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One of the goals of psychological science is to differenti-
ate among all possible truths on the basis of their likeli-
hood. The most important way to achieve this goal in 
psychology is the empirical cycle, in which induction (on 
the basis of statistical inference) and deduction (on the 
basis of theory) take turns in progressive lines of research. 
Recent events have led psychologists to acknowledge 
that the inherent uncertainty encapsulated in induction is 
amplified by problematic research practices. Publication 
bias (Ioannidis, 2005) and flexibility during data analyses 
(Simmons, Nelson, & Simonsohn, 2011) create a situation 
in which false positives are easy to publish, whereas con-
tradictory null findings do not reach scientific journals 
(but see Nosek & Lakens, in press). It is essentially impos-
sible to predict whether a single statistically significant 
finding will replicate (Miller & Schwarz, 2011), and even 
when an effect is real, it is very common that the true 
effect size of a finding remains uncertain after initial stud-
ies have been published because of the large confidence 

intervals (CIs) surrounding effect size estimates (Cohen, 
1994; Cumming, 2013). In this article, we provide a prac-
tical introduction to recently developed statistical tools 
that can be used to assess and mitigate these uncertain-
ties when performing and evaluating research.

This article contains three parts. In Part 1, we discuss (a) 
how to report the uncertainty that surrounds effect size 
estimates with CIs, (b) how to plan studies such that a 
“corridor of stability” around an effect size estimate can be 
reached, and, more generally, (c) why collecting large 
enough sample sizes is necessary to reduce uncertainty. In 
Part 2, we focus on performing research given the inherent 
uncertainty about the true effect size of a hypothesized 
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Abstract
Recent events have led psychologists to acknowledge that the inherent uncertainty encapsulated in an inductive science 
is amplified by problematic research practices. In this article, we provide a practical introduction to recently developed 
statistical tools that can be used to deal with these uncertainties when performing and evaluating research. In Part 1, we 
discuss the importance of accurate and stable effect size estimates as well as how to design studies to reach a corridor 
of stability around effect size estimates. In Part 2, we explain how, given uncertain effect size estimates, well-powered 
studies can be designed with sequential analyses. In Part 3, we (a) explain what p values convey about the likelihood 
that an effect is true, (b) illustrate how the v statistic can be used to evaluate the accuracy of individual studies, and 
(c) show how the evidential value of multiple studies can be examined with a p-curve analysis. We end by discussing 
the consequences of incorporating our recommendations in terms of a reduced quantity, but increased quality, of the 
research output. We hope that the practical recommendations discussed in this article will provide researchers with 
the tools to make important steps toward a psychological science that allows researchers to differentiate among all 
possible truths on the basis of their likelihood.
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effect, and we discuss how to run well-powered studies 
with sequential analyses and adaptive designs. In Part 3, 
we illustrate how researchers can evaluate past research 
by looking further than the statistical significance of the 
original findings. We discuss how individual studies can be 
evaluated on the basis of the accuracy with which they 
estimate effects in the population using the v statistic 
(Davis-Stober & Dana, 2013). Furthermore, we review how 
to correctly interpret a p value, what a p value conveys 
about the likelihood that an effect is true, how to use this 
knowledge to design studies in ways that increase the 
informational value of a p value, and how the evidential 
value of multiple studies can be examined with a p-curve 
analysis (Simonsohn, Nelson, & Simmons, in press). We 
hope these procedures (and the step-by-step guides in the 
Supplemental Material available online) will help research-
ers (a) evaluate the extent to which previous findings are 
worthwhile to cite or build on, (b) plan better studies, and 
(c) make an informed choice about whether to start a line 
of research with a close replication study (instead of a 
conceptual replication or extension) or whether previous 
research provides sufficient certainty about the likelihood 
of the hypothesis that a researcher can start with a concep-
tual replication.

Part 1: Confidence, Stability, and 
Reduction in Uncertainty

The certainty (or precision) of an effect size estimate 
increases with greater sample sizes. This precision is 
expressed by the variance of an effect size estimate. In 
general, the larger the sample size, the lower the variance 
(and thus the lower the standard errors) around estimates, 
such as means and effect sizes (for a detailed discussion, 
see Borenstein, Hedges, Higgins, & Rothstein, 2009). The 
variance of the effect size estimate is important because it 
largely determines the width of a CI. There is a direct rela-
tionship between the CI of an effect size and the statistical 
significance of the effect. For example, if an effect is statisti-
cally significant in a two-sided t test with an alpha of .05, 
the 95% CI for the mean difference between two groups 
will never include zero. CIs do not only provide informa-
tion about the statistical significance of an effect but they 
also communicate the precision of the effect size estimate. 
Therefore, reporting CIs should not be considered as 
optional. As Kelly and Rausch (2006, p. 365) noted, 
“Although reporting measures of effect is useful, reporting 
point estimates without CIs to illustrate the uncertainty of 
the estimate can be misleading and cannot be condoned.”

Although CIs communicate more information than a  
p value, the information they express is at least as (and 
perhaps more) difficult to understand. CIs express the 
proportion of intervals that, in the long run, will include 
the parameter for which the CI is calculated (which could 

be a mean difference, an effect size, or any other esti-
mated parameter in a sample). In other words, in the 
long run, 95% of the CIs from a large number of close 
replications will capture the true population parameter. 
However, researchers typically have access to only a sin-
gle 95% CI. The width of a single interval gives informa-
tion about the precision with which a parameter estimate 
was measured. It also gives some indication about the 
likelihood that a similar value will be observed in future 
studies; however, when CIs are used for this purpose, it 
is risky. Simulations indicate approximately 83.4% (or five 
out of six) of replication studies will give a value that falls 
within the 95% CI of a single study;1 although given pub-
lication bias or flexibility during the data analysis, this 
percentage is likely much lower for a randomly chosen 
95% CI in the literature (Cumming, 2013).2

Calculating CIs for effect sizes requires an iterative 
procedure, which ESCI (Cumming, 2012) takes care of for 
Cohen’s d and which can be done in SPSS for η2 (or r2) 
with scripts provided by Smithson (2001). In addition to 
the sample size, the width of the CI is influenced by pre-
cision of the measurement (measures that are inherently 
less accurate increase variance and, thereby, lead to less 
precise estimates of the effect size) and by the experi-
mental design (in psychological experiments, within-sub-
ject designs typically provide more precision than 
between-subjects designs with the same sample size). We 
provide a practical primer and easy-to-use spreadsheets 
to calculate and convert between effect sizes d and r in 
the Supplemental Material (also see Lakens, 2013).

The corridor of stability

With a small number of observations, effect size estimates 
have very wide CIs and are relatively unstable. An effect 
size estimate observed after collecting 20 observations 
can change dramatically if an additional 20 observations 
are added. An important question when designing an 
experiment is how many observations are needed to 
observe relatively stable effect size estimates, such that 
the effect size estimate will not change considerably 
when more participants are collected. On the basis of 
approaches in statistics that stress accuracy, and not just 
statistical significance (e.g., Kelley & Maxwell, 2003), 
Schönbrodt and Perugini (2013) have recently performed 
simulations that address this question.

First, it is necessary to define the “stability” of an effect 
size estimate, and Schönbrodt and Perugini (2013) pro-
posed that a useful (albeit arbitrary) benchmark is that 
the difference between the true and observed correla-
tions should not exceed a small effect size as defined by 
Cohen (1988), neither in the collected sample nor in 
potentially increased samples. Hence, the stability of 
effect size estimates refers to a situation in which the 
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estimated effect is close to the true effect size and stays 
close. They defined the width (w) of the interval in which 
the effect size estimate has to stay using Cohen’s q (the 
difference between two Fisher-z-transformed correlation 
coefficients), in which a q (or w) = .1 is defined as a small 
effect size. Schönbrodt and Perugini used the term cor-
ridor of stability to indicate effect size estimates that are 
likely to stay within a specified width around the true 
effect size, even when additional observations would be 
collected. The sample size associated with the point 
where effect size estimates enter the corridor of stability 
without leaving it (with a specific level of confidence) 
was referred to as the point of stability.

Large enough sample sizes

Because of the probabilistic nature of induction, statistical 
inferences require a large enough number of observations. 
With too small samples, researchers are (what we would 
call) “sailing the seas of chaos”: Estimated effect sizes and 
significance levels are highly uncertain and can change 
dramatically as additional observations are added or from 
one study to the next (see also Stanley & Spence, 2014, 
this issue). In Appendix A, we provide a demonstration of 
the importance of large enough sample sizes, in which we 
randomly select subsamples of 50, 100, or 250 participants 
from a recent large-scale replication study (R. A. Klein et 
al., in press); we then show how the sample size deter-
mines (a) the variation in effect size estimates, (b) the per-
centage of studies that observe a significant effect, and (c) 
the overestimation in the effect size estimate if we only 
consider statistically significant studies.

To reach the corridor of stability, a researcher needs to 
collect a large enough sample size. On the basis of their 
simulations, Schönbrodt and Perugini (2013) provided a 
general recommendation of n = 250 per condition when 

examining effects of r = .21 (the average effect size in 
psychology according to Richard, Bond, and Stokes-
Zoota, 2003) if researchers want to reach a small (w = .1) 
corridor of stability. We think it is also useful to consider 
the minimum number of participants per condition for 
effect sizes, ranging from r = .1 to r = .7, based on a 
wider corridor of w = .2. The choice of w = .2 is a lower 
bound based on the idea that for the average effect size 
in psychology (r = .21), an effect size estimate that is 
more than .2 lower will be in the opposite direction of 
the original hypothesis. In Table 1 (columns 1–4), we 
display sample size recommendations for a range of 
effect sizes to achieve points of stability with w = .2 or 
w = .1. Some readers might consider these sample sizes 
too large to be feasible, but this does not change the sta-
tistical reality: Large sample sizes are required to achieve 
stable effect size estimates.

Large enough sample sizes are also required to have 
high statistical power (the likelihood of observing a sta-
tistically significant effect if the effect truly exists). The 
sample sizes needed to achieve a statistical power of 80% 
and 90% for a two-sided independent t test with an alpha 
of .05, as a function of the size of the effect, are provided 
in Table 1. As is illustrated in Table 1, for large effect 
sizes, the goal to be accurate requires a larger sample 
size than the goal to have high power, whereas for small 
effect sizes, the goal to have high power requires larger 
sample sizes than the goal to be accurate (although, in 
general, smaller effect sizes require larger sample sizes).

We can use the sample sizes associated with points of 
stability to evaluate research findings. Large effects 
observed in small samples might not meet the minimum 
threshold for stability that we would like to see, which 
would be an indication that these effects should be inter-
preted with caution, and researchers interested in cumula-
tive knowledge might want to start with a replication and 
extension study, instead of a conceptual replication, when 
building on such work. These sample sizes can also be 
used when designing new studies. New studies in which 
large effects are expected can be designed to reach the 
corridor of stability instead of reaching statistical signifi-
cance (see also Maxwell, Kelley, & Rausch, 2008). In Table 
1, we also point to the fact that if a researcher wants to 
perform a pilot study to acquire a reasonably accurate 
effect size estimate for an a priori power analysis, sample 
sizes per cell need to be quite large. A solution might be 
to perform an internal pilot study and to use sequential 
analyses, which we turn to next.

Part 2: Dealing With Uncertainty When 
Designing Empirical Studies

If the size of an effect is known, there is no need to study 
it. Even though the true effect size is inherently uncertain 

Table 1. Recommended Sample Size per Condition When 
Comparing Two Independent Groups Based for Different 
Effect Sizes (r and Cohen’s dpop) to Achieve the Point of 
Stability (POS) With 80% Confidence and Corridor Widths 
of .2 and .1 (see Part 1), to Achieve 80% or 90% Power to 
Observe the Effect With an Alpha of .05, and to Achieve a v 
Statistic Higher Than .5 (see Part 3)

r dpop

POS, 80% 
w = .2

POS, 80% 
w = .1

80% 
power

90% 
power v > .5

.1 0.20 61 252 394 527 404

.2 0.41 57 238 95 126 99

.3 0.63 51 212 41 54 43

.4 0.87 43 181 22 29 23

.5 1.15 34 143 13 17 14

.6 1.50 25 104 9 11 9

.7 1.96 20 65 6 7 6
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when a study is designed, it is important to have at least 
some indication of the expected effect size to determine 
the sample size of a study. Sometimes, researchers use a 
heuristic to determine the planned sample size. A prob-
lem with using a heuristic is that the resulting sample size 
of a study is almost always suboptimal, in that either too 
many or, more likely, too few participants will be col-
lected. A second solution is to use previous research 
findings in which a comparable effect has been exam-
ined and to use the effect size observed in these studies 
(or, preferably, the meta-analytic effect size of a large 
number of studies) to make a prediction about the 
hypothesized effect size. A problem with this solution is 
that, especially when meta-analyses are not available, 
effect sizes in the published literature typically have wide 
CIs and often overestimate the true effect size (see Lane 
& Dunlap, 1978). Even at their best, effect sizes observed 
in comparable studies are proxies of the expected effect 
size, which in reality might differ substantially because of 
the differences among studies.

A third solution is to perform a pilot study (the size of 
which can be based on the sample sizes associated with 
a point of stability with a w = .2; see Table 1) to estimate 
the effect size and to plan the sample size of the real 
study on the basis of the effect size observed in the pilot 
study. A problem with this approach is that studies with 
a small number of participants (which is typically the 
case in pilot studies) will provide relatively uncertain 
information about the true effect size. Therefore, power 
calculations based on the point estimate of an effect size 
in a pilot study will often be wrong. Researchers might 
also be tempted to combine data from the pilot study 
with that from the larger follow-up experiment (espe-
cially if the studies have identical methods). Unfortunately, 
not continuing with the follow-up experiment if there 
seems to be no effect in the pilot study can increase the 
Type II error rate, whereas not performing the follow-up 
study if the pilot study reveals a significant effect, but 
performing the follow-up experiment if the pilot study 
reveals no effect, can increases the Type I error rate (but 
see Sagarin, Ambler, & Lee, 2014, this issue, about post 
hoc corrections for unplanned interim analyses).

Sequential analyses

There is a different solution known as sequential analy-
ses. The idea is straightforward. Instead of planning an 
experiment and analyzing the results when the data col-
lection is complete, the data are analyzed intermittently. 
After an intermittent analysis, researchers follow prereg-
istered decision paths based on the observed effect size. 
It is important to realize that repeatedly analyzing the 
data while data collection is in progress can increase the 
Type I error (see Simmons et al., 2011)—but only when 

the Type I error rate is not controlled. Statistical proce-
dures to carefully control Type I error rates while per-
forming sequential analyses have been developed in 
medical sciences and are widely used in large clinical 
trials. Psychologists can benefit from these techniques 
because they provide a practical and efficient way to deal 
with uncertain effect size estimates while guaranteeing 
well-powered studies. Imagine a researcher who expects 
to observe a small effect of Cohen’s d = 0.25. An a priori 
power analysis (which can easily be calculated with the 
free G*Power software; Faul, Erdfelder, Buchner, & Lang, 
2009) shows that an estimated 253 participants are 
needed in each between-subjects condition (or 506 par-
ticipants in total) to have a statistical power of .80 with an 
alpha of .05 in a two-sided independent t test. Small vari-
ations in the observed effect size would have substantial 
consequences for the estimated sample size. With d = 0.2, 
the power analysis returns 788 participants in total, and 
with d = 0.3, only 352 participants are needed.

Sequential analyses provide a solution to this practical 
problem. When sequential analyses are used, research-
ers can spend the overall alpha level (typically .05) 
across the intermittent analyses. Different spending func-
tions can be used depending on the goals of the 
researcher to determine the boundaries of the Z value 
and p value for each analysis. For instance, the O’Brien–
Fleming rule is relatively conservative in the first analy-
ses (when the effect size estimate is still sailing the seas 
of chaos), which is well suited for confirmatory tests, but 
a linear spending function is better suited for more 
exploratory research. When expecting an effect with d = 
0.25, a conservative sample size plan would be to aim to 
collect 550 participants in total. Five sequential analyses 
could be planned after 110, 220, 330, 440, and 550 par-
ticipants have been collected with the O’Brien–Fleming 
spending function. All the required computations can be 
performed with the freeware program WinDL, which 
was created by Reboussin, DeMets, Kim, and Lan (2000), 
or with the GroupSeq library in the free software R (step-
by-step guides to perform all required calculations are 
included in the Supplementary Materials). This software 
provides us with the boundaries for our statistical tests at 
each of the five interim analyses, with upper bound 
Z scores of 4.88, 3.36, 2.68, 2.29, and 2.03, which corre-
spond to p-value boundaries of .000001, .0007, .007, 
.022, and .042.

Imagine that after 330 participants, a t test returns the 
following: t(328) = 2.74, p = .006, Cohen’s ds = 0.30.
Because the p value of .006 at the third analysis is smaller 
than the boundary (p = .007), the data collection can be 
terminated, and one can conclude that the data support 
the hypothesis. Although it is undesirable to design a 
study that has a statistical power of .5 at the final analysis, 
having a 50% chance to terminate the data collection 
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early after observing a significant result (or being able to 
continue the data collection when the test is not signifi-
cant) will often be desirable. Sequential analyses will, on 
average, substantially save resources and can easily 
reduce sample sizes when examining true effects by at 
least 20% (see Lakens, in press).

Note, however, that the main goal of sequential analy-
ses is to test hypotheses by demonstrating a statistically 
significant effect. Whenever researchers have the goal to 
provide accurate effect size estimates, they need to either 
design larger studies or turn to meta-analytic techniques. 
Moreover, stopping the data analysis early, if there is a 
significant difference, can lead to an overestimated effect 
size estimate; therefore, monitoring-adjusted p values, 
CIs, and effect size estimates are reported that have been 
developed to correct for this bias (see the Supplemental 
Material).

Sequential analyses are efficient and provide more 
flexibility. If researchers have specified a smallest effect 
size of interest, they can decide in advance to terminate 
the data collection whenever the observed effect size in 
an interim analysis is smaller than this value. In applied 
research, the smallest effect size of interest can often be 
determined on the basis of a cost–benefit analysis. For 
purely theoretical research, a researcher might have a 
computational model of the process under examination 
that suggests that an effect size lies between specific 
values. Alternatively, any effect size larger than zero 
might be considered of theoretical interest; however, in 
these situations, a researcher will often face practical 
limitations because of the number of participants that a 
researcher is willing to collect. In such situations, the 
smallest effect size of interest is determined by the mini-
mum power (which is typically .8; Cohen, 1988) that 
can be achieved by collecting the maximum sample size 
that a researcher is willing to collect. For example, if a 
researcher decides that he or she is willing to collect no 
more than 200 participants to examine a hypothesis, 
this decision means that in practice the effect size that 
he or she could detect with 80% power in an indepen-
dent t test would be a Cohen’s d of 0.4 or larger. 
Especially when it is unclear whether an effect exists 
(e.g., for completely novel hypotheses), sequential anal-
yses allow researchers to look at the data while data 
collection is in progress and to stop the data collection 
when the effect size is smaller than the smallest effect 
size of interest.

Researchers should be aware that terminating the data 
collection early when the effect is unlikely to exist always 
includes the risk of a Type II error. We recommend con-
sulting the minimum sample sizes based on the corridor 
of stability (see Table 1) before taking effect size esti-
mates with very wide CIs at an interim analysis too seri-
ously (see Lakens, in press).

Adaptive designs

Sequential analyses also open up the possibility to use 
adaptive designs, in which the final sample size of a 
study is determined by a conditional power analysis. As 
opposed to an a priori power analysis, a conditional 
power analysis is performed on the basis of the effect 
size observed in the data that have been collected so far 
(which is referred to as an internal pilot study). By com-
bining a smallest effect size of interest, sequential analy-
ses, and an adaptive design, a researcher can preregister 
a study design in which he or she will (a) stop when the 
effect is significant at a predefined alpha level, (b) stop 
when the effect size reaches a value below the smallest 
effect size of interest, or (c) continue the data collection 
on the basis of a conditional power analysis. This flexibil-
ity is highly efficient. The only cost of using sequential 
analyses is a slight reduction in the power of the study, 
which should be compensated for by a small increase in 
the number of participants compared with a design with-
out interim analyses (the exact increase depends on the 
number of interim analyses and the spending function 
that is chosen, which in this example leads to a 1% 
increase). For a more extensive introduction to sequen-
tial analyses, see Lakens (in press). For a detailed over-
view, see Proschan, Lan, and Wittes (2006).

Part 3: Evaluating Past Research 
Findings

When research findings are evaluated, the informational 
value of a study should always be taken into account, 
beyond the dichotomous conclusion of whether the sta-
tistical test performed on the reported data is significant. 
If an effect is observed reliably, it will most likely be sta-
tistically significant, but statistical significance does not 
necessarily imply that the effect is observed reliably. This 
asymmetry is important to understand, and it means that 
not every statistically significant effect is equally strong 
support for a theoretical line of reasoning. When meta-
analyses are not available, researchers often need to 
judge the remaining uncertainty in a single or small num-
ber of published studies. There are several ways to evalu-
ate published research findings; we highlight two. The 
first, the v statistic (Davis-Stober & Dana, 2013), can be 
used to interpret individual studies. The second, p-curve 
analysis (Simonsohn et al., in press), can reliably be used 
to interpret five or more studies.

Comparing estimates with guessing: 
The v statistic

Davis-Stober and Dana (2013) provided a new approach 
to evaluate the accuracy with which parameter values 
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(such as the average of a dependent variable) in the 
population are estimated on the basis of their corre-
sponding observed values in a sample. They introduced 
the v statistic, which represents the likelihood of stan-
dard estimation methods to be more accurate than a 
recently developed benchmark that represents random 
guessing. The v statistic is the probability that a model 
based on the data is more accurate than a model in 
which the strength and direction of effects are randomly 
determined (for a conceptual primer, see Appendix B). 
The v statistic ranges from 0 (the model based on ran-
dom guessing is always more accurate) to 1 (the model 
based on the data is always more accurate). Obviously, 
if a random estimator is more accurate than the estima-
tor based on the observed data (indicated by a v statistic 
smaller than .5), a study does not really reduce the 
uncertainty about whether the hypothesis is true. It 
might seem that comparing empirical observations 
against random guessing is an extremely low bench-
mark, but as the v statistic demonstrates, the sample 
sizes used in some psychological studies can lead to the 
publication of findings that, although statistically signifi-
cant, do not improve knowledge about the underlying 
structure of the data compared with random guessing 
(i.e., the v statistic is lower than .5). The v statistic is eas-
ily computed with scripts provided for the free software 
R (for a step-by-step guide, see the Supplementary 
Materials), is not defined in terms of null-hypothesis sig-
nificance testing (NHST), and can be used to evaluate 
published research irrespective of unquantifiable doubts 
about researcher degrees of freedom or publication bias.

As an example of how the v statistic can be used, we 
turn to studies by Bargh, Chen, and Burrows (1996) and 
by Doyen, Klein, Pichon, and Cleeremans (2012), who 
examined whether people primed with words related to 
the elderly would walk more slowly through a corridor. 
We aim to show how the v statistic allows for a purely 
statistical evaluation of the performed studies. In Studies 
2A and 2B, Bargh et al. reported a statistically significant 
difference in walking speed between the primed and 
control conditions, t(28) = 2.86, p < .01, and t(28) = 2.16, 
p < .05, respectively. The v statistic needs an estimate of 
the true effect size, and when it is calculated post hoc on 
the basis of observed values, r2

adj (the unbiased estimator 
of the observed r 2) should be used.3 An effect size esti-
mate with the t value and total sample size in the studies 
by Bargh et al. can be computed that produces a Cohen’s 
ds of 1.04 and 0.79, or r2 = .226 and .143, in Studies 1 and 
2, respectively (assuming an equal distribution of partici-
pants across conditions). The v statistic for the total sam-
ple size (30 in each study), the number of estimated 
parameters (two in the case of an independent sample t 
test because two group means are estimated), and the 
computed effect size estimates (r 2 = .226 and .143) return 

a v = .50 and v = .27, respectively. These values imply 
that—given this sample size, estimate of the effect size, 
and number of parameters—the likelihood of the ordi-
nary least squares estimator being more accurate than 
random guessing is 50% and 27%, respectively. In other 
words, with so few data points, any model based on the 
observed data lacks the accuracy that is needed for statis-
tical inferences.

In a recent replication attempt, Doyen et al. (2012, 
Experiment 2) replicated the original effect; however, 
they only did so when experimenters expected the pre-
dicted effect to occur, which is in line with the possibility 
that the original effect was due to experimenter bias. 
Data from 25 participants revealed slower walking speeds 
in the primed condition (M = 6.95, SD = 0.36) compared 
with the nonprimed condition (M = 6.52, SD = 0.31), F(1, 
24) = 7.07, p = .014, r 2 = .228. The estimation of these two 
means, which is based on data from 25 participants and 
yields an effect size of r 2 = .228, returns a v = .44. In other 
words, estimations based on the observed data in the 
study by Doyen et al. do not outperform an estimator 
that randomly determines the magnitude of the relation-
ship between the means and is then scaled to the 
observed data. Elderly related primes might influence 
walking speed (but see Doyen et al., 2012, Experiment 
1), and the explanation for the effect based on experi-
menter bias could be true; however, models based on the 
observed data are no more accurate than models based 
on random guessing. In other words, the data of both the 
original finding as well as the study in which the effect 
was observed only for experimenters who were aware of 
the hypothesis do not allow for an accurate model of the 
underlying effects; therefore, the data should be inter-
preted with caution until more convincing evidence has 
been provided.

A sufficiently high v statistic can be seen as a precon-
dition before interpreting the outcome of a significance 
test. Researchers are already familiar with testing whether 
data meet certain conditions before statistical analyses 
are performed, such as whether data are normally distrib-
uted. Just as a p value is not very meaningful if the 
assumptions of the statistical test have been violated, a 
p  value is not very meaningful when the v statistic is 
equal to or lower than .5. The v statistic thus functions as 
a useful benchmark to evaluate the accuracy of estimated 
means that are the basis for the statistical test. In contrast 
to post hoc power analysis, which is meaningless because 
it is directly related to the observed p value (Ellis, 2010), 
the v statistic is not directly related to the observed 
p  value (i.e., studies can reveal a significant difference 
but still have a low v statistic, unlike the relationship 
between prep and p, or between p values and observed 
power) and can be used to retrospectively evaluate the 
appropriateness of the significance test.
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The v statistic can be used as information about how 
strongly to weigh the statistical conclusions drawn from 
empirical observations. For example, if a researcher 
observes a statistically significant difference in a very 
small sample, the v statistic can help him or her to inter-
pret whether this study was accurate enough to shift his 
or her belief about the likelihood that the effect is true or 
whether he or she should even interpret the outcome of 
the statistical test. Editors of scientific journals could use 
the v statistic as one of the factors that determine whether 
a study is worthwhile to publish. If a study is part of a 
line of research, it becomes possible to analyze a set of 
studies (which perhaps all have low v statistics) meta-
analytically and to draw conclusions about the likelihood 
that effects are true on the basis of the cumulative data 
(see p-curve analyses, which are presented later in the 
article, or cumulative meta-analyses; Braver, Thoemmes, 
& Rosenthal, 2014, this issue). For between-subjects t 
tests, the minimum sample size in each condition to sur-
pass a v statistic of .5 is provided in Table 1, and research-
ers should consider consulting this table when designing 
an experiment. The v statistic is relatively new, and its 
computations for within-subject designs have not yet 
been formalized, which would be a useful goal for future 
research.

Evaluating the evidential value of a 
single study

Statistical significance is a widely used criterion to decide 
whether an effect is interesting enough to share with 
other scholars. There has been much criticism of NHST 
(for a review, see Nickerson, 2000), but the use of NHST 
has not declined. Instead of arguing against the use of 
NHST entirely (e.g., Cumming, 2013), we briefly review 
how to correctly interpret p values, and we point out how 
they can be used when evaluating research findings.

In general, there are four possible outcomes of a sta-
tistical test. It is possible that a true effect is examined, in 
which case a significant result is a true positive, and a 
nonsignificant result is a false negative. If the effect under 
examination is not true, a significant result is a false posi-
tive, and a nonsignificant result is a true negative. The 
most prevalent misconception about p values is that they 
indicate the chance that an observed effect is a false posi-
tive (a mistake perpetuated through a number of intro-
duction-to-statistics textbooks). Observing a significant 
effect with a p = .03 does not mean that the chance of a 
false positive is 3%, and it does not mean that it is 97% 
likely that the effect is true. In the following section, we 
review the information p values do provide, and we 
review the effect of statistical power and the prior likeli-
hood that a hypothesis is true on the probability that 
significant results are Type I errors.

Because researchers sometimes investigate true ideas 
and sometimes investigate false ideas, it is important to 
understand what influences the likelihood that one of 
the four possible outcomes is observed. Increasing the 
statistical power of a study increases the likelihood of 
finding true positives while decreasing the likelihood of 
finding false negatives and, therefore, increases the 
informational value of studies. Assume that a researcher 
runs 200 studies in which novel research questions are 
examined and the alternative hypothesis (H1) and the 
null hypothesis (H0) are equally likely with the mini-
mally recommended (Cohen, 1988) power of .8 (i.e., by 
examining a difference between two independent 
groups with a true effect size of Cohen’s d = 0.5 with 51 
participants in each condition). On average, he or she 
could expect to find 85 significant effects in these 200 
studies—80 from 100 studies examining true effects, and 
five false positives from the 100 studies in which a non-
existing effect was examined (see Figure 1). Therefore, 
approximately 94% (80 out of 85) of the significant 
results are true positives, whereas 6% of the significant 
results are false positives. A nonsignificant result is also 
informative. Because only 20 of the 100 studies in which 
a true effect was examined did not yield a significant 
difference, and because 95 of the 100 studies in which a 
false idea was examined yielded nonsignificant results, 
only 17% (20 out of 115) of the nonsignificant findings 
are false negatives. If the researcher designs studies with 
a statistical power of only .35 (i.e., by examining a differ-
ence between two independent groups with a true effect 
size of Cohen’s d = 0.5 with 21 participants in each con-
dition), 12.5% of his or her significant results are false 
positives, and more than 40% of his or her nonsignificant 
results are false negatives. Running studies with low 
power thus decreases the informational value of signifi-
cant, as well as nonsignificant, results.

Although it is common to implicitly assume that the 
null hypothesis and the alternative hypothesis are equally 
likely to be true (as we have done in the previous exam-
ple), in many circumstances this assumption is not very 
reasonable. Some ideas are a priori more likely to be true 
than others. If one is testing highly unlikely (compared 
with likely) ideas, relatively more significant results will 
be false positives (for a detailed example, see Krzywinski 
& Altman, 2013). When designing studies that examine 
an a priori unlikely hypothesis, power is even more 
important: Studies need large sample sizes, and signifi-
cant findings should be followed by close replications. 
Because only significant results end up in the published 
literature (due to publication bias), it is important to real-
ize that surprising or unexpected findings from studies 
with small samples are more likely to be false positives 
than significant findings in which more likely hypotheses 
are examined (Ioannidis, 2005).
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Evaluating the evidential value of a 
line of research

Even though a p value cannot be directly interpreted as 
the likelihood that an effect is true, this does not mean 
that p values do not provide any insight in the likelihood 
that H1 is true. There is a direct relationship between the 
power of studies and the distribution of p values from 
effects examined in these studies (see Cumming, 2008). 
Cumming (2008) has provided a formula that can be 
used to calculate these distributions in Excel.4 When the 
null hypothesis is true (and the statistical power to 
observe a true effect is 0% because there is no true effect), 
p values are uniformly distributed. In other words, when 
there is no true effect in an experiment, every p value is 
expected to be observed with equal likelihood. This may 
seem counterintuitive, but a uniform distribution under 
the null is in essence the definition of a p value (for a 
more thorough explanation, see Cumming, 2008; 
Simonsohn et al., in press). When H1 is true, increasing 
the power of a study changes the distribution of p values 
from a uniform to a right-skewed distribution, resulting in 

relatively more small p values than large p values. 
Knowing the probability of observing a p value under H0 
(when power = 0%) compared with the probability of 
observing that p value under the different distributions of 
power under H1 allows one to infer how much evidence 
for the H1 a specific p value provides.

For example, the probability of observing a p value 
between .00 and .01 is 1% under the H0, but when H1 is 
true in a study with 80% power, the probability has 
increased to approximately 59%. Assuming H0 and H1 
are equally likely, a p value between .00 and .01 is 59 
times more likely to be found under H1 (with 80% power) 
than under H0. The probability of observing a p value 
between .04 and .05 is also 1% under H0, but it is only 
slightly more probable under H1, in which it is 3% in a 
study with 80% power. Regardless of the power of a 
study, observed p values between .04 and .05 are never 
very likely, irrespective of whether H0 or H1 is true. 
Sellke, Bayarri, and Berger (2001) have calculated exactly 
how likely it is to find p values between .04 and .05. By 
looking at all possible distributions of p values and by 
calculating when the likelihood of finding a value 

Fig. 1. Ratio of false-to-true positives and false-to-true negatives for the two researchers performing studies at 80% or 35% power. Both 
Researcher 1 and Researcher 2 conduct 200 experiments in which they examine 100 true ideas (in white) and 100 false ideas (in gray). 
Squares represent significant results, and circles represent nonsignificant results.
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between .04 and .05 would be the highest, they found 
that the chance of finding such a p value is at best only 
3.7%. Thus, whereas a p value between .00 and .01 is 
much more likely under H1 compared with H0, p values 
between .04 and .05 are at best only slightly more likely 
under H1. It is also interesting that when power is very 
high (approximately 96%), the probability of finding a 
p value between .04 and .05 is actually less likely under 
H1 than under H0 (because a considerably lower p value 
is much more likely). In other words, when power is very 
high, observing a (statistically significant) p value between 
.04 and .05 is actually more likely when there is no effect 
than when there is an effect. Even though researchers are 
trained to use p values as a dichotomous measure in 
which everything below p = .05 is called significant, 
researchers should actually weigh lower p values as 
stronger evidence for H1 than higher p values, especially 
in well-powered studies.

p-curve analysis

The distribution of p values depends on the power of the 
study. A single significant finding can be part of a distri-
bution of other studies that revealed significant effects; 
however, because of publication bias, it can also be part 
of a set of mostly nonsignificant studies that researchers 
are not aware of. In the former situation, the effect is at 
least somewhat likely to be real, whereas in the latter 
case, the effect is more likely to be a false positive. 
Because the distribution of p values is different for true 
effects (i.e., right-skewed) than for null effects (i.e., uni-
formly distributed), it is possible to compare the distribu-
tion of an observed set of p values in the literature with 
the uniform distribution of a null effect and with the 
right-skewed distribution of a true effect, and it is possi-
ble to decide whether the observed distribution is more 
similar to that of a null effect or a true effect; p curve is a 
tool that does just that (Simonsohn et al., in press).

If the distribution of p values is significantly different 
from a uniform distribution and is right-skewed, the dis-
tribution of p values is consistent with a true effect. If the 
distribution is left-skewed, the studies have relatively 
(and significantly) more high p values (e.g., .04 and .05) 
than would be expected by chance if H0 is true (such a 
distribution is even more unlikely when H1 is true). If the 
distribution of p values does not significantly differ from 
the uniform distribution, the data do not provide evi-
dence against H0. It is possible to examine whether the 
distribution of p values is flatter than expected if H1 is 
true (given a specific power of the performed studies). 
This allows researchers to test whether the effect is even 
smaller than a small effect. Simonsohn and et al. (in 
press) suggested testing whether the observed p-value 
distribution is flatter than would be expected if the 

performed studies were powered at 33% (but the test can 
be adjusted for different levels of power). If the distribu-
tion is significantly flatter than would be expected if stud-
ies had 33% power, the studies lack evidential value. The 
effect either does not exist or is much smaller than could 
be reliably observed in the performed studies.

Several characteristics of the p curve make it a very 
useful tool to estimate the evidential value of research. 
First, it is relatively easy to use. Second, any set of studies 
can be submitted to a p-curve analysis. Third, the power 
and false-positive rate of a p-curve analysis is very accept-
able because p curve almost always has a higher power to 
correctly accept a set of studies as evidence for H1 than 
the individual studies. The probability with which p curve 
incorrectly rejects true effects depends on the size of the 
set of studies and their power, but by definition, the 
chance that a p-curve analysis incorrectly concludes that a 
set of studies has no evidential value is 5% when those 
studies were powered at the 33% level. Although it is 
unlikely that a p-curve analysis derives an incorrect con-
clusion from the available p values (see Simonsohn et al., 
in press), it is possible that the p-curve analysis remains 
inconclusive and that more p values are needed to deter-
mine whether a set of studies has evidential value.

Finally, and arguably most important, effects in the 
literature can be overestimations of the true effect sizes 
because of publication bias (e.g., Lane & Dunlap, 1978). 
Because a p-curve analysis is restricted to p values 
between .00 and .05, publication bias should not affect 
conclusions based on the distribution of p values within 
this range (though p hacking a true effect may cause the 
distribution to appear flatter than it should be). Indeed, 
p-curve analysis might even be a useful tool to obtain 
unbiased effect size estimates (Nelson, Simonsohn, & 
Simmons, 2014). This makes p-curve analyses a useful 
addition to a researcher’s meta-analytic toolbox, comple-
menting existing techniques such as meta-analyses (see 
Braver et al., 2014).

On www.p-curve.com, an easy-to-use interface and 
helpful instructions are available to select the right p val-
ues to perform a p-curve analysis. When planning to 
build on existing research, trying to consolidate inconsis-
tent findings, or evaluating the likelihood of research 
findings for other reasons (e.g., as a reviewer or editor), 
p curve is a simple tool to accurately assess whether the 
reported studies contain evidential value for H1. When 
there is no evidential value for a theory, a researcher 
should proceed with caution when developing a line of 
research that builds on the analyzed ideas. If he or she 
decides to continue, lack of evidential value in a p-curve 
analysis suggests that the published literature might not 
provide the best inspiration for hypotheses. Instead, a 
better approach might be for the researcher to revisit the 
original theoretical ideas and to design the strongest test 
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of those ideas that he or she can come up with (perhaps 
using a completely different methodology). As an illustra-
tion of how p-curve analyses can differentiate between 
the evidential values of two ostensibly similar research 
lines, see Lakens (2014).

Discussion

Researchers are familiar with interpreting the outcome of 
empirical research based solely on the p value. We hope 
this article has explained why it is important to look at 

the sample size and the effect size of a study before look-
ing at the p value. We have proposed the use of a number 
of relatively new statistical procedures and insights (see 
the checklist in Table 2), such as the corridor of stability 
(Schönbrodt & Perugini, 2013), sequential analyses 
(which are based on an old idea but on more recently 
developed statistical methods; e.g., Proschan et al., 2006), 
the v statistic (Davis-Stober & Dana, 2013), and p-curve 
analysis (Simonsohn et al., in press). It is often thought 
that editors and reviewers are conservative when it comes 
to new statistical techniques. In this article, we have 

Table 2. Guidelines to Increase and Evaluate the Informational Value of Studies

When planning studies: Why? How? More information:

Power studies 
adequately . . .

Increases information by 
reducing the likelihood 
of false negatives and the 
relative likelihood of false 
positives in the published 
literature because of 
publication bias.

Always perform an a priori power 
analysis.

When effect size estimates are 
extremely uncertain, use 
sequential analyses.

Cohen, 1988; Faul, Erdfelder, 
Buchner, & Lang, 2009

Lakens, in press;  
Proschan, Lan, & Wittes, 
2006; see step-by-step 
guide in the Supplementary 
Materials

. . . aim for accurate 
effect size estimates.

Stable effect size estimate with 
narrow confidence intervals 
increase the confidence in 
the reliability of the effect.

Aim for the corridor of stability or a 
specific width of the confidence 
interval around the effect size 
estimate.

Maxwell, Kelley, & Rausch, 
2008; Schönbrodt & Perugini, 
2013

. . . aim for a v statistic 
> .5.

Make sure your model 
outperforms random 
guessing.

Collect enough participants, 
depending on the number of 
parameters and predicted effect 
size.

Davis-Stober & Dana, 2013

When interpreting studies: Why? How? More information:

Look at the power of 
the study and the 
likelihood of the 
hypothesis.

Because of publication bias, 
low (estimated) power, and 
a low (estimated) likelihood 
of the hypothesis, the 
relative likelihood of false 
positives increases.

Never calculate post hoc power, but 
use an effect size estimate from a 
relevant meta-analysis or  
p-curve analysis. Make an 
informed (although subjective) 
judgment of the likelihood of 
the hypothesis on the basis of an 
evaluation of the theory.

Ioannidis, 2005; Nelson, 
Simonsohn, & Simmons, 
2014

Look at the sample size. Smaller samples yield less 
accurate and less reliable 
effect size estimates. With 
small samples, interpret 
results with caution.

Compare the sample size in the 
study with the recommended 
number of participants in Table 
1.

Maxwell et al., 2008; Schönbrodt 
& Perugini, 2013

Is the model accurate? The model should at the very 
least be better than random 
guessing.

Calculate the v statistic. The lower 
the v value, the less accurate 
the model is. When v < .5, 
interpreting the p value is not 
very meaningful.

Davis-Stober & Dana, 2013; see 
step-by-step guide in the 
Supplementary Materials

Is there evidential value 
in a set of studies?

Because of selection bias, the 
number of Type I errors 
in the literature might be 
larger than desired.

Look at the p curve of all results. 
Distribution of p values should 
be right skewed. A uniform 
(or left-skewed) distribution 
indicates a lack of evidential 
value.

Simonsohn, Nelson, & Simmons, 
2014; see www.p-curve.com
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attempted to explain the immediate benefits of introduc-
ing new statistical procedures that allow researchers to 
evaluate and deal with the uncertainty that is inherent in 
an inductive science. The researchers who have created 
these novel techniques have provided easy-to-use guide-
lines and programs to incorporate these techniques cor-
rectly without much effort into one’s workflow, and we 
provide easy to follow step-by-step guides in the 
Supplemental Material.

Especially when used in conjunction with method-
ological improvements—such as the preregistration of 
hypotheses, performing replication studies and meta-
analyses, sharing findings that reveal nonsignificant dif-
ferences, and publically posting data online (e.g., 
Asendorpf et al., 2013; Koole & Lakens, 2012; Nosek, 
Spies, & Motyl, 2012; Open Science Collaboration, 2012; 
Wagenmakers, Wetzels, Borsboom, van der Maas, & 
Kievit, 2012)—researchers in our discipline can make 
important steps toward reducing the uncertainty about 
what is likely to be true. We believe the v statistic can be 
used to complement the use of the p value to interpret 
the informational value of studies, and p-curve analysis 
can complement more traditional meta-analytic proce-
dures. Each of these techniques has its own strengths and 
weaknesses, and we recommend the use of multiple 
approaches to evaluate research. When designing stud-
ies, we provide recommendations for minimum sample 
sizes (see Table 1) if researchers have the goal to either 
observe a significant effect or the goal to provide an 
accurate effect size estimate, without presupposing that 
all individual published studies should meet either (or 
both) of these goals.

Coda

The practical recommendations discussed in this article 
have the goal to provide researchers with tools to deal 
with the uncertainty inherent in inductive sciences. We 
have to be honest about one important consequence for 
researchers who follow these recommendations: They do 
not give you the most bang for your buck when it comes 
to the number of significant findings you will observe in 
your studies. If your goal is to publish as many significant 
results as possible, it is more efficient to produce unreli-
able scientific knowledge than to produce reliable scien-
tific knowledge (see also Bakker, van Dijk, & Wicherts, 
2012; Nosek et al., 2012). This crucial insight should be 
clearly communicated to everyone who manages 
researchers on the basis of output measures, such as the 
number of publications.

Because running studies with large sample sizes is 
costly, and because the resources that a researcher has 
available are finite, a researcher is forced to make a trade-
off between the number of studies that he or she runs 
and the power of these studies. The relation between 

sample size and power is a concave function, and there-
fore splitting a finite pool of participants over many low-
powered studies will result in a higher total number of 
significant findings (even though the chance of finding a 
significant result is lower per study). This means that 
given the common practice of running underpowered 
studies (e.g., Button et al., 2013), increasing the quality of 
research necessarily decreases the quantity of publish-
able findings. If researchers are (or believe they will be) 
rewarded for the amount of significant findings that they 
produce, this system provides a perverse incentive to 
reduce the scientific quality of empirical studies and to 
increase the quantity of studies that will be much less 
informative about the truth.

A researcher running underpowered studies may have 
published more significant (but also hugely inaccurate) 
effects and may have contributed more Type I errors to 
the literature (especially when flexibility during the data 
analysis leads to an inflated alpha level). Most important, 
this researcher does not know which of the examined 
hypotheses were true but did not yield an effect because 
of low power, which studies yielded a significant result 
because the effect was actually true, and which signifi-
cant results were actually Type I errors (see Figure 1). 
However, a researcher running fewer but larger studies 
may have fewer significant findings, but the effect sizes 
are estimated more accurately, and theoretical predic-
tions that did not yield a significant effect have become 
less likely, because the studies had enough statistical 
power to observe an effect if there had been a true effect 
in the population. Furthermore, when an effect yielded a 
significant finding, it is more likely to be a true effect. All 
else being equal, a researcher running properly powered 
studies will clearly contribute more to cumulative science 
than a researcher running underpowered studies, and if 
researchers take their science seriously, it should be the 
former who is rewarded in tenure systems and reward 
procedures, not the latter.

There is no denying that a psychological science that 
considerably reduces the uncertainty about the likeli-
hood that hypotheses are true requires larger sample 
sizes per study and will most likely reduce the number of 
novel empirical articles that a researcher can publish. As 
explained earlier, this outcome is actually desirable, given 
the goal of science to differentiate among all possible 
truths. It also makes other types of publications in addi-
tion to novel empirical work, such as meta-analyses or 
replications of important results (which can be accepted 
for publication before they are performed; see Nosek & 
Lakens, in press), more worthwhile, thereby providing 
further incentives toward a cumulative science. We 
believe reliable research should be facilitated above all 
else, and doing so clearly requires an immediate and 
 irrevocable change from current evaluation practices in 
academia that mainly focus on quantity.
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Appendix A

Variance in effect size estimates as a 
function of sample size

As an example of how more data provide a greater reduc-
tion in inductive uncertainty, we use data from a recent 
set of large-scale replication studies (R. A. Klein et al., in 
press), in which the retrospective gambler’s fallacy was 
tested in one experiment (Oppenheimer & Monin, 2009).
Participants were asked to imagine walking into a room 
and seeing a gambler roll three dice that either all come 
up 6, or roll two dice that come up 6 and one die that 
comes up 3. When estimating how many times the gam-
bler had rolled the dice before the observed roll occurred, 
participants indicated a greater number of rolls in the con-
dition in which three 6s were rolled. The replication study 
had 5,942 participants, and they also estimated more pre-
vious rolls in the condition in which three 6s were rolled 
(M = 3.76, SD = 3.32) than when two 6s and one 3 were 
rolled (M = 2.07, SD = 2.07), F(1, 5940) = 576.36, p < .001, 
with an effect size of η2 = .088, 95% CI [.075, .102].

We randomly selected subsets of either 50, 100, or 250 
participants from the total sample, repeating this selec-
tion 100 times for each sample size, and we tested the 
hypothesis in each subsample. The average results for 
the 300 samples are summarized in Table A1 as a func-
tion of the sample size. As the sample size increases, we 
move from the seas of chaos into the corridor of stability. 
The 100 effect size estimates are more similar in sub-
samples of 250 participants (as indicated by the lower 
standard deviation of the effect size estimate eta-squared) 
and vary more with smaller subsamples. Because of low 
statistical power, testing the hypothesis with 25 partici-
pants in each condition yields a significant difference in 
only 60% of the studies (with low power, p values have a 
wide distribution; see “the dance of the p values”: 
Cumming, 2012). Although the average effect size esti-
mates over 100 samples are comparable regardless of the 
size of the subsample, if we only calculate the average 
effect size for the statistically significant tests (mirroring a 
literature in which there is publication bias), then smaller 
sample sizes substantially overestimate the true effect 
size. As can be seen in Figure A1, the effect size estimates 
become more precise as sample sizes increase.

Appendix B

A brief conceptual primer on the v 
statistic

When we analyze data using a statistical procedure based 
on ordinary least squares (OLS) estimators (such as linear 
regression, analyses of variance, or any time we estimate 

population means by using the sample means), we are 
creating a model that fits our observed data best. 
Generally, models can have two types of error: error due 
to a bias in the estimate (the difference between the pre-
dicted mean and the observed mean) and error due to 
variance (the differences between different data points). 
OLS is an unbiased model, meaning it only has error due 
to variance. Constraining a model can decrease error in 
variance but can introduce error in bias. The v statistic 
introduces a benchmark of randomly generated (and 
thus arbitrary) constraints by randomly selecting both the 
relative strength of an effect as well as the direction. It 
then tests whether the error in this nonsensical model, 
the random least squares (RLS), is lower than that of a 
normal OLS estimate. Because such tests rely on the 
unknown true value of the population parameters, v is 
calculated for all possible parameter values that result in 
a probability of OLS being more accurate than RLS.

The v statistic can be seen as the probability of OLS 
being more accurate than a completely random (and 
therefore uninformative) model, and it ranges from 0 to 
1. A v statistic lower than .5 means that the (random) 
RLS estimate is more likely to be an accurate estimate of 
the true effect than the OLS estimate. The error due to 
variance in any linear model (on the basis of OLS or 
RLS) is primarily influenced by the complexity of the 
model and the number of data points, whereas the error 
in bias in RLS is independent from the number of data 
points. Therefore, the more data, the more likely it is 
that OLS will outperform RLS. In other words, all that a 
study needs to outperform random guessing is a large 
enough sample size. For a more detailed and mathemat-
ical explanation of the v statistic, see Davis-Stober and 
Dana (2013).
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Table A1. Power, Percentage of Significant Results in 
100 Randomly Selected Subsamples, Mean Effect Size in 
Subsamples and Statistically Significant Subsamples (Mirroring 
the Effect of Publication Bias), and the Standard Deviation of 
the Effect Sizes as a Function of the Size of the Subsamples

Subsample 
size

Power  
(%) % p < .05

M η² (all 
studies)

M η² 
(significant 

studies) SD η²

50 58 61 .107 .153 .071
100 87 89 .096 .105 .048
250 99 100 .093 .093 .034
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Notes

1. This percentage is 95% if, and only if, a parameter estimate is 
observed in a single experiment that is exactly the same as the 
true population value.
2. We should note that p-curve analysis (discussed later) is unaf-
fected by publication bias and that the v statistic (also discussed 
later) is primarily determined by the sample size and, when 
calculated on the basis of an adjusted effect size estimate, is 
less affected by publication bias. Therefore, compared with CIs, 
v might be more useful to evaluate a single small study, and 
p-curve analysis might be the better approach to evaluate mul-
tiple studies.

3. The R script is available from http://psychology.missouri 
.edu/stoberc. See the step-by-step guide in the Supplementary 
Materials.
4. The formula can be found in Appendix B in Cumming’s 
(2008) study. Note that in the formula to calculate zµ on p. 299, 
a square-root sign is missing; the correct formula, zµ = δ√(N/2), 
is repeated on p. 300.
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