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ABSTRACT

This paper presents SAIL, a Single Access Point Based Indoor
Localization system. Although there have been advances in
WiFi-based positioning techniques, we find that existing so-
lutions either require a dense deployment of access points
(APs), manual fingerprinting, energy hungry WiFi scanning,
or sophisticated AP hardware. We design SAIL using a single
commodity WiFi AP to avoid these restrictions. SAIL com-
putes the distance between the client and an AP using the
propagation delay of the signal traversing between the two,
combines the distance with smartphone dead-reckoning tech-
niques, and employs geometric methods to ultimately yield
the client’s location using a single AP. SAIL combines physical
layer (PHY) information and human motion to compute the
propagation delay of the direct path by itself, eliminating the
adverse effect of multipath and yielding sub-meter distance
estimation accuracy. Furthermore, SAIL systematically ad-
dresses some of the common challenges towards dead-reckoning
using smartphone sensors and achieves 2 − 5x accuracy im-
provements over existing techniques. We have implemented
SAIL on commodity wireless APs and smartphones. Evalua-
tion in a large-scale enterprise environment with 10 mobile
users demonstrates that SAIL can capture the user’s location
with a mean error of 2.3m using just a single AP.

Categories and Subject Descriptors

H.3.4 [Information Systems and Retrieval]: Systems and
Software; C.2.4 [Computer-Communication Networks]: Dis-
tributed Systems
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Indoor location; Smartphones; Dead-Reckoning; Time-of-Flight;
Sensing
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1. INTRODUCTION
Precise indoor localization has received extensive interest due
to the demand in location-based services. Innovative approaches
[1] are constantly raising the bar; however, while trying to
choose a positioning technique for real-world deployment that
is both low cost and accurate, we find that the choices are
quite limited. Accurate indoor positioning can be achieved
using manual fingerprinting [2–6] or additional infrastruc-
ture [7–10], both of which are known to be costly proposi-
tions. Crowdsourcing solutions reduce the cost of fingerprint-
ing [11, 12], but are slow to adapt to changes in the envi-
ronment and depend on the willingness of the users to share
sensitive sensor and location information.

Recently WiFi-based indoor localization has been revived by
innovative triangulation and multilateration-based schemes [9,
13–15]. These approaches do not require any manual fin-
gerprinting, but assume a high density of APs. For instance,
EZ [14] leverages more than 100 APs and Arraytrack [9] re-
quires several sophisticated WiFi APs with 7 − 8 antennas.
Given the pervasiveness of WiFi, the density requirement would
seem to be an acceptable restriction. However, while trying
to deploy our recent WiFi-based approach CUPID [15], we
uncovered several practical limitations. First, multilateration
requires distance estimation from at least 4 − 5 reasonably
strong WiFi APs with known locations, which are often un-
available at the edge of the enterprise network, in the devel-
oping world, and in small business locations. Second, even
within the core of the enterprise network, it is difficult to
find 4 − 5 strong APs on the same channel. This is because
nearby APs reside on different channels after the advent of
the 802.11ac standard, which allows 21 channels in the 5GHz
frequency band, and advancement in distributed channel as-
signment algorithms. This imposes a requirement on client
devices to frequently scan across different channels to find a
reliable set of APs. WiFi scanning is an energy hungry op-
eration and can reduce the battery life of mobile devices by
more than 2− 3 times [16], even if the scanning operation is
invoked once every 10 seconds for continuous location track-
ing. Third, regular data communication cannot happen dur-
ing the scanning operation, impacting the user experience,
particularly for real-time traffic such as VoIP. To address these
limitations, we need a positioning system that does not rely
on multiple APs, thereby avoiding channel switching and net-
work disruptions at the client. To achieve this, we design an
accurate single-AP localization system that works with commod-
ity APs and avoids fingerprinting or crowdsourcing.



Figure 1: The triangle formed between an AP and a user
walking from location A to location B.

In search of a single-AP localization solution, we studied the
possibility of combining the distance and the angle of the
client from the AP to determine her location. However, we
found that the angle estimation granularity with recent 3-
antenna commodity APs is only 60 degrees [15], resulting in
large location estimation errors of more than 7m on average.
Instead of relying on coarse-grained angular information, we
make a unique geometric observation that enables single AP-
based positioning by leveraging user mobility.

We propose a scheme based on the triangle depicted in fig-
ure 1. Let us assume that the user has a smartphone con-
nected to an AP, with a known location, and walks from lo-
cation A to location B, both of which are unknown. It may
be possible to estimate the distance of the user from the AP
at these locations (dA, dB in figure 1) using WiFi. It may also
be possible to compute the user’s displacement between loca-
tion A and B (dAB), by using her phone’s motion sensors –
a method called dead-reckoning. Accurate estimation of dA,
dB and dAB will yield a unique triangle; however, this is not
enough to find the location of the user. The triangle can be
rotated around the AP in any direction and will still satisfy
the side length constraints. However, if we can measure the
overall compass heading of the user during the path AB (θ
in figure 1), it is possible to determine the orientation of the
triangle in the 2-D plane, ultimately yielding the location of
the user.

To realize the above scheme, it is important to accurately es-
timate the distance of the client based on WiFi. It may be
possible to estimate the distance using signal strength (RSSI),
but RSSI is known to perform poorly indoors. CUPID [15]
reduces the effect of multipath on signal strength, but is fun-
damentally susceptible to indoor shadowing. For example,
whenever the AP and the client are in two separate rooms,
most of the wireless paths are absorbed, causing a large dis-
tance estimation error of more than 10m. Rather than using
signal strength, we find that the signal propagation time be-
tween the AP and the client is far less susceptible to shadow-
ing. We use the Time-of-Flight (ToF) information from com-
modity WiFi APs that capture the round trip signal propaga-
tion time between the AP and the client. ToF is susceptible
to multipath because it captures the propagation time of the

Figure 2: Wireless signal traverses through multiple
paths, one direct, and a few reflected paths.

signal traversing through the strongest path and not neces-
sarily the direct path 1(figure 2). Whenever the direct path is
relatively weak due to a blockage, ToF is biased by stronger
reflected components that traverse longer distances than the
direct path. We exploit PHY layer information called Channel
Impulse Response (CIR) to detect the presence of a stronger re-
flected path and appropriately correct the ToF value to obtain
the arrival time of only the direct path. We further improve
ToF-based ranging accuracy by carefully considering human
mobility, ultimately reducing the median distance estimation
error to 0.8m from 7m while using RSSI.

Our scheme requires precise dead-reckoning using smartphone
motion sensors to determine the displacement of the user be-
tween two locations (e.g. A and B in figure 1). Although
dead-reckoning techniques are quite mature [17], we find
that existing techniques either impose restrictions on the user
(e.g., holding the phone in a specific position), or employ map
matching techniques to deal with the errors. Our new tech-
niques are not without restrictions, but we believe that they
are a step in the right direction. We design an accelerometer-
based walking distance estimation algorithm that does not re-
quire user input for calibration. We detect random phone ori-
entation changes using the smartphone’s accelerometer and
harness the gyroscope to identify physical turns. Our design
also requires the compass heading of the user as she walks
between two different locations. The compass on commodity
smartphones is known to work poorly indoors due to ferro-
magnetic and electrical interference [12,18]. We show that by
accounting for abnormalities in the magnetometer, it is possi-
ble to determine when the compass reading is most reliable.
The compass reading alone is not enough because the phone
may be held in such a way that the heading of the user does
not correspond to heading of the phone. We employ the ac-
celerometer to measure this offset and thereafter obtain the
correct heading.

We combine the client’s distance, dead-reckoning, and head-
ing estimates geometrically (figure 1), yielding her location
using a single WiFi AP. We prototype and deploy our system

1Direct path signal is the signal component that traverses
along the straight line joining the client to the AP



called SAIL (Single AP-based Indoor Localization), using an
HP enterprise AP and commodity smartphones. Testbed re-
sults from a 30, 000ft2 floor demonstrate that SAIL can achieve
a median localization error of 2.3m using only a single AP. In
addition to high accuracy and our deployment in multiple en-
terprises, we find that relying on only a single AP enables
indoor location-based services in the developing world, small
and medium business, etc.

Our main contributions are summarized as follows:

• We utilize channel impulse responses and human mo-
bility to eliminate the effect of multipath in ToF-based
distance estimation: By accounting for multipath, SAIL
reduces the average error of ToF-based ranging from 5m to
0.8m.

• We demonstrate how WiFi-based distance estimation can
be improved by exploiting human mobility: Our solution
uses Kalman filtering to reduce the distance estimation er-
ror and adjusts its predictions after detecting physical turns
using the smartphone’s gyroscope.

• We identify the opportunity to improve inertial dead-
reckoning techniques using accelerometer hints: SAIL
distinguishes between most random orientation changes and
physical turns. Furthermore, SAIL estimates the user’s walk-
ing distance without any explicit inputs. In our experi-
ments, these improvements reduced the mean dead-reckoning
error of existing schemes from 7m to 4m.

• We use the compass only when it is reliable to deter-
mine the user’s heading: SAIL reduces the heading esti-
mation error to 5.9o from 27.4o when using raw compass
values. It also identifies and nullifies the offset between the
user’s heading and the smartphone’s heading.

• We implement and demonstrate our solution using com-
modity WiFi APs and smartphones: Our system exploits
the PHY layer information obtained from Atheros wireless
chipsets and is currently deployed at multiple enterprise lo-
cations.

In the following sections, we elaborate on our key intuitions
and develop insights to design the SAIL system, followed by
performance evaluation.

2. DISTANCE ESTIMATION USING

WIRELESS TIME-OF-FLIGHT
This section elaborates on the key issues with Time-of-Flight-
based distance estimation. We perform measurements in a
busy office environment using HP MSM 460 APs using Atheros
9590 chipset and use these measurements to develop our key
algorithms.

2.1 Wireless Signal Propagation
A wireless signal traverses in all radial directions and reflects
off walls, furnitures, and other objects. Due to reflections,
multiple copies of the same signal arrive at the receiver, each
undergoing different delay and attenuation – a phenomena
which is commonly called multipath. We define the direct
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Figure 3: Computation of ToD and ToA in the PHY layer
using data-ACK exchange.

path as the straight line joining the transmitter and the re-
ceiver. A wireless signal is composed of a direct path and
other reflected components, each of which suffers its own de-
lay as it propagates between the transmitter and the receiver.

Time-of-Flight (ToF) is defined as the round trip propaga-
tion time of a signal transmitted between the AP and the
mobile device. WLAN ToF measurements are usually based
on echo techniques [19]. These techniques employ a data-
ACK exchange between the AP and the mobile device, rely-
ing on the extraction of timestamps from the main WLAN
clock. The Atheros chipset can precisely compute the Time-
of-Departure (ToD) of a data packet when it is sent out in the
air at the PHY layer (figure 3). On correct reception of the
packet, the client waits for an SIFS duration (a fixed value
according to 802.11 standard) and starts responding with an
ACK packet. The chipset also reports an estimated Time-of-
Arrival (ToA) of the ACK packet at the AP as shown in figure 3.
Both the ToD and ToA values are reported in terms of clock
cycles using the 88MHz WLAN clock. Observe that the ToD
and ToA values are recorded entirely at the AP and do not re-
quire any explicit synchronization between the mobile client
and the AP. Moreover, since ToD and ToA are computed lo-
cally in the PHY layer of the AP, it is affected by neither clock
drift between the AP and the mobile device nor the load on
the main network processor.

The difference between ToA and ToD captures the channel
idle time (tidle) between the data and the ACK packets (fig-
ure 3). It is possible to estimate the ToF between the AP and
a client based on tidle because it only captures the ToF and
the SIFS duration. Of course, the estimated ToF is suscepti-
ble to errors due to preamble synchronization and multipath.
However, once the ToF is correctly determined, the distance
between the AP and the client can be easily calculated as:

distance = c ∗ ToF/2 (1)

where c is the speed of light and the ToF is expressed in sec-
onds. Since the Atheros chipset employs a 88MHz WLAN
clock, the resolution of distance estimation using ToF can be
less than 1.7m.



2.2 Effect of Preamble Detection on ToF
It is important to precisely determine the ToA of the ACK
packet; otherwise, even a small discrepancy can lead to large
distance estimation errors. The ToA is determined based on
preamble detection in the PHY layer; however, it is difficult
to precisely detect the arrival of the preamble with nanosec-
ond precision because of the limited bandwidth of the WLAN
chipset. Figure 4(a) shows that ToA values can be quite ran-
dom due to uncertainties in preamble detection.
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Figure 4: Distribution of normalized ToA values at the AP
(a) for a static client, (b) for the same client when the LoS
is blocked by a human standing in between (NLoS).

To address the randomness in preamble detection, we observe
from figure 4(a) that the resultant error follows a Gaussian
distribution whose mean is close to zero. This is because ToA
estimates collected at different instances are subjected to in-
dependent sources of noise due to preamble detection. Thus,
we use a Kalman filter [20] to minimize the effect of noise.
The Kalman filter can optimally minimize the mean square
error of the estimated distance based on ToF. Since the client
can be mobile, we use a two-state Kalman filter that tracks
both the estimated distance of the client as well as her rela-
tive speed w.r.t. the AP. In principle, the Kalman filter uses its
relative speed estimate to predict the distance of the client. It
then uses the current ToF-based distance value to update its
distance and relative speed estimate. We will discuss in Sec-
tion 5 how the Kalman filter is further optimized by correcting
the relative speed estimate using dead-reckoning hints. Fig-
ure 5 shows that by addressing the errors due to preamble de-
tection, it is possible to reduce the ToF-based distance estima-
tion error. However, we find that the distance estimation error
is still high in case of NLoS (non-LoS) environment because
of the adverse effect of multipath. SAIL applies multipath cor-
rection to reduce the error due to multipath as described next.
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Figure 5: CDF of distance estimation error before and af-
ter applying Kalman filtering techniques for LoS and NLoS
scenarios.

2.3 Effect of Multipath on ToF
Because of indoor multipath, multiple copies of the same sig-
nal arrive at the AP. The PHY layer reports the ToA value cor-
responding to the strongest arriving signal path, not neces-
sarily the direct path, which has an effect on ToA estimation.
ToA values can have lower error in Line-of-Sight (LoS) envi-
ronments where the direct path signal is also the strongest
arriving signal (figure 4(a)). However, in NLoS (non-LoS) en-
vironments where the direct path is blocked by a wall or the
human carrying the mobile device, the estimated ToA may
correspond to a later arriving stronger reflected path, causing
a positive bias in the ToA readings (figure 4(b)). If it is possi-
ble to somehow determine the arrival time of only the direct
path, distance estimation based on ToF can be significantly
improved.

The direct path signal can be identified by using a PHY layer
information called Channel Impulse Response (CIR) [15, 21].
The CIR captures the energy of the different wireless propa-
gation paths, both direct and reflected, incident at increasing
delays. Since the direct path traverses the minimum distance
amongst all the received paths, it will likely appear in the ear-
liest component of the CIR. Figure 6 shows the CIR at two
different clients which are equidistant from the AP. For the
first client (figure 6(a)), the direct path does not pass through
obstructions, and thus yields the strongest component. How-
ever, for the second client (figure 6(b)), the direct path’s tra-
jectory is blocked by a human and hence is weaker than a
later arriving reflected component. In this case, the PHY layer
may report the arrival time of the reflected path as the ToA,
resulting in a positive bias.

Our previous work, CUPID [15], exploited the energy of the
direct path (EDP), extracted from the earliest component of
the CIR to compute the distance between the AP and a client;
however, its accuracy was limited because signal strength is
inherently susceptible to indoor shadowing. Rather than de-
pending on signal strength, we study the possibility of improv-
ing ToF-based ranging using CIR information. We find that by
using the CIR, it is possible to estimate the positive bias in the
ToA that is caused by a stronger reflected path. The differ-
ence in delay between the strongest and first component of
the CIR captures the positive bias in the ToA (if any). In the
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Figure 7: (a) Extracted CIR from 3 antennas. (b) Distance estimation performance improves due to multipath correction
using multiple antennas. (c) Performance with distributing 10 ToF measurements over 1s.
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Figure 6: Estimating direct path using CIR: (a) Client is
visible to the AP (LoS). (b) Client’s direct signal path is
blocked (NLoS).

NLoS scenario of figure 6(b), the stronger reflected path ar-
rived 50ns later than the first (direct) path. Thus, the ToA can
be reduced by 50ns to capture the arrival of the direct path in
this example. However, the CIR-based correction depends on
the resolution of the CIR itself. The resolution of the CIR is
inversely proportional to the communication bandwidth. For
example, the resolution of the CIR is only 25ns for an ACK
packet received over a 40MHz bandwidth, causing distance
estimation errors of up to 7.5m. As a consequence, we find
that the above CIR-based correction only reduces the average
distance estimation error marginally. We overcome the limita-
tion of coarse CIR resolution by exploiting multiple antennas
and human mobility as described next.

Exploiting multiple antennas: A mobile device typically trans-
mits an ACK packet by using a single antenna, but most APs
are MIMO capable and hence receive the ACK over multiple
antennas. Since MIMO antennas are typically spaced apart by
at least half a wavelength (6cm at 5.2GHz frequency band),
the CIR varies across antennas (figure 7(a)). Nevertheless,
the PHY layer reports a single ToA value of the ACK packet,
even when multiple antennas are present. This is because
the PHY layer synchronizes with the strongest arriving signal
across all the antennas and reports the corresponding ToA. To
reduce the multipath error by exploiting multiple antennas,
we determine the relative arrival time (ts) of the strongest
component across all the CIRs (e.g., 2nd component of the
2nd antenna in figure 7(a)), and thereafter reduce the re-
ported ToA by ts. In figure 7(b) we apply the above tech-
nique to reduce the distance estimation error in NLoS scenar-
ios where the direct path is blocked by a wall or a human
being. Since increasing the number of antennas at the AP ef-
fectively increases the multipath detection resolution, we find
that ToF-based distance estimation error decreases with in-
creasing number of antennas. By correcting the error due to
multipath using 3 antennas, we were able to reduce the mean
distance estimation error from 2.8m to 1.6m.

Exploiting human mobility: We leverage natural human mo-
bility to further reduce the effect of multipath. We observe
that whenever the mobile device moves, the direct-path sig-
nal is usually stable, whereas reflected paths are quite ran-
dom [9]. Therefore, if we compute multiple ToF snapshots
over a short period, it may be possible to further reduce the
error due to multipath. The multipath coherence time under
mobility is typically more than 10ms [22]. Thus, it is diffi-
cult to exploit the effect of mobility on multipath by schedul-
ing a few back-to-back measurements. Instead, we space the
same measurements equally within a short time interval (1s in
our implementation) to capture the arrival of the stable direct
path. Figure 7(c) shows that by distributing the ToF measure-
ments, SAIL is able to better deal with multipath reflections
and hence improves the distance estimation accuracy. The
performance can improve by increasing the number of ToF
measurements per second; however, even with only 10 pack-
ets per second, the mean distance estimation error becomes
less than 1m using an AP with 3 antennas.
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Figure 8: (a) Similar triangles are formed between the user’s legs and hips while walking. (b) Step frequency vs. bounce
factor relationship for ten users. (c) Step length determination accuracy across ten users.

3. SMARTPHONE DEAD-RECKONING
To enable indoor positioning using a single AP, SAIL needs
to compute the displacement of the user as she walks be-
tween two locations. We use the smartphone’s accelerometer
to compute the walking distance and utilize the gyroscope to
determine orientation changes, as described next.

3.1 Walking Distance Estimation
using Accelerometer

To understand the issues with accelerometer-based walking
distance estimation, we performed experiments in a 200ft cor-
ridor with 10 users for more than 4 hours. We find that when
a person is walking, their body exhibits a natural periodic
bounce that can be detected by the accelerometer. Counting
the number of valleys in the acceleration magnitude signal al-
lows us to track the number of steps taken by the user [12,
23]. The distance traveled by the user can be computed by
multiplying the number of steps with the user’s step length.
We find that the step length of a user is directly proportional
to her step frequency [23], which can be determined by count-
ing the number of steps taken over a time interval. However,
the step frequency vs. step length relationship varies across
users (figure 9). This happens because step length depends
on the physical build of the user (e.g., taller users typically
take longer steps), which is difficult to ascertain without ex-
plicit user inputs [18] or personalization [23].

Rather than establishing the step length vs. step frequency
relationship on a per user basis [23], we observe that users
with similar physical builds are likely to exhibit similar walk-
ing behaviors. In other words, two users with similar physical
build should exhibit similar lines in figure 9. We look to the
vertical bounce of the user’s hips as a quantifiable measurent
of the user’s build. Figure 8(a) illustrates how the bounce
is directly proportional to step length through the geometry
of similar triangles. The magnitude of the bounce manifests
itself through the accelerometer. The accelerometer reports
the total acceleration 〈ax, ay, az〉 experienced by the phone,
which is the sum of the acceleration due to gravity 〈gx, gy, gz〉
and the acceleration due to the force exerted by the user.
The bounce is proportional to the variation of the accelera-
tion component that is parallel to the gravity vector. Thus we
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Figure 9: Step length vs. step frequency relationship for
ten users.

define the standard deviation of the projections of the total
acceleration onto the gravity vector as the bounce factor, BF :

BF = std

(

〈ax, ay, az〉 · 〈gx, gy, gz〉

〈gx, gy, gz〉

)

(2)

Of course, the bounce factor is linearly related to step fre-
quency (figure 8(b)) – the faster a person walks, the more
their hips bounce. The position of the phone on the body
also has an effect on the phone’s acceleration. For instance,
a phone in the user’s pocket experiences more acceleration
than a phone in the user’s hand. SAIL’s step length detection
models only consider acceleration data when the phone is in
the user’s pocket because of the tight coupling between the
phone and the user’s leg motion. When a new user is tracked
for the first time by SAIL, a constant step length is assumed.
Once she places her phone in her pocket, it computes her step
frequency and bounce factor. Thereafter, it identifies previous
users who demonstrated the same bounce factor at the new
user’s step frequency. These users presumably share a similar
build as the new user; hence, we assume that they share sim-
ilar step length vs. step frequency lines, so we use an average
of the ones in our model for the new user. The newly created



step length vs. step frequency line can then be used to de-
termine her step length independent of where she keeps the
phone since step frequency is not affected by various poses.

Figure 8(c) displays the results of our step length estimation
algorithm through cross-validation analysis across ten users.
Our algorithm generally performs better than using an aver-
age step length vs. step frequency fit, which is agnostic of the
physical build of the user.

3.2 Phone’s Orientation Tracking
using Gyroscope

Walking distance is not enough to find the displacement of
the user between her past and current location. Since the
user may take turns between those locations, orientation in-
formation is also necessary. Orientation changes can be de-
tected using the smartphone compass, but it is known to be
vulnerable to indoor magnetic interference [12]. Orientation
changes can be determined from the gyroscope, which reports
the relative angular velocity of the phone. When integrated
over time, the gyroscope yields the relative angular displace-
ment, which can be used to detect the turns made by the user.
This integration is affected by noise, causing the gyroscope to
drift. The gyro drift can be addressed by performing the in-
tegration only when the gyroscope is changing substantially
due to a turn [24]. However, not all the turns observed by
the gyroscope correspond to physical turns made by the user.
For instance, whenever the user raises her phone to take a
phone call, the gyroscope may report a turn, although the
user may have been walking straight during that time. Unless
such events are detected, SAIL may report a turn whenever
the user is toying with their phone.

We define a pose change as an event during which the user
changes her phone’s orientation without taking a physical turn
(figure 10). We observe that during a pose change, the direc-
tion of the gravity vector with respect to the phone changes
appreciably. For example, when the raises the phone to her
ear to answer a phone call after texting with her friend, the di-
rection of the gravity vector changes from the -z-axis to some-
where on the xy-plane. We use this observation to detect
pose changes. If the direction of the gravity vector changes
abruptly, we attribute any changes in the gyroscope reading
during the same interval as a pose change and reset the in-
tegration of gyroscope values. Because gyroscope readings
during that interval are ignored, any turns made by the user
during a pose change are missed by the system. While these
assumptions are less than ideal, reliable compass measure-
ments can be used to correct the user’s heading later on. Ta-
ble 1 presents the results for pose change detection for 300
pose changes between five common poses. In a separate ex-
periment, we also found that the false positive rate of the pose
change detection scheme is close to zero. We conclude that
regular walking seldom leads to any pose changes because the
latter require a drastic change in the direction of the gravity
vector.

3.3 User’s Heading Estimation
using Compass

Apart from the displacement of the user between her past and
current location, SAIL also requires her overall compass head-

Figure 10: Pose changes occur during specific user initi-
ated changes in phone orientation.

Different poses
Head Ear Swinging Purse Pocket

Hand X 100% 100% 100% 100%
Ear 100% X 100% 100% 100%

Swinging 100% 100% X 95% 100%
Purse 100% 100% 95% X 100%
Pocket 100% 100% 85% 90% X%

Table 1: Accuracy results for transitions between five dif-
ferent poses.

ing to determine the orientation of the triangle in figure 1 in
the two-dimensional plane. The compass reading is based on
the phone’s magnetometer, which is seldom reliable indoors
due to close proximity to ferromagnetic materials and electri-
cal devices (figure 11(a)). Nevertheless, there are moments
when the compass is accurate. If we can somehow detect
these instances, we may be able to use the compass, along
with the gyroscope, to determine the user’s absolute heading.

In the absence of magnetic interference, the magnetometer
should report the ideal geomagnetic field at a particular loca-
tion. The World Magnetic Model [25] maintains an updated
survey of this information every five years. If the user’s mag-
netometer does not agree with the ideal geomagnetic condi-
tions at her rough GPS location according to the survey, we
may infer that there is some sort of electrical or ferromagnetic
interference affecting the compass readings. Figure 11(b)
shows the component of the magnetometer reading towards
the earth from two different experiments. We observe that
whenever the declination of the magnetic field was weak (i.e.,
magnitude towards earth was close to 0T), the compass was
unreliable.

Not only are the magnitude and direction of the magnetome-
ter readings important, but so too are the stability of those
measurements. If the user is walking straight and the mag-
netometer is rapidly fluctuating between values, something is
disturbing the nearby magnetic field and rendering any mea-
surements useless. We gather the two above observations to
design a compass confidence metric that ranges from 0 to 1,
with higher values indicating more reliable readings. If mexp

represents the ideal magnitude of the geomagnetic field ac-
cording to the World Magnetic Model and mmeas represents
the magnitude reported by the magnetometer and projected
in the direction of the ideal geomagnetic field vector, the com-
pass confidence metric (M) is defined as:



0 10 20 30
−40

−20

0

20

Time (s)

D
o
w

n
w

a
rd

 M
a
g
n
e
ti
c
 F

ie
ld

 (
µ

T
)

 

 

Compass reading erroneous
Compass reading accurate

0.6 0.65 0.7 0.75
0

5

10

15

Threshold on compass metric (M)

A
c
c
u

ra
c
y
 (

o
)

11.01%

5.26%

2.61% 1.67%

Frequency of
compass
measurement

Figure 11: (a) Variation in compass error for different parts of a floor. (b) Magnetometer readings from two different
locations with different compass accuracy. (c) Compass error as a function of confidence threshold.

−10 0 10
−5

0

5

10

x

y

θ

C

−90 −45 0 45 90

−100

0

100

Actual Offset (
o
)

E
s
ti
m

a
te

d
 O

ff
s
e

t 
(o

)
Figure 12: (a) The phone’s heading is not always the same as the user’s heading. (b) Force distribution while the phone
is held in landscape mode. (c) Compass offset estimation accuracy.

M =
1

2

(

μ
dmmeas

dt
1

+ μ
|mmeas−mexp|
2

)

(3)

where μ1 and μ2 are empirically determined constants. Intu-
itively, a higher threshold on the compass confidence metric
will yield a more reliable compass (figure 11(c)). When the
threshold is increased to 0.75, the median error for compass
readings becomes 5◦. However, higher compass reliability
comes at the cost of reliable reading frequency (figure 11(c)).
While more frequent compass readings would be desirable,
SAIL requires an accurate compass reading early in the user’s
path at the very least. After a reliable compass reading, the
gyroscope can be used to track the user’s turns, and in turn,
absolute heading direction. Of course, reliable compass read-
ings later on can be used to update the user’s heading. In
fact, more periodic compass readings are required if the user
changes the phone’s pose while turning since SAIL ignores gy-
roscope readings during pose changes.

Compass Offset Correction

The compass value indicates the phone’s heading and not nec-
essarily the user’s heading, causing an offset in the compass
reading. For example, if the user holds her phone in landscape
mode (figure 12(a)), any accurate compass reading would be
90◦ off of the user’s heading. When the phone is in a more
arbitrary orientation (e.g., pocket, purse, ear), finding the off-

set between the phone’s and the user’s heading, called the
compass offset, is not trivial. Previous research has mostly as-
sumed that the compass offset is zero, or address this problem
indirectly by assuming that a map of the floorplan is available.
SAIL does not make any such assumptions and addresses this
issue by exploiting the smartphone’s accelerometer.

We observe that as the user walks forward, she exerts a force
that manifests itself on the accelerometer. The heading of the
user with respect to the phone may be found by determin-
ing the component of that force that is parallel to the ground.
Figure 12(b) shows the distribution of these force vectors for
an experiment where the user held the phone in landscape
mode. Observe that the distribution of the force lies primar-
ily along the +x-axis of the phone, indicating that the user’s
walking force was being exerted to the longer side of the
phone. The angle of the vector, formed by joining the origin
and the centroid of the force distribution (θ in figure 12(b)),
is the heading of the user relative to the phone. Since the
+y-axis is representative of the phone’s heading, the compass
value can be compensated by using the angular difference be-
tween the vector C and the +y-axis. The same process applies
for more random phone orientations. Figure 12(c) shows the
accuracy of the offset detection for five different angles. Be-
tween the five cases, the average error was 4◦, with the worst
error of 12◦ appearing when the phone was held 45◦ counter-
clockwise with respect to the user.



4. LOCATION ESTIMATION

USING TRIANGLES
SAIL finds the user’s location by forming a triangle between
the user’s past and current unknown location coordinates,
and the known location of the AP to which her smartphone
is connected (figure 1). It uses ToF to compute the distances,
dA and dB , of the user from the AP at two unknown loca-
tions A and B respectively. It uses dead-reckoning to calcu-
late the distance between locations A and B, called dAB in
figure 1. The length constraints (dA, dB , and dAB) can deter-
mine a unique triangle, but are not enough to find the exact
coordinates of the locations A and B. The triangle can be
rotated at any angle around the AP, creating a large number
of possibilities for locations A and B. However, the absolute
heading of the line AB, as suggested by the user’s compass,
can determine the orientation of the triangle in the 2-D plane,
ultimately yielding the user’s location.

Even with the constraints discussed above, there can be ambi-
guity in location determination. Given a triangle that satisfies
the above conditions, a second possibility can be made by re-
flecting that triangle across a line that is parallel to the side
AB and passes through the AP coordinate (figure 13). If the
user is walking straight, these triangles are identical and it is
not possible to break the ambiguity. However, once the user
turns, observe that the user is moving closer to the AP in one
of the possibilities and further away in the other. This indi-
cates that the distance of an intermediate point D from the AP
will be different for the two candidate triangles (d1 and d2 in
figure 13). Thus, the ambiguity can be broken by inspecting
the WiFi distance at the intermediate point D and picking the
triangle that satisfies this distance. In the case of figure 13,
the top triangle will be selected if the distance estimate at the
intermediate point of the trace is small. To avoid selecting the
wrong triangle, we consider the intermediate instance when
the WiFi distance measurement has the highest confidence.

d
1
 

d
2
 

Figure 13: Two possible rotations of the triangle can still
satisfy the side length and heading constraints.

5. IMPLEMENTATION AND EVALUATION
This section presents the implementation details of SAIL. We
discuss SAIL’s system details and end the section by evaluat-
ing SAIL’s positioning performance.

5.1 CIR and ToF Processing
We obtain the CIR from the Channel State Information (CSI),
available in the PHY layer. The Atheros 9590 chipset can ex-
port the CSI of any received packet. The reported CSI is a ma-
trix containing one complex number per subcarrier and per
receive antenna at the AP. Since the CSI captures the wire-
less channel in the frequency domain, an Inverse Fast Fourier
Transform (IFFT) provides the CIR which captures the multi-
path components in the time domain. The chipset also reports
the Time-of-Departure (ToD) value, in terms of clock cycles,
in the transmit-complete descriptor of any data packet. Sim-
ilarly, it exports the Time-of-Arrival (ToA) value of the ACK
packet in its receive descriptor. For each data-ACK exchange,
we estimate the ToF by using the ToA and ToD, as well as the
chipset’s clock frequency. We estimate the distance between
the AP and a client based on ToF and further correct it using
the computed CIR.

5.2 Configuring Kalman Filter States
The Kalman filter uses the past distance and relative speed
estimates to correct the errors in current estimates. We ini-
tialize the filter’s distance estimate using the first distance
value available from the AP and the relative speed estimate
as zero. Kalman filtering generally performs well, except in
cases when the user is close to the AP and takes a turn. This
is because the relative speed of the user w.r.t. the AP changes
abruptly when she turns, confusing the Kalman filter and in
turn injecting large errors in distance estimation. To solve this
problem, we note that at any turn, it is possible to estimate
the new relative speed by considering the user’s relative speed
right before the turn and the orientation change of the user
from her gyroscope. Thus, whenever the user takes a physical
turn, we correct the Kalman filter’s relative speed estimate to
account for the abrupt change. In section 5.4, we will show
how this optimization can further reduce SAIL’s distance esti-
mation error.

5.3 SAIL System Details
Figure 14 plots the overall architecture of SAIL. As the user
walks, the phone collects accelerometer, gyroscope, and mag-
netometer measurements. The phone performs calculations
in real-time at every step to determine the user’s step length
and heading. A userspace process at the AP receives this
step and heading information from the phone. It implements
SAIL’s distance estimation as well as triangle-based location
determination. The AP schedules 10 probe packets per second
to obtain the ToF estimates for the client. We use standard
NULL data packets as probes because of their short length (60
bytes). Of course, if there is existing data traffic for the client,
probe packets are not required. The AP receives the ToF, CSI,
RSSI values from the driver and corrects the ToF using CSI
to obtain the client’s distance. SAIL is primarily targeted to
track the location of a user as she walks. Initially, SAIL can
only track the change in the user’s location. Once she turns,
however, the AP can decide between the two possible trian-
gles and return a location estimate to the phone. From then
on, the AP computes triangles only when it is confident about
the WiFi-based distance estimation. Otherwise, it only uses
dead-reckoning from the past estimated location and updates
the user’s location accordingly.



Figure 14: The architecture of SAIL.

5.4 Evaluation Results
We evaluate SAIL using HP MSM 460 APs, with Atheros 9590
chipset tuned at 5.805GHz frequency using a 40MHz band-
width. We recruited 10 users to evaluate SAIL and used 20
different types of mobile devices. Our evaluation includes
Android-based mobile devices such as the Samsung Galaxy
S3, Samsung Galaxy S4, Nexus 4, Sony Xperia Z, HTC One
and iOS-based mobile devices such as the iPhone 5 and iPhone
5s.

Methodology

We design real-life experiments in an office environment with
a single AP installed at a known location (figure 15). Users
walked around arbitrarily in the building for an hour dur-
ing normal office hours, with the smartphone in their pants
pocket, covering approximately 30, 000ft2. As each user walks,
the AP estimates and stores her location coordinates, which
we use for our evaluation. We made separate arrangements
to collect ground truth since GPS is not available indoors.
Briefly, we pasted numbered markers at known locations. When-
ever the user walked through a marker, she recorded its num-
ber and the current time. Since the locations of the markers
are known, we did interpolation between the markers using
step-count as the ground truth. The distance between the
ground truth and the estimated location is SAIL’s instanta-
neous localization error.

WiFi-based Distance Estimation

SAIL computes the distance of the client based on the propa-
gation delay of only her direct path, called time-of-flight (ToF).
Figure 16(a) shows the performance of SAIL’s distance es-
timation error by using 10 packets per second and correct-
ing the multipath infused error by using CIRs from 3 anten-
nas at the AP. Further, by correcting the relative speed ac-
cording to the Kalman filter whenever the user takes a phys-

Figure 15: Evaluation floor plan with ground truth (black
line), estimated walking path (blue line), and AP loca-
tion (red triangle). The estimated path is slightly tilted
due to compass error.

ical turn, SAIL reduces the average distance estimation er-
ror to 0.8m. This is a step forward from current wireless
ToF-based distance estimation schemes that suffer large er-
rors (figure 16(a)) from being multipath and mobility agnos-
tic [19]. Figure 16(a) also studies if signal strength can be
used to determine the client’s distance. We found that RSSI
performs poorly because it is highly susceptible to indoor mul-
tipath and shadowing [15,21]. Recently, CUPID [15] reduced
the effect of multipath on signal strength-based distance es-
timation by using the energy of the direct path (EDP). How-
ever, EDP is susceptible to shadowing caused by blockage of
the signal paths between the AP and the client. EDP also suf-
fers from large errors when the direct path is weak, and thus
performs worse than ToF with an average distance estimation
error of 5.4m. SAIL’s ToF-based approach can precisely find
the distance of the client, even when her direct path signal is
weak. If the direct path does not exist due to complete block-
age, ToF will indeed overestimate the client’s distance. It is
difficult to evaluate whether the direct path signal exists in
our measurements. However, we find that the distance esti-
mation accuracy falls sharply when the signal strength of a
client at the AP is below 10dB (figure 16(b)), indicating the
likely absence of a direct path.

Effect of Device Heterogeneity on
Distance Estimation

The idle time between data frames and ACKs must be cor-
rectly accounted for in ToF calculations. Our measurements
showed that some chipsets add an offset to the SIFS time. We
found that this offset is not random, but is actually a manu-
facturer dependent constant value [19]. The first bits of the
ACK MAC address identify the chipset manufacturer and thus
can be used to look up and correct the predetermined offset.
All mobile devices carrying the same chipset have the same
offset. Because the offset is a chipset-specific parameter and
is not affected by antenna configuration or phone orientation,
we found that mobile devices of the same type have very sim-
ilar distance estimation error (table 2). Even for mobile de-
vices using different chipsets, once the predetermined offset
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Figure 16: (a) Distance estimation error using ToF, RSSI,
and EDP [15]. (b) Distance estimation improves with sig-
nal strength.

is corrected, the average distance estimation error is less than
a meter (table 3).

Distance estimation error (meters)
Samsung Galaxy S4 0.71 0.68 0.75 0.63

iPhone 5 0.9 0.81 0.83 0.94

Table 2: Performance using 4 iPhone and 4 Samsung
phones of the same type.

Galaxy S3 Xperia Z iPhone 5S HTC One Nexus 4
0.93m 0.64m 0.82m 0.7m 0.9m

Table 3: Distance estimation error using different types of
mobile devices.

Dead-Reckoning Performance

We use dead-reckoning techniques to determine the displace-
ment of the user between two locations (e.g. A and B in
figure 13). To evaluate the performance of dead-reckoning,
we consider the distance between two random locations of
the user spaced more than 20m apart. We find that exist-
ing dead-reckoning techniques are affected primarily by poor
step length estimation (figure 17(a)). While most existing ap-
proaches using map matching techniques to deal with the er-
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Figure 17: (a) CDF of dead-reckoning error between loca-
tions spaced more than 20m apart. (b) Heading estima-
tion error can be large unless correct compass readings
are carefully selected.

rors in step length estimation, SAIL does not impose any such
restriction. By determining the user’s physical build from her
accelerometer readings, SAIL estimates her step length more
accurately, resulting into significantly less estimation error.

SAIL also computes the user’s absolute heading to determine
the orientation of the triangle in figure 1. Smartphone compass-
based heading estimation can be quite erroneous due to pres-
ence of electromagnetic materials indoors (figure 17(b)). SAIL
improves heading estimation by harnessing the compass only
when it is reliable. On average, SAIL reduces the heading es-
timation error to 5.9o from 27.4o while using the raw compass
values.

Location Estimation

By combining WiFi distance and dead-reckoning, SAIL can
successfully determine a client’s location using a single AP. We
evaluate the localization performance of the system by vary-
ing specific parameters and replacing our techniques with ex-
isting methods. Figure 15 and 18 shows SAIL’s instantaneous
location estimation error over a duration of 10 minutes. SAIL
starts computing the user’s location as soon as she makes the
first turn. After the user’s location has been determined for
the first time, SAIL computes the triangle only when the WiFi
distance is deemed reliable (RSSI > 10dB). Otherwise, it con-
tinues to dead-reckon from the past estimated location. We
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Figure 18: SAIL’s location estimation error over time.

find that the errors are typically less than 5m except for a few
locations where the client is far away from the AP. This is
because SAIL’s distance estimation is less accurate when the
signal strength is weak, perhaps due to a less prominent pres-
ence of the direct path.

Impact of periodic WiFi probing: In general, SAIL probes
the client every second and gathers the ToF and CIR values to
compute her distance from the AP. Each such probe consists
of 10 measurement packets resulting into a background traf-
fic overhead of approximately 0.2% per client. It is important
to address this overhead since it can grow quickly with the
number of clients. To reduce the overhead, we study the pos-
sibility of reducing the frequency of probing in figure 19(a).
We find that computing the client’s distance at a reduced fre-
quency affects our localization performance. However, with
only 10 probe packets every 3.5 seconds, SAIL’s average loca-
tion estimation error is still less than 4m. Of course, SAIL can
leverage any existing traffic between the AP and the client to
further reduce the location estimation error.

Comparison with existing schemes: Location estimation based
on SAIL’s triangle can be performed by using existing dead-
reckoning and WiFi-based distance estimation techniques at
the cost of accuracy. Figure 19(b) shows how the perfor-
mance is affected by using EDP-based [15] WiFi distance es-
timation, but maintaining SAIL’s dead-reckoning techniques.
EDP does not capture the client’s distance as accurately as
ToF does, increasing the median location estimation error to
7m. Figure 19(b) also evaluates if existing dead-reckoning
schemes [18] can perform as well when augmented with SAIL’s
ToF-based distance estimation. We found that, unlike SAIL,
existing schemes often get confused by erroneous compass
measurements, resulting into large errors in location estima-
tion.

It is also possible to find the location of the user by comput-
ing her angle-of-arrival (AoA [9,15]) at the AP and combining
that information with the ToF-based distance estimate. AoA-
based techniques suffer from multipath and their accuracy
is fundamentally limited by the number of antennas (e.g.,
60◦ granularity with recent 3-antenna APs). Thus, even after
combining accurate distance estimation using ToF, AoA-based
schemes such as CUPID [15] do not perform as well as SAIL.
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Figure 19: (a) CDF of location estimation error for differ-
ent frequency of WiFi distance probing. (b) Comparison
of SAIL’s location estimation performance.

6. RELATED WORK
The indoor localization literature is vast [1,26,27], including
techniques using fingerprinting [2, 5, 6, 28, 29], crowdsourc-
ing [11, 12, 18, 23, 30], triangulation and trilateration [8, 9,
14,15,31,32]. In the interest of space, we heavily subsample
this literature, focusing on systems related to SAIL.

RF signal strength-based: RSSI is a poor estimator of dis-
tance because it is susceptible to indoor multipath reflections
and shadowing [15, 21]. It may be possible to combine mea-
surements from a large number of APs [14] to address the
issues with RSSI, but comes at the cost of frequent scanning
at the client or channel hopping at the APs. Fingerprinting
techniques [2–5, 33] also rely on the availability of several
APs, but provide better accuracy. However, they need periodic
wardriving because of environmental and automatic WLAN
configuration changes, making them an expensive proposi-
tion. FILA [21] and CUPID [15] attempt to improve WiFi-
based distance estimation using PHY layer information, but
do so with limited success.

Time-based: Apart from signal strength, there have been at-
tempts to harness the time-of-flight of wireless signal prop-
agation. Most techniques either require expensive clock syn-
chronization between the AP and the client or additional hard-
ware modules [10, 34, 35]. Echo techniques based on packet
exchanges were first proposed in [36] and refined in [37]
and [19]. However, unlike SAIL, none of the previous ap-



proaches address the effect of multipath in WiFi ToF-based
distance estimation. Centaur [13] supplements RSSI with
acoustic ranging. Cricket [38] and AHLoS [39] mark the dif-
ference in propagation delays between RF signals and ultra-
sound to determine location. Whether using signal strength
or time-of-flight to compute location, all of the above solu-
tions require measurements from multiple access points. This
either comes at the cost of battery life for the user’s smart-
phone due to excessive scanning or increased overhead at the
APs due to frequent channel hopping and coordination pack-
ets. SAIL avoids these costs by leveraging only a single AP, yet
still providing high accuracy.

Angle-of-arrival-based techniques use multiple antennas to
estimate the angle at which the signal is received, and then
triangulate the location of the signal source [9, 15, 40–43].
However, acquiring accurate angle estimation requires large
antenna arrays, known antenna spacings, and synchronized
CSI reports across antennas [15]. Even with access to raw
signal information and using 8 antennas [9, 41], AoA tech-
niques can be derailed in multipath rich indoor environments.
SAIL’s localization performance will certainly improve when
accurate angle estimation is available alongside distance es-
timation. However, the angle estimation granularity with re-
cent 3-antenna 11n APs is only 60 degrees [15], adding little
benefit to SAIL. Moreover, while SAIL may be able to operate
strictly at the ToF-capable mobile device (section 7) without
requiring any explicit user turns [44], angle estimation re-
quires multiple antennas – unforeseeable for mobile devices
in recent future.

Smartphone dead-reckoning: Dead-reckoning has often been
used to improve the performance of WiFi-based localization [17].
Evennou et al. [45] combine WiFi fingerprinting and dead-
reckoning to refine a map-based particle filter, but do so at the
cost of expensive wardriving with knowledge of the building
floorplan. UnLoc [18] uses WiFi as a dimension for gener-
ating landmarks that can correct dead-reckoning traces over
time; however, UnLoc restricts the position of the phone since
it relies on gyroscope readings for dead-reckoning and land-
mark matching. Dead-reckoning has been addressed on its
own as well. Existing literature has attempted to eliminate
the fixed step-length constraint by either requiring user per-
sonalization or leveraging periodic GPS reading to calibrate
the correlation function [46]. Park et al. [47] apply machine
learning to both estimate the user’s walking speed and clas-
sify between four different pose classes. While their approach
is robust for the trained poses, we suspect that previously un-
seen poses would lead to misclassification. Instead of looking
for changes in pose classification, SAIL looks for large changes
in the direction of the gravity vector. Heading estimation is
another important aspect of dead-reckoning. Since the com-
pass is unreliable for accurate estimation [12], existing tech-
niques [12, 23, 30, 45, 48] correct the compass heading using
map-based particle filtering. These systems rely on indoor
walking paths like long hallways for corrections to be made,
rendering them ineffective in open spaces.

7. DISCUSSION AND LIMITATIONS
Acquiring CSI/ToF: SAIL leverages CSI and ToF information,
already calculated in the WiFi chipset hardware for chan-
nel estimation, calibration, etc. Recent 802.11n/ac systems
report CSI estimation to drivers for advanced beamforming

and MIMO [22, 49, 50]. ToF has also been available in vari-
ous opensource WiFi platforms and used for distance estima-
tion [19,37].

Step length training: SAIL’s automated step length estima-
tion relies on the training data gathered from users with var-
ious physical builds. We performed this training through our
own experiments, but we could have also gathered the data
by observing GPS readings as the users walks outdoors [46].
SAIL does not require extensive training data collection since
step lengths tend to have correlations between users with sim-
ilar physical builds [51].

Dead-reckoning during pose changes: Pose changes indi-
cate moments when the system is unsure about the dead-
reckoning, so physical turns may be missed during these times.
The compass may be able to correct the user’s heading inter-
mittently, but the orientation estimation algorithm needs to
be extended for continuous dead-reckoning.

Diversity in human mobility: We recognize every user inter-
action with the phone is yet to be tested. Examples include
when the user is walking backwards and when the phone is
free to move in a user’s backpack. Even so, SAIL applies fewer
constraints upon the user mobility than its predecessors.

Interaction between AP and mobile device: For our imple-
mentation, we combined the dead-reckoning on the phone
and WiFi distance estimation at the AP. However, if the right
set of APIs are exposed, ToF-based distance computation can
also be performed at the mobile device, allowing location es-
timation strictly at the client.

8. CONCLUSION
In this paper, we have presented SAIL, a system that me-
thodically addresses many of the challenges towards practi-
cal WiFi-based positioning using only a single AP. While there
have been numerous attempts to use pervasive WiFi for local-
ization, most proposals impose limitations – extensive boot-
strapping or dense AP deployments – that hinder their widespread
adoption. To overcome the limitations, SAIL employs a single
AP and still yields a decent positioning accuracy by improv-
ing WiFi ToF-based ranging and smartphone dead-reckoning.
SAIL exploits PHY layer information to eliminate the effect of
multipath in ToF-based ranging. SAIL advances smartphone
dead-reckoning by designing robust techniques for step length,
heading estimation, and pose change detection. To our best
knowledge, SAIL is the first attempt to meet the single AP de-
sign goal using commodity APs and smartphones. The tech-
niques proposed in SAIL are now operational in an enterprise
network and achieve a median error of 2.3m.
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