

Copyright © 2018 Authors. This is an open access article distributed under the Creative Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

International Journal of Engineering & Technology, 7 (2.3) (2018) 4-8

International Journal of Engineering & Technology

Website: www.sciencepubco.com/index.php/IJET

Research Paper

SAISAN: An Automated Local File Inclusion Vulnerability

Detection Model

Md. Maruf Hassan *,Touhid Bhuyian, M. Khaled Sohel, Md. Hasan Sharif, Saikat Biswas

Software Engineering Department, Daffodil International University, 102 Mirpur Road, Dhaka, Bangladesh,1207

*Corresponding author E-mail: maruf.swe@diu.edu.bd

Abstract

Communicating and delivering services to the consumers through web applications are now become very popular due to its user friendly

interface, global accessibility, and easy manageability. Careless design and development of web applications are the key reasons for

security breaches which are very alarming for the users as well as the web administrators. Currently, Local File Inclusion (LFI) vul-

nerability is found present commonly in several web applications that lead to remote code execution in host server and initiates sensitive

information disclosure. Detection of LFI vulnerability is getting very critical concern for the web owner to take effective measures to

mitigate the risk. After reviewing literatures, we found insignificant researches conducted on automated detection of LFI vulnerability.

This paper has proposed an automated LFI vulnerability detection model, SAISAN for web applications and implemented it through a

tool. 265 web applications of four different sectors has been examined and received 88% accuracy from the tool comparing with the

manual penetration testing method.

Keywords: Cyber Security, Web Application Security, Web Application Vulnerability, Automated Vulnerability Detection Tool, Local File Inclusion

(LFI).

1. Introduction

Use of internet reaches over 3.6 billion by this time through differ-

ent channels and devices [11]. Web application is the key area to

modernize the world by automating the processes. Therefore, busi-

nesses dedicate their effort in restructuring their processes and de-

livering the services through web applications to their stakeholders

for receiving better outcome. Although web applications make our

life easy, it increases the risk of exploitation in case any vulnerabil-

ity remains in application due to its insecure design and develop-

ment. The most common vulnerabilities of the web applications are

injection, broken authentication and session management, cross-

site scripting (XSS), broken access control, security misconfigura-

tion, sensitive data exposure, insufficient attack protection, cross-

site request forgery (CSRF), using components with known vulner-

abilities, under protected APIs, Local File Inclusion, etc. [12],[13].

The consequence of vulnerability exploitation may lead to service

interruption, sensitive data/file disclosure, get full control over the

host application, etc. Local File Inclusion (LFI) refers to an inclu-

sion attack through which an attacker can trick the web application

by including files/scripts on the web server through exploiting func-

tionality. The effect of successful exploitation of LFI vulnerability

includes directory traversal, information disclosure, and remote

code execution. In our investigation we found that 48.6% web ap-

plication contains LFI vulnerability. Thus, detection of LFI vulner-

ability becomes very crucial for the web administrators to take ef-

fective measures. Automatic detection is always preferable than

manual way as it reduces the time and efforts. In order to figure out

an automated detection solution of different vulnerabilities, a num-

ber of researches have proposed several models and in some cases

they developed scanner or detection tools based on their proposed

models. This study has discovered that most of the proposed model

and implemented tools/ techniques have been developed for only

XSS and SQLi vulnerabilities. It is observed that very insignificant

researches on LFI vulnerabilities and its detection have been taken

place. This study has propose a detection model, SAISAN where

the solution can detect LFI weaknesses of the web applications.

This research also implement SAISAN through a tool where the re-

sult of the tool will be compared with manual penetration testing

method [14] to figure out the accuracy of the model. This paper is

organized in seven sections. Introduction and Literature Review are

discussed in section 1 and 2 respectively, LFI exploitation tech-

niques are explained in section 3. Methodology is discussed in sec-

tion 4 where SAISAN model has been described. Experiment Re-

sult and discussion are presented in section 5 and section 6 respec-

tively. The paper is concluded with the outcome of the study, limi-

tation, and future work in section 7.

2. Literature Review

This review observed that a good number of researches have been

conducted on web application vulnerability and its detection mod-

els. Some researchers performed survey on SQL injection, XSS,

broken authentication and session management, Insecure Crypto-

graphic Storage etc. [1][2]. Others conducted case study on differ-

ent web application vulnerability exploitations in various domains

of Bangladesh. A study on three major SQLi techniques imple-

mented on the educational and financial websites of Bangladesh

and executes analysis web applications for figuring out the security

condition [3],[4]. Another study found on LFI vulnerability and its

exploitation techniques based on SQLi and RFI vulnerability in

which they examined 153 LFI vulnerable web applications and

http://creativecommons.org/licenses/by/3.0/

International Journal of Engineering & Technology 5

shown its impact in Bangladesh [5]. Some review related studies

have also been conducted on verity of web vulnerability detection

tools. Review the security testing on Tunestore using Paros, Web-

Scarab, JBroFuzz, Acunetix, and Fortify vulnerability detection

tools and found the accuracy of the tool result compared with man-

ual penetration testing method [6].

A model was proposed and developed for detecting SQLi based on

the defined and identified criteria. The model composed a module

which will execute a process by employing the Boyer Moore string

matching algorithm to make it more efficient and accurate detection

[7]. Another research suggested a model, Escrow for detecting

large-scale SQLi in an efficient manner. Escrow uses a custom

search implementation together with a static code analysis module

to find potential target web applications [8]. Based on clustering

techniques, a methodology has been developed aiming to identify

web application vulnerability. They developed Wasapy vulnerabil-

ity scanner and compared the result with W3af 1.1, Skipfish 1.9.6b,

and Wapiti 2.2.1 focusing on code injection type vulnerability [9].

A method proposed to create test input using attack pattern with

applying permutation and combination algorithm for several SQL

injection [23].A sample prototype implementation with Open Web

Application Security (OWASP) enterprise security application API

based on Rapid Application Development (RAD) methodology to

minimize web application flaws and prevent from critical malicious

attacks [24]. A research presented KameleonFuzz, a blackbox ge-

netic algorithm driven fuzzer targeting Type-1 and 2 XSS. They

compared their tool performance with some market available tools

and found out the effectiveness of the tool based on true XSS de-

tection skills [10].

In view of the above, it is observed that insignificant researches

have been focused on LFI vulnerability and its detection. In this

paper, we will propose a model for automated detection of LFI vul-

nerability, SAISAN from web applications. A tool will be devel-

oped based on SAISAN and run it on web applications over four

sectors to get the result. The result of the tool will be compared with

manual penetration testing result for checking the accuracy.

3. LFI Exploitation Techniques

LFI vulnerability allows attacker to include files or scripts on the

web server through exploiting inappropriate use of INCLUDE and

REQUIRE function in the code of the web application. There are

mainly two types of LFI exploitation techniques that are found in

practice. In this study, we will discuss the types of general LFI ex-

ploiting technique. The details are explained below:

3.1. $_GET Parameter Based Exploitation

The http $_GET parameter includes different variables containing

several files and pages for handling particular operations. It passes

the argument through the URL bar. The value of variables is visible

to the user and also can be modifiable. For an example,

http://www.website.com/downloads.php? file=contact.php is a

PHP developed application. To identify the LFI vulnerability of the

above URL, attacker will modify the parameter/ value of file as

/etc/passwd like e.g. http://www.website.com/downloads.php?

file=/etc/passwd. During the exploitation, the use of null byte (%00)

will help to bypass firewall restriction. If the execution of the given

modification replies following code, it indicates that the site is LFI

vulnerable.

root:x:0:0:root:/root:/bin/bash

bin:x:1:1:bin:/bin:/sbin/nologin

daemon:x:2:2:daemon:/sbin:/sbin/nologin

alex:x:500:500:alex:/home/alex:/bin/bash

…….

Profile:/home/oprofile:/sbin/nologin

sebl:x:500:500:sebl:/home/sebl:/bin/bash mysql:x:27:27:MySQL

The above code shows the example of the output of /etc/passwd file

for LFI vulnerable site in case of parameter modification. In the re-

ply, system discloses sensitive information like root user, password,

SSH login information, etc.

3.2. $_POST Parameter Based Exploitation

Developers usually design the data processing techniques through

the HTTP POST methods to impose security feature. Therefore,

user will not be able to view the transformation data easily. How-

ever, the intruder can view the data from session cookies and can

perform LFI exploitation even the $_POST method protection. The

exploitation can be performed because of the improper use of dif-

ferent function/ methods. In the cookies, this hidden filename infor-

mation exists with other data which will be the format as

“?file=/etc/passwd”.

Developers also store different types of files in different directory

to ensure security. As a result, attacker may not be able to find the

file that they are looking for. To bypass this type of security, the

attacker will perform directory traversal query execution for getting

their desired file. The directory traversal [15],[16] command i.e. ?

file=../../../../../../../../etc/passwd is used for changing the location di-

recting to the root directory.

4. Methodology

Our investigation followed experimental design methodology to

proof the result accuracy of the SAISAN model. We divide our

methodology into two parts i.e. experimental environment as our

developed detection tool based on SAISAN, and control environ-

ment as manual penetration testing method [14]. The SAISAN

model based tool is implemented in python programing language.

Fig-1 represents how our proposed model, SAISAN works using

HTTP $_GET method for detecting LFI vulnerability. Working

process of SAISAN is presented below:

Step 1: The testing phase started with the verification of the inputted

URL. The proposed model checks the HTTP 200 web response

code for ensuring whether the web application is active or not. If

the response is matched, the following steps will be continued; oth-

erwise, exception will be provided.

Step 2: SAISAN will then send a request to the target web applica-

tion for source code. The given code will be analysed to find out all

possible URLs of the above application.

Step 3: The model will observe the parameterized URLs that have

the possibility of containing LFI vulnerability. The proposed model

only selects the parameterized URLs for consuming the execution

time and finding out the possible number of vulnerability.

Step 4: Split the parameters of the selected URLs and add payload

along with the parameter.

6 International Journal of Engineering & Technology

Step 5: Send the above full query to the target web application using

user-agent.

Fig. 1. SAISAN: Automated LFI Detection Model

Step 6: Response will be received and matched with the predefined

expressions to confirm the existence of LFI vulnerability in the web

application.

4.1. Implementation of SAISAN Model

The SAISAN model based tool is implemented in python program-

ing language. The tool is developed with three modules with five

steps that are sequentially identifying the LFI vulnerability from the

inputted URL. The steps are briefly discussed below:

4.1.1. URL Validation

This step verifies web response code of 200 status [17] that ensures

the host of provided URL in live state or not. If the response code

is matched with 200 status, the program will forward the given URL

to the crawling [18] step. Otherwise, an error message with “Host

server is not available” will be displayed before quitting the pro-

gram.

4.1.2. Crawling

This step will send a request to the provided host application for

source code of the page. The tool will store the code in a temporary

variable and extract the web URLs used in the code with the help

of Beautiful-soup 4.0 module [19] for identifying the tag name. Af-

ter recognizing the parameterized links, the tool will split the pa-

rameters of the URLs and send the URLs to the web vulnerability

scanning module removing the parameters.

4.1.3. Execution of the URLs

Defined payload will be included with the URLs received form the

crawling module to make a valid string. By using user agent [20],

the fabricated string will be sent to the target host for a response.

4.1.4. Collect and Matched Response

Once the response is received from the web application, it will be

matched with the predefined expressions. The tool will confirm the

existence of LFI vulnerability in the application if match found.

4.1.5. Provide Output

This module will provide the outcome in a defined format to

the user of the tool. Fig. 2 shows the sample output of the

automated LFI detection tool of SAISAN model.

Fig. 2. SAISAN Detecting LFI Vulnerability

5. Experiment Result

In this study, the sample web application selection is platform inde-

pendent. For choosing the sample site, some google dork has been

used. This research has compared our automated detection tool’s

result with manual penetration testing method [14]. The experiment

has conducted on 265 web applications. Small sample technique has

been selected as sampling method for this study. The above tech-

nique has been constructed using the Eq.1 [21]

𝑠 = 𝑋2 + 𝑁𝑃(1 − 𝑃) ÷ 𝑑2(𝑁 − 1) + 𝑋2𝑃(1 − 𝑃) (1)

A statistical tool has been G*Power 3.1.9.2 used to figure out the

sample size of this study by applying the Eq.1. Linear multiple re-

gression test has been conducted under F tests family. This case the

selection predictor is 4.

Fig.3. G*Power result for sample size of five predictors using small sam-

ple technique

This study has decided to put α err prob value as 0.05 and 1-β err

prob as 0.95 in the statistical tool. Result of the tool reflects that

minimum of 129 valid samples need to be examined to proof our

model. Fig. 3 shows the graph of result for sample size of four pre-

dictors using small sample technique [21]. After examining 265

web applications, we finally got 129 LFI vulnerable web applica-

tions. That means 48.6% websites were found with LFI Vulnerabil-

ity among the sample. This analysis received result from both ex-

perimental environment and control environment to compare the

accuracy of our model. The analysis of the result is described in the

following four sections.

5.1. Detection Result Comparison

As it is evident from different literatures, manual penetration testing

method always provides cent precent of accuracy [18] and it is se-

lected as the control environment for this research examination. Fig.

4 indicates the result comparison of control and experimental envi-

ronment using bar chart.

Fig. 4. Result comparison of control and experimental environment

International Journal of Engineering & Technology 7

When we ran our tool over the sample, we detected 113 LFI vulner-

able sites while manual penetration testing identified 129. That

means, SAISAN model received 88% accuracy over control envi-

ronment. It is also to be noted that our tool observed 2% false pos-

itive and 10% false negative result during the study.

5.2. Sector Based Analysis

Table 1 shows the sector wise detection of LFI vulnerable web ap-

plication. The web

Table 1. Sector wise detection of LFI vulnerable web applications

Sector Vuln. Web App. Percentage C. Percent-

age

Educational Insti-
tutions

55 42.64% 42.64%

E-Commerce 11 8.53% 51.17%

Medical Institute 29 22.48% 73.65%

Govt. Counterpart 34 26.36% 100%

Total 129 100%

Applications of educational institutions are mostly affected by the

LFI vulnerability with the percentage of 42.64%. E-Commerce,

Medical Institutes, and Government counterpart sites are having

LFI vulnerability with the percentage of 8.53%, 22.48%, and

26.36% respectively.

5.3. Platform Based Analysis

Fig. 5 shows the pie chart of the percentage of vulnerable web ap-

plications developed with different programing language platform

examined in our study. It is observed that PHP language based web

applications are more LFI vulnerable with the percentage of 74%

whereas JAVA and ASP.NET have the same weakness with 11%

and 15% respectively.

Fig.5. percentage of vulnerable web applications

developed with different programing language platform.

Table 02. Analysis based on parameter generated by crawler

Table 02 represents the analysis based on parameter generated by

crawler. It is to be noted that we examined three different types of

programming platforms which include PHP ASP.NET and JAVA.

To increase the accuracy of our analysis, we designed a web crawler

that generally gathers susceptible links for the LFI vulnerability

testing process. After gathering all URL parameters from the source

page, tool on SAISAN conducts an automated black box testing

[22] for every parameter by using LFI detecting model and provides

the total number of vulnerable parameters. The result shows that the

detection tool based on SAISAN model generated 2565 crawler pa-

rameters for PHP developed applications in which 570 parameters

were returned with sensitive information from the host application.

ASP.NET built web applications disclosed information for 60 pa-

rameters out of 180 parameter produced by our tool. 21 parameters

returns with sensitive server side information for the JAVA devel-

oped web applications in which crawler of the tool generated 84

parameters.

6. Discussion

This study has found 129 LFI vulnerable web applications out of

265 test sites. The implemented automated vulnerable detection

tool based on SAISAN model provided result with 88% accuracy

comparing with manual penetration testing. SAISAN based tool ob-

served 2% and 10% false positive and false negative result respec-

tively for detecting LFI vulnerability. We analysed our 129 vulner-

able web applications in four sectors where we observed the most

vulnerable sector is the web applications of education sector with

the percentage of 42.64%. This analysis shows that the less vulner-

able sector is E-Commerce sector with 8.53%. The examination

also conducted based on implemented programming language. The

above analysis proved that PHP developed web applications are

more vulnerable of LFI vulnerability.

In view of the above, this study can claim that SAISAN model is

effective and the tool that was developed based on the model pro-

vides maximum accuracy and improved correctness of detecting

LFI vulnerability. Thus, this research can say the output of the study

satisfies the research objective.

7. Conclusion

In these recent years, web application vulnerabilities have become

a critical problem for all types of people who have been connected

with the web. This research has presented an automated LFI vulner-

ability detection model, SAISAN and implemented a tool based on

the model, which is developed in Linux platform. An examination

has been performed on 265 real world web applications where the

tool was successfully able to identify 113 vulnerabilities. Result of

the tool has been compared with manual penetration testing out-

come and found 88% accuracy. This study has observed that the

biggest problem has been recognized as the insecure design of the

applications and careless coding practice especially in using

data/information retrieving methods. This research is a continuous

process, and the research has been working on it to improve the

accuracy. SAISAN based tool only works for $_GET method. In

next version plan is to add $_POST method for detecting LFI vul-

nerability from the web application. We will be adding more fea-

tures in future that will detect other web application vulnerabilities

as well.

References

[1] O. B. Al-Khurafi and M. A. Al-Ahmad, "Survey of Web Application

Vulnerability Attacks," 2015 4th International Conference on Ad-

vanced Computer Science Applications and Technologies (ACSAT),

Kuala Lumpur, 2015, pp. 154-158.
[2] P.V. Ami, S. C. Malav, “Top Five Dangerous Security Risks over

Web Application,” International Journal of Emerging Trends &

Technology in Computer Science, 2013, pp.41-43.
[3] D. Alam, M. A. Kabir, T. Bhuiyan and T. Farah, "A Case Study of

SQL Injection Vulnerabilities Assessment of .bd Domain Web Ap-

plications," 2015 Fourth International Conference on Cyber Security,
Cyber Warfare, and Digital Forensic (CyberSec), Jakarta, 2015, pp.

73-77.

[4] T. Farah, D. Alam, M. A. Kabir and T. Bhuiyan, "SQLi penetration
testing of financial Web applications: Investigation of Bangladesh

region," 2015 World Congress on Internet Security (WorldCIS),

Dublin, 2015, pp. 146-151.
[5] A. Begum, M. M. Hassan, T. Bhuiyan and M. H. Sharif, "RFI and

SQLi based local file inclusion vulnerabilities in web applications of

Bangladesh," 2016 International Workshop on Computational Intel-

ligence (IWCI), Dhaka, 2016, pp. 21-25.

[6] L. Dukes, X. Yuan and F. Akowuah, "A case study on web applica-

tion security testing with tools and manual testing," 2013 Proceed-
ings of IEEE Southeastcon, Jacksonville, FL, 2013, pp. 1-6.

8 International Journal of Engineering & Technology

[7] G. Buja, K. B. A. Jalil, F. B. H. M. Ali and T. F. A. Rahman, "De-

tection model for SQL injection attack: An approach for preventing

a web application from the SQL injection attack," 2014 IEEE Sym-

posium on Computer Applications and Industrial Electronics (IS-

CAIE), Penang, 2014, pp. 60-64.
[8] B. Delamore and R. K. L. Ko, "Escrow: A Large-Scale Web Vulner-

ability Assessment Tool," 2014 IEEE 13th International Conference

on Trust, Security and Privacy in Computing and Communications,
Beijing, 2014, pp. 983-988.

[9] R. Akrout, E. Alata, M. Kaaniche and V Nicomette, “An automated
black box approach for web vulnerability identification and attack

scenario generation,” Journal of the Brazilian Computer Society,

2014, 20(1), 4.
[10] F. Duchene, S. Rawat and J.L. Richier, “KameleonFuzz: Evolution-

ary Fuzzing for Black-Box XSS Detection,” In Proceedings of the

4th ACM conference on Data and application security and privacy,
2014 pp. 37-48.

[11] (October 18, 2017) Internet Users. Available: http://www.inter-

netlivestats.com/internet-users/
[12] (October 18, 2017) Category:OWASP Top Ten Project. Available:

https://www.owasp.org/index.php/Cate-

gory:OWASP_Top_Ten_Project#tab=OWASP_Top_10_for_2013
[13] (October 18, 2017) CWE/SANS TOP 25 Most Dangerous Software

Errors Available: https://www.sans.org/top25-software-errors.

[14] Y. Stefinko, A. Piskozub and R. Banakh, "Manual and automated
penetration testing. Benefits and drawbacks. Modern tendency,"

2016 13th International Conference on Modern Problems of Radio

Engineering, Telecommunications and Computer Science (TCSET),
Lviv, 2016, pp. 488-491.

[15] J. Esmet, M. A. Bender, M. Farach-Colton, B.C Kuszmaul,”The To-

kuFS Streaming File System,” InHotStorage, 2012
[16] W. Jannen, J. Yuan, Y. Zhan, A. Akshintala, J. Esmet, Y. Jiao, A.

Mittal, P. Pandey, P. Reddy, L. Walsh, M. A. Bender, M. Farach-

Colton, R. Johnson, B. C. Kuszmaul, and D. E. Porter, “BetrFS:
Write-optimization in a ker- nel file system,” Transactions on Stor-

age, Article 18,29 pages, Nov.2015.

[17] H. Debar and A. Wespi, “Aggregation and correlation of intrusion-
detection alerts”. 4th International Symposium, RAID 2001 Davis,

CA, USA, 2001,pp. 85-103

[18] G. Deepa , P. S. Thilagam, F. A. Khan, A. Praseed, A.R. Pais, And
N. Palsetia,” Black-box detection of XQuery injection and parameter

tampering vulnerabilities in web applications,” International Journal

of Information Security, 2017, pp. 1-16
[19] Y. L. Chen, H. M. Lee, A. B. Jeng and T. E. Wei, "DroidCIA: A

Novel Detection Method of Code Injection Attacks on HTML5-

Based Mobile Apps," 2015 IEEE Trustcom/BigDataSE/ISPA, Hel-
sinki, 2015, pp. 1014-1021.

[20] G. Vigna, W. Robertson, Vishal Kher and R. A. Kemmerer, "A state-

ful intrusion detection system for World-Wide Web servers," 19th
Annual Computer Security Applications Conference, 2003. Proceed-

ings., 2003, pp. 34-43.

[21] V.K.Robert, W.M.Daryle, "Morgandeter Mining sample size for re-
search activities", Educational and Psychological Measurement, The

NEA Research Bulletin, 1970, Vol. 38,p. 99.

[22] J. S.Kang and H. S.Park, “Web-based automated black-box testing
framework for component based robot software,” 2012 ACM Con-

ference on Ubiquitous Computing, 2012, pp. 852-859.

[23] N. F. Awang, A. Manaf and S.F. Abidin, “Test Input Generation for
Detecting SQL Injection Vulnerability in Web Application,” Inter-

national Journal of Soft Computing, 11(2), pp. 103-106, 2016.

[24] A. B. M. Rasheed, B. Shanmugan, G.N. Samy, N. Maarop, P. Meg-
alingam, K.C. Yeo and S. Azam, “Secure Web Application Devel-

opment Prototype Using Enterprise Security Programming Interface
(ESAPI),” Asian Journal of Information Technology,

