than
prevent it. Examples of such programs include the Unix
commands d i f f [5], which uses string alignment meth-
ods to detect similarity between arbitrary text files and
dup [2], which finds exact matches over a given length.
In addition, several tools have been designed with the
specific goal of detecting plagiarism in computer science
assignments, such as moss [1], sire [3], and the programs
of [6, 71.

300

1.2 Our Results

In this paper we present a simple package of LATEX
macros, which we call SAIL, that provides tools for in-
structors to generate differing versions of computer sci-
ence problems. This system allows problems given to
all the students in a class to be of the same type but
differ sufficiently in details. Thus in order to "help" a
friend in class, a student cannot simply hand him her
own assignment, but she would rather have to explain
her solution to him.

We chose to develop our assignment generating system
using the LATEX system for a number of reasons. First,
many computer science faculty already use LATEX to cre-
ate homework assignments, quizzes, and exams (as well
as SIGCSE submissions such as this one). Thus, build-
ing on the LATEX system is natural for many instruc-
tors in computer science. Second, the LATEX document
preparation system is Turing equivalent; that is, it is
possible to write a LATEX source file to compute the
value of any computable function. This power is more
than of theoretical interest, however, for it provided us
with the ability to write the SAIL package to include
macros for pseudo-random number generators, pseudo-
random permutations, the ability to select and read files
at random, etc. Finally, we chose the LATEX system be-
cause it is designed to be platform independent. It is
still one of the few document preparation systems that
supports complete source-file interoperability between
Mac, Unix/Linux, and Windows computer systems, and
there are many freeware versions of LATEX available for
all of these systems. Moreover, because it is platform
independent, LATEX has few possibilities for interacting
with operating systems in dangerous ways (e.g., as the
Melissa virus did inside Microsoft Word documents).

In addition, since LATE X source files are written in
ASCII, our choice of using LATEX greatly simplified the
second component of our system, which is an on-line
problem set repository. Our on-line system is capa-
ble of archiving and retrieving homework assignments
containing specialization macros and/or standard LATEX
commands. Our on-line system also allows for keyword
searching of multiple files and directories, and it returns
its results in the form of both LATEX source and example
output in PDF. Thus, we present a complete solution
for generating, archiving, and retrieving specialized as-
signments.

2 The SAIL Package

To provide the capability of generating different ver-
sions of similar problems we need the ability to gener-
ate (pseudo-)random numbers in LAI~jX. We achieved
this ability by building on the existing fp package by
Michael Mehlich for floating point operations, which in-

cludes a LATEX macro for generating a (pseudo)-random
floating point number, and the exam package by Hans
van der Meer, which includes a LATEX macro for gen-
erating a random bit. Neither of these systems were
completely sufficient for our uses, however, as the fp
system does not include integer operations or list ma-
nipulation methods, and the exam package only includes
random bit generation and random list permutations for
multiple-choice questions with at most five (5) possible
answers. Rather than describe our SAIL package in de-
tail, however, we provide some examples of its use in
this and the following sections, including how to incor-
porate it with our on-line problem set repository.

2.1 Random Sequence

In the SAIL package we can use the macro
\rsequence#1#2#3 to generate a sequence of n = #3
random numbers in the range [#1, #2). This macro
can be very useful in problems such as sorting. In par-
ticular, consider the following problem in LATEX:

\begin{question}
Sort the following numbers using
MergeSort and use a binary tree to show
the input and output of each recursive
call:
\rsequence{O}{ i00}{ i0}
\end{quest ion}

The problem above will produce different sequences of
10 random numbers in the range [0, 100). Here is one
output:

Question 1 Sort the following numbers using
MergeSort and use a binary tree to show the in-
put and output o] each recursive call:
9~ 710 ~0 8~ 1 3 1 8 3 2 8 5 3 2

2.2 Sequence Without Repeats

Often, it is necessary that the input sequence to a giv-
en problem contain no repeats. This sometimes sim-
plifies a problem as in the case of insertion into a bi-
nary search tree. With this in mind we created the
\rsequencenr#1#2#3 macro. This macro is very sim-
ilar to the \ rsequence macro defined above; the only
difference is that there will be no repeated numbers in
the produced sequence. Consider the following problem
in LATEX:

\begin{question}
Show the result of inserting the
following numbers in a binary search
tree :
\rsequencenr{ 10} {50}{15}
\end{question}

301

The problem above will produce different sequences of
15 unique random numbers in the range [10, 50). Here
is one possible output:

I Ques t ion 2 Show the result of inserting the fol-
lowing numbers in a binary search tree:
17 39 15 22 10 48 33 29 11 32 43 37 30 19 44

2.3 Random Permutation

The exam package provides the choice of permuting up
to five answers to a multiple choice question. We created
a macro \perm#l#2 which produces a random permuta-
tion of the numbers [#1, #2). This macro can be used
in shuffling multiple choice answers. There is no limit
to the number of answers that can be permuted. It can
also be used in sorting problems and in other problems
in which repeats are undesirable.

Here is an example of a multiple choice question:

\begin{question}
What does ' 'AVL' ' stand for in AVL-Trees?
\end{question}
\begin{choice}
\item American Veteran Labeling
\item Aggregate Virtual Leaf
\item First initials of its two creators
\item AVerage Left-balance
\end{choice)

Here is a possible outcome:

Ques t ion 3 What does "A VL " stand/or in A VL-
Trees ?

a) Aggregate Virtual Leaf

b) First initials of its two creators

c) AVerage Left-balance

d) American Veteran Labeling

2.4 Choosing a Random File

A large class of problems can be parametrized by the
inclusion of a random graph. Consider the Minimum S-
panning Tree problem and assume we have generated N
random graphs on the same number of vertices. Let the
files be stored as graphO, g raph l , . . . , g raphN and let
files algorithmO, algorithml, algorithm2 contain the
words "Boruvka's", "Prim's ' , "Kruskal's", respectively.
Consider the following question:

\begin{question}
Highlight the edges of an MST of the
following graph using
\newcount\temp \rnumber{3} {\temp}
\ input \namenumber {algor ithm} { \t emp}
algor i thm:
\rnamber{\N}{\temp}
\input\namenamber{graph}{\te p}
\end{question}

The problem above will select a random graph and as-
sign one of the three algorithms for finding an MST.
Here \rnumber#1#2 assigns a random number in the
range [0,#1) to #2 and the macro \namenumber at-
taches number #2 to the file name #1. (the definition is
\def\namenumber#1#2{#1\the#2}). Here is a possible
outcome:

Ques t ion 4 Highlight the edges of an MST of the
following graph using Prim's algorithm:

2.5 Other Problems

The random number generator can be used for other
user-defined macros or by itself in a variety of prob-
lems. Consider the Shortest Path problem (and all of
its derivative problems). The input to the problem is
generally a weighted undirected graph. The instructor
can create one unweighted graph with node labels. Then
a list of weights can be generated at random with the
random number generator. As can easily be seen, this
approach is extendable to many graph and tree based
problems (e.g. tree traversal Algorithms) and many oth-
ers.

3 Using the SAIL Package

For a IATEX package to be most effective and useful
it has to be simple to use, flexible, and easy to build
upon. We have created only a handful of macros which
are easy to use and work with. There are also several
options which provide for:

• reproducible random assignments

• support for graders

• automated grading

302

3.1 Customizing the SAIL Package

By setting the macro, \ c s i z e to the class size, the in-
structor can generate \ c s i z e different versions of the
given assignment at once. With this in mind the 1.4TEX
source of a homework assignment is of the following
form:

\document class {art icle}
\usepackage{SAIL}

\begin{document}
\1oop\i num0<\¢size{

body of the assignment

\setcounter{page}{l}
\newpage
}
\repeat

\end{document}

While this approach provides sufficient randomness, the
assignments cannot be repeatedly reproduced. There-
fore, the instructor can use the student id's as keys for
the random number generator to generate assignments
which can be regenerated again if necessary. There are
two ways in which this can be achieved. A file contain-
ing all of the student id's can be created and used in the
seed initialization, or IbTEX can prompt the user for the
student id number.

3.2 Grading with SAIL

One of the major drawbacks of using different assign-
ments is the increased difficulty in grading. With this in
mind, we have provided the capability to create an aux-
iliary document which contains the random instances,
along with an id number for the assignment (student
id's if they were used in the initialization, or randomly
assigned id's otherwise). The auxiliary file can be used
as grader aid as follows• For a given assignment there
could be a program which takes as input the random
instances of the problems in the assignment and uses
them to create solutions. Each auxiliary file can then
be used to create solutions. Grading the student's as-
siguments with valid solutions in hand can greatly aid
the teaching assistant and in some cases even allow for
grading automation. For example, in the case of multi-
ple choice questions, the auxiliary file can even contain
the answer key.

4 Archiving and Retrievin E Problems

Homework creation can be further facilitated by hav-
ing a searchable database of problems from which to
draw. A prototype database I has been developed to

1 avai lable at h t t p : / / l o k i , c s . brown, edu: 8 0 8 1 / 1 6 /

accompany the book Data Structure and Algorithms in
Java [4]. The database uses the GLIMPSE system [12]
to allow fast full-text searching. Problems may also be
classified into one or more categories, and retrieved by
category. The database is accessed via the WWW; Fig-
ure l(a) shows the query form. A great deal of flexibil-
ity is allowed in the search string in terms of wildcards;
GLIMPSE's syntax is similar to that of agrep [11].

Figure l(b) shows the result of searching the database
for problems containing the text "MST" or "minimum
spanning tree". For each problem, the lines matching
the query string are displayed to give the user some
context from which to narrow down the search for an
appropriate problem. Links are given to PDF versions
of the problem and solution, and to the 1.4TEX source
and any other necessary accompanying files (such as
figures). Providing the source files makes it possible
to build homework assignments by cutting-and-pasting
problems from the database. The solution files are
password-protected, so while the links will always be
shown, access to the solutions themselves is limited to
instructors and other qualified individuals.

Problems using the SAIL package can be incorporated
into the database like any other problem - - the contents
of all of the problem's [$TEX source files contribute to
the index for that problem. As a result, the Minimum
Spanning Tree example in section 2.4 will be returned
as a match for the search strings "Boruvka", "Prim",
or "Kruskal" as well as "MST". The only part of the
problem that will not be indexed are the randomly gen-
erated numbers, but numbers are not indexed in the
first place.

References

[1] Aiken, A. Measure of Software Similarity. In
http : //www. cs. berkeley, edu /-aiken /mo ss.html
(1994).

[2] Baker, B. S. Parametrized pattern matching: Al-
gorithms and applications. Journal of Computer
and System Sciences 52 (1996), 28-42.

[3] Gitchell, D., and Tran, N. Sire: A utility for de-
tecting similarity in computer programs. In Pro-
ceedings of the 30th SIGCSE Technical Symposium
(1999), pp. 266-270.

[4] Goodrich, M. T., and Tamassia, R. Data Structures
and Algorithms in Java. John Wiley & Sons, New
York, 1998.

[5] Hunt, J. W., and McIllroy, M. D. An algorithm
for differential file comparison. Tech. Rep. 41, Bell
Labs, 1976.

[6] Jankowitz, H. T. Detecting plagiarism in student
Pascal programs. Computer Journal 31 (1988), 1-
8.

303

The seltnel~ strl.~ ~ essenlJla~ I~Wlhltlg aecepla~o W a l~p; I~ ~lla~l~l~, ' A ~ ' Is aen~ea ~yfhe
Ity ~qbOI ";" arid "OR' Is (:lenote~.W tile Syl~ol ','.

to ll~rl~lh: "leg4" |l.I/CheS fat~ problem t ,~,0, "calegodes" seLrerle¢ pcot)~em .ealego~ n all'4 s
Problem tlpo ~ Problem c~|godes

2

(a) submission form

Figure 1: The

(b) result page

problem database.

[7] Malmi, L., Henrichson, M., Karras, T., Saarhelo,
J., and Saerkilahti, S. Detecting plagiarism in Pas-
cal and C programs. Tech. Rep. 78, Helsinki Uni-
versity of Technology, 1992.

[8] Morrisey, D. J., Kashy, E., and Tsai, I. Personal-
ized assignments for freshman chemistry. Journal
of Chemical Education 72 (1995), 141-146.

[9] Rogers, R. L. A microcomputer-based statistics
course with individualized assignments. Teaching
Psychology 12 (1987), 109-111.

[10] Toothman, B., and Shackelford, R. The effects of
partially-individualized assignments on subsequent
student performance. In Proceedings of the 29th
SIGCSE Technical Symposium (1998), pp. 287-
291.

[11] Wu, S., and Manber, U. agrep - A fast approximate
pattern-matching tool. In Proceedings of the Usenix
Winter 1992 Technical Conference (1991), pp. 152-
162.

[12] Wu, S., and Manber, U. GLIMPSE: A tool to
search through entire file systems. In Proceedings
of the Usenix Winter 1994 Technical Conference
(1994), pp. 23-32.

304

