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Abstract: With the rapid development of the Internet, Internet of Things (IoT) technology is widely
used in people’s daily lives. As the number of IoT devices increases, the amount of data to be
processed also increases. The emergence of cloud computing can process the data of IoT devices
in a timely manner, and it provides robust storage and computing capabilities to facilitate data
resource sharing. Since wireless communication networks are unstable and open, it is easy for
attackers to eavesdrop, intercept, and tamper with the messages sent. In addition, authentication
protocols designed for IoT-enabled cloud computing environments still face many security challenges.
Therefore, to address these security issues, we propose an Intel software-guard-extensions (SGX)-
based authentication key agreement protocol in an IoT-enabled cloud computing environment. The
goal is to ensure data privacy and sustainable communication between the entities. Moreover, SGX
can resist several well-known attacks. Finally, we show the security using the real-or-random model,
ProVerif, and informal analysis. We also compare the security and performance of the proposed
protocol with existing protocols. The comparison results show that our proposed protocol reduces
the communication cost by 7.07% compared to the best one among the current protocols and ensures
sufficient security.

Keywords: IoT; cloud computing; authentication; SGX

1. Introduction

The Internet of Things (IoT) [1–4] refers to a network that connects the Internet with
any entity according to a specified protocol, which exchanges information and completes
the communication through information-sensing equipment to realize the intelligent iden-
tification, positioning, and monitoring of entities. With the development of IoT technology,
the information-collection feature of the IoT has been applied in many scenarios, such as
artificial intelligence [5–8], transportation systems [9–11], smart grids [12], smart cities [13],
and health systems [14,15]. IoT technology has increased the efficiency of production
methods and improved the quality of people’s lives.

With the increase in the number of IoT devices, the generated data have also in-
creased gradually to handle the data generated by IoT devices more effectively, leading
to the introduction cloud computing [16–19]. Cloud computing is a form of distributed
computing, which provides computing power, database storage, data analysis, and other
information technology resources on demand. Cloud computing provides an efficient and
convenient method for information and resource sharing, and its combination with the IoT
can compensate their respective drawbacks. The IoT can benefit from the powerful storage
capacity and computing power of cloud computing. Similarly, combining cloud computing
with IoT devices can result in providing new services in real-life scenarios to expand the
ability to solve practical problems. The applications of cloud computing and IoT were
mentioned in [13,20,21]. In 2020, Kang et al. [20] designed a lightweight authentication and
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key agreement (AKA) protocol based on the IoT-enabled cloud computing environment.
Huang et al. [13] proposed an AKA protocol that combines IoT and cloud computing
and implemented it in a smart city environment in 2021. Iqbal et al. [21] proposed an
AKA protocol for an IoT and cloud computing architecture in 2022. The architecture of
IoT-enabled cloud computing is shown in Figure 1, and the communication entities include
the user, cloud server, and control server. The cloud service provider deploys cloud servers
in the region where the cloud service is provided and configures a control server to manage
the cloud servers and users. In addition, only legitimate users can select cloud servers
using IoT devices to handle large amounts of data.

Internet

User
IoT Device

Control Server

Cloud Server

Cloud  Service Provider

Cloud Server

Cloud Server

Cloud Server

Figure 1. IoT-enabled cloud computing architecture.

However, there are still significant security risks in IoT-enabled cloud-computing
environments. For example, malicious attackers can intercept messages on public channels
and then tamper with or crack the data information, resulting in the confidentiality, privacy,
and integrity of user data not being able to be guaranteed. Moreover, AKA protocols de-
signed in IoT-enabled cloud computing environments are subject to impersonation [22,23],
offline password guessing [20], and replay attacks [24]. The presence of these security risks
and attacks does not ensure network sustainability.

Intel software guard extensions (SGX) [25–27] can be introduced to improve the se-
curity of AKA protocols designed for IoT-enabled cloud computing environments. SGX
is an extension of the Intel instruction set, which protects the security of programs in the
running state. SGX is divided into a trusted execution environment and an untrusted
execution environment. Because a malicious attacker cannot access the trusted execution
environment, storing data in this environment ensures data integrity, privacy, and confi-
dentiality. The core of SGX is an enclave of the memory, and it is an encrypted area in the
memory address space, which stores the running code and program data. The application
program can transmit the data to be calculated to the enclave through the SGX interface for
calculation. The enclave then sends the operation results to the application program. It is
not affected by malware or other instructions with the highest authority during the entire
operational process [28]. Referring to the AKA protocol proposed by Liu et al. [26] in the
wireless sensor network architecture and Wu et al. [27] in the Internet of Vehicles and fog
computing, we introduce SGX into the IoT-enabled cloud computing environment to design
the AKA protocol. Our goal is to ensure data privacy and sustainable communication
between the entities. The following are the primary contributions of this paper:
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(1) We propose a lightweight AKA in the IoT-enabled cloud computing environment.
In our protocol, the user, cloud server, and control server achieve mutual authentica-
tion, and the session key is successfully established for communication.

(2) We first introduce SGX into an IoT-enabled cloud computing environment and use it
on the cloud server and control server. Because SGX has limitations in both storage and
computation, we only use it to store the shared key. According to the safety features
of SGX, even if an attacker can access the data in memory, he/she cannot obtain the
shared key in SGX. Thus, privileged insider attacks are invalid for our protocol.

(3) We use the real-or-random (ROR) model and ProVerif tool to verify the security of the
proposed protocol, and informal security analysis shows that the protocol protects
against known attacks.

(4) Finally, we compare the security and performance with current protocols, and the
results show that our protocol ensures greater security under a similar efficiency.

The remainder of this paper is organized as follows. We review the research related to
the IoT, cloud computing, and SGX in Section 2. In Section 3, we describe the system model
and protocol in detail. Section 4 describes the process by which we used the ROR model, the
ProVerif tool, and informal security analysis do assess the security of the proposed protocol.
Section 5 describes the comparison between our proposed protocol and existing protocols
in terms of both security and performance. The conclusion of the study is presented in
Section 6.

2. Related Work

Turkanovic et al. [29] designed an AKA protocol based on the IoT environment
in 2014 that utilized lightweight primitives and provided enhanced security. However,
Farash et al. [30] found that the protocol could not ensure the anonymity of the user and
sensor node and was vulnerable to session key disclosure attacks and man-in-the-middle at-
tacks. Farash et al. [30] designed an improved protocol and declared that the protocol could
guarantee secure communication. However, Amin et al. [31] found that Farash et al.’s proto-
col [30] was susceptible to offline password guessing, smart card theft, user impersonation,
and known temporary value disclosure attacks. Similarly, Amin et al. [31] proposed an
AKA protocol for anonymity-protected three-factor authentication key exchange. However,
Wu et al. [32] discovered that the protocol of Amin et al. [31] was not resistant to sensor
capture, session key disclosure, and user impersonation attacks and could not guarantee
mutual authentication, and they proposed an AKA protocol based on multiple gateways in
the IoT environment.

In 2014, Liu et al. [33] proposed an AKA protocol for sharing privileges and guaran-
teeing privacy in a cloud computing environment. Tsai and Lo [34] designed a privacy
authentication protocol based on a cloud computing environment and used bilinear pairs
in their protocol. However, He et al. [35] pointed out that their protocol was not resistant
to server impersonation attacks and designed an efficient and private authentication pro-
tocol using bilinear pairs. Kumar et al. [36] designed a bidirectional AKA protocol for
healthcare systems in a cloud environment using elliptic curves. Lopes and Gond [37]
proposed an AKA protocol for device-to-device communication applied to an electronic
health system based on cloud computing and declared that the protocol could ensure secure
communication between entities. Iqbal et al. [21] proposed an AKA protocol for the IoT
and cloud computing, which used elliptic curves and symmetric encryption/decryption.
Zhou et al. [23] proposed a lightweight AKA protocol based on the IoT in cloud computing.
However, Wang et al. [38] discovered that the protocol did not ensure forward secrecy
and was vulnerable to temporary value disclosure and impersonation attacks. Martinez-
Pelaez et al. [24] designed an enhanced AKA protocol in the cloud computing environment.
However, Yu et al. [39] found that their protocol could not guarantee mutual authentica-
tion and user anonymity and that it suffered from session key disclosure and replay and
offline password guessing attacks. Kang et al. [20] designed an improved AKA protocol
for IoT-enabled cloud computing. However, Huang et al. [13] discovered that Kang et al.’s
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protocol [20] was subject to offline password guessing attacks and highlighted the designed
redundancy in the user registration step. Wu et al. [40] designed an authentication protocol
in IoT-enabled cloud computing and showed that the protocol was resistant to various
attacks and provided better security.

In 2016, Costan and Devadas [25] described the architecture and operational mech-
anism of SGX in detail, provided a detailed description of SGX’s public information,
and analyzed its security properties. Fisch et al. [41] constructed a provably secure and
practical functional encryption mechanism using Intel SGX and showed that the perfor-
mance of this mechanism exceeded the known encryption schemes. Sun et al. [42] proposed
a dynamic network identity authentication scheme using SGX, which can continuously
update the key. Conde et al. [43] designed and implemented an identity authentication
module based on SGX in a Unix operating system. The module uses an enclave in SGX to
process data and improve the security of the module. Song et al. [44] proposed a privacy
and anonymity protection authentication scheme based on blockchain and SGX, claiming
that the scheme would not reveal users’ personal information. Liu et al. [26] designed an
AKA protocol that uses SGX based on a wireless sensor network architecture, dynamically
updating the authentication credentials, and declared that the protocol achieves better
security with less overhead.

3. Proposed Protocol: SAKAP

In this section, we describe the system model and the specific protocol procedure in
detail. Table 1 lists the notations used in this protocol.

Table 1. Notations.

Notations Description

Ui i-th user
IDi Identity of Ui
PIDi, PSIDj Pseudo-identity of Ui and Sj
PWi, BIOi Password and biometric of Ui
Sj j-th cloud server
SIDj Identity of Sj
CS The control server
ku Shared key between Ui and CS
ks Shared key between Sj and CS
SK Session key
Ti Timestamp
Gen(.)/Rep(.) Fuzzy generator/reproduction function
h(.) Secure hash function

3.1. System Model

The system model has three entities: user Ui, cloud server Sj, and control server CS,
as shown in Figure 2. Each Sj and CS requires SGX to be installed before deploying the
environment. A detailed description of each entity is as follows:

(1) User (Ui): Ui refers to people who intend to use cloud computing services in the IoT-
enabled cloud computing environment. Only legitimate Ui can use cloud computing
services through IoT devices.

(2) Cloud server (Sj): Sj is deployed in the area to provide services to process and store
the data of IoT devices. Sj is a semi-trusted entity; it can misbehave, but cannot
collaborate with other participants. In addition, Sj has powerful storage capacity and
computing power.

(3) Control server (CS): CS is the control center for the cloud service provider to manage
the Sj in the service area. CS is a semi-trusted entity; it can misbehave, but cannot
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collaborate with other participants. Furthermore, CS is in charge of registration
and authentication.

Control Server

Cloud ServerUser

(2) Authentication(1
) R

eg
is

tra
tio

n (1) R
egistration

Public channelSecure channel

Figure 2. IoT-enabled cloud computing system model.

3.2. Concrete Protocol

The entire protocol consists of a registration phase, login phase, and a key agree-
ment phase.

3.2.1. Registration Phase

In this section, we introduce the registration phase, which is divided into the Ui
registration phase and Sj registration phase.

User (Ui) registration phase: When Ui wants to use the cloud computing service
provided by the cloud service provider, Ui needs to register with CS. Moreover, to ensure
the security and performance of confidential computation, a 1024-bit key length shared key
was used in SGX. Figure 3 depicts the procedure for Ui registration; the processes involved
are described below:

(1) Initially, Ui selects IDi, PWi, and BIOi. Next, Ui computes (σi, τi) = Gen(BIOi) and
PIDi = h(IDi ‖ PWi ‖ σi) and transmits {PIDi} to CS through a secure channel.

(2) When CS receives the {PIDi}, it chooses a random number ri and a shared key ku,
to compute QUi = h(PIDi ‖ ku ‖ ri). Next, CS stores {PIDi, ri} in its database,
{PIDi, ku} in SGX, and {QUi, ri} in the smart card (SC). Finally, CS transmits SC to
Ui via the secure channel.

(3) Upon receiving the SC from CS, Ui calculates RU = ri ⊕ h(IDi ‖ σi), SU = h(PWi ‖
ri ‖ σi), TU = QUi ⊕ h(ri ‖ σi). Finally, Ui deletes {QUi, ri} from SC and stores
{RU, SU, TU} in SC.

Cloud server (Sj) registration phase: Sj registers with CS before providing high-
density computing services to the users. Figure 4 describes the Sj registration process, and
the specific steps are described below:

(1) First, Sj selects SIDj and a random number rj. Next, Sj computes PSIDj = h(SIDj ‖
rj) and transmits {PSIDj, rj} to CS via the secure channel.

(2) Upon receiving the {PSIDj, rj}, CS first selects a shared key ks and computes the
value QSj = h(PSIDj ‖ ks ‖ rj). CS stores {PSIDj, rj} in its database and stores
{PSIDj, ks} in SGX. Then, CS transmits {QSj, ks} to Sj through the secure channel.

(3) Upon receiving {QSj, ks}, Sj computes the value RS = h(SIDj ‖ ks)⊕ QSj. Finally,
Sj stores {PSIDj, RS} in the database and stores {ks} in SGX.
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3.2.2. Login and Key Agreement Phase

During this phase, Ui, Sj, and CS achieve mutual authentication and successfully
establish an SK for future communication. Figure 5 depicts the full login and key agreement
procedure; the exact steps are outlined below:

(1) First, Ui inputs IDi, PWi, and BIOi. Subsequently, Ui computes σi = Rep(BIOi, τi),
PIDi = h(IDi ‖ PWi ‖ σi), ri = RU ⊕ h(IDi ‖ σi), SU∗ = h(PWi ‖ ri ‖ σi) and

checks SU∗ ?
= SU. If it is equal, Ui logs in successfully. Otherwise, the device

rejects the login of Ui. Next, Ui computes QUi = TU ⊕ h(ri ‖ σi), generates a
random number Ni, and chooses an SIDj, which is the private cloud server Sj’s
identity. Then, Ui computes W1 = Ni ⊕ h(ri ‖ QUi), W2 = SIDj ⊕ h(Ni ‖ QUi),
and V1 = h(PIDi ‖ SIDj ‖ QUi ‖ Ni). Finally, Ui retrieves the current timestamp T1
and sends the message M1 = {PIDi, W1, W2, V1, T1} to Sj through the public channel.

(2) Upon receiving M1, Sj checks the freshness of T1. Then, Sj sends {SIDj, RS} to the
security interface of SGX and invokes the interface. The interface finds the ks and
uses it to calculate QSj = RS⊕ h(SIDj ‖ ks). Then, SGX sends {QSj} to Sj through
the interface. Next, Sj selects a random number Nj and computes W3 = h(SIDj ‖
QSj)⊕Nj, V2 = h(PSIDj ‖ V1 ‖ Nj ‖ QSj). Finally, Sj retrieves the current timestamp
T2 and transmits the message M2 = {PIDi, PSIDj, W1, W2, W3, V1, V2, T2} to CS via
the public channel.

(3) When CS receives the M2, it first verifies the freshness of T2. Then, CS retrieves
{ri} in the database using PIDi and sends {PIDi, ri} to the security interface of

Figure 3. Ui’s registration phase.
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During this phase, Ui, Sj, and CS achieve mutual authentication and successfully
establish an SK for future communication. Figure 5 depicts the full login and key agreement
procedure; the exact steps are outlined below:

(1) First, Ui inputs IDi, PWi, and BIOi. Subsequently, Ui computes σi = Rep(BIOi, τi),
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3.2.2. Login and Key Agreement Phase

During this phase, Ui, Sj, and CS achieve mutual authentication and successfully
establish an SK for future communication. Figure 5 depicts the full login and key agreement
procedure; the exact steps are outlined below:

(1) First, Ui inputs IDi, PWi, and BIOi. Subsequently, Ui computes σi = Rep(BIOi, τi),
PIDi = h(IDi ‖ PWi ‖ σi), ri = RU ⊕ h(IDi ‖ σi), SU∗ = h(PWi ‖ ri ‖ σi) and

checks SU∗ ?
= SU. If it is equal, Ui logs in successfully. Otherwise, the device

rejects the login of Ui. Next, Ui computes QUi = TU ⊕ h(ri ‖ σi), generates a
random number Ni, and chooses an SIDj, which is the private cloud server Sj’s
identity. Then, Ui computes W1 = Ni ⊕ h(ri ‖ QUi), W2 = SIDj ⊕ h(Ni ‖ QUi),
and V1 = h(PIDi ‖ SIDj ‖ QUi ‖ Ni). Finally, Ui retrieves the current timestamp T1
and sends the message M1 = {PIDi, W1, W2, V1, T1} to Sj through the public channel.

(2) Upon receiving M1, Sj checks the freshness of T1. Then, Sj sends {SIDj, RS} to the
security interface of SGX and invokes the interface. The interface finds the ks and
uses it to calculate QSj = RS⊕ h(SIDj ‖ ks). Then, SGX sends {QSj} to Sj through
the interface. Next, Sj selects a random number Nj and computes W3 = h(SIDj ‖
QSj)⊕Nj, V2 = h(PSIDj ‖ V1 ‖ Nj ‖ QSj). Finally, Sj retrieves the current timestamp
T2 and transmits the message M2 = {PIDi, PSIDj, W1, W2, W3, V1, V2, T2} to CS via
the public channel.

(3) When CS receives the M2, it first verifies the freshness of T2. Then, CS retrieves
{ri} in the database using PIDi and sends {PIDi, ri} to the security interface of
SGX. Then, SGX invokes the interface and uses PIDi to match ku, then it computes
QUi = h(PIDi ‖ ku ‖ ri). Then, SGX sends {QUi} to CS through the interface. Next,
CS computes Ni = W1 ⊕ h(ri ‖ QUi), SIDj = W2 ⊕ h(Ni ‖ QUi), and V∗1 = h(PIDi ‖
SIDj ‖ QUi ‖ Ni). Then, CS checks whether V∗1

?
= V1. If it holds, CS retrieves
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{rj} in the database using PSIDj and sends {PSIDj, rj} to the security interface of
SGX. Then, SGX invokes the interface and uses PSIDj to match ks, then it computes
QSj = h(PSIDj ‖ ks ‖ rj). Then, SGX sends {QSj} to CS through the interface.
Next, CS computes Nj = W3 ⊕ h(SIDj ‖ QSj), V∗2 = h(PSIDj ‖ V∗1 ‖ Nj ‖ QSj) and

checks the correctness of V∗2
?
= V2. If it holds, CS authenticates the Sj. Otherwise,

CS rejects the session. Further, CS selects a random number Ncs and calculates
W4 = (Ni ‖ Ncs)⊕ h(QSj ‖ Nj), W5 = (Nj ‖ Ncs)⊕ h(QUi ‖ Ni), SK = h(Ni ‖ Nj ‖
Ncs), V3 = h(Nj ‖ QSj ‖ SK), and V4 = h(Ni ‖ QUi ‖ SK). Finally, CS generates
the current timestamp T3 and transmits the message M3 = {W4, W5, V3, V4, T3} to Sj
through the public channel.

(4) Upon receiving the M3, Sj first checks the freshness of T3. Then, Sj computes (Ni ‖
Ncs) = W4 ⊕ h(QSj ‖ Nj), SK = h(Ni ‖ Nj ‖ Ncs), and V∗3 = h(Nj ‖ QSj ‖ SK). Then,

Sj checks V∗3
?
= V3. If V∗3 = V3, Sj retrieves the current timestamp T4 and sends the

message M4 = {W5, V4, T4} to Ui.
(5) When Ui receives the M4, it first verifies the freshness of T4. Then, Ui calculates

(Nj ‖ Ncs) = W5 ⊕ h(QUi ‖ Ni), SK = h(Ni ‖ Nj ‖ Ncs) and V∗4 = h(Ni ‖ QUi ‖
SK). Finally, Ui checks V∗4

?
= V4. If it holds, Ui authenticates the Sj, and the entire

authentication process is achieved.
Sustainability 2022, 1, 0 8 of 19
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QUi = h(PIDi ‖ ku ‖ ri)

Compute Ni = W1 ⊕ h(ri ‖ QUi)
SIDj = W2 ⊕ h(Ni ‖ QUi)

V∗1 = h(PIDi ‖ SIDj ‖ QUi ‖ Ni)

Check V∗1
?
= V1

Retrieve {rj} in the database using PSIDj
Invoke the interface, and compute

QSj = h(PSIDj ‖ ks ‖ rj)
Compute Nj = W3 ⊕ h(SIDj ‖ QSj)

V∗2 = h(PSIDj ‖ V∗1 ‖ Nj ‖ QSj)

Check V∗2
?
= V2

Generate Ncs, and compute
W4 = (Ni ‖ Ncs)⊕ h(QSj ‖ Nj)
W5 = (Nj ‖ Ncs)⊕ h(QUi ‖ Ni)

SK = h(Ni ‖ Nj ‖ Ncs)
V3 = h(Nj ‖ QSj ‖ SK)
V4 = h(Ni ‖ QUi ‖ SK)

M3 = {W4, W5, V3, V4, T3}←−−−−−−−−−−−−−−−−−
Check |T3 − Tc| ≤ ∆T

(Ni ‖ Ncs) = W4 ⊕ h(QSj ‖ Nj)
SK = h(Ni ‖ Nj ‖ Ncs)
V∗3 = h(Nj ‖ QSj ‖ SK)

Check V∗3
?
= V3

M4 = {W5, V4, T4}←−−−−−−−−−−−−
Check |T4 − Tc| ≤ ∆T

(Nj ‖ Ncs) = W5 ⊕ h(QUi ‖ Ni)
SK = h(Ni ‖ Nj ‖ Ncs)

V∗4 = h(Ni ‖ QUi ‖ SK)

Check V∗4
?
= V4

Figure 5. Login and key agreement phase.
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4.1. Formal Security Analysis

In this section, we utilize the ROR model [45,46] to formally demonstrate the security
of the proposed protocol. By playing different games, we can calculate the probability of
an attacker (A) breaking the protocol (P) under various conditions.

Attacker model: We assumed that A has the following capabilities based on the
well-known Dolev–Yao (DY) [47] and Canetti–Krawczyk (CK) [48] models:

(1) A has the ability to eavesdrop, intercept, tamper with, and replay messages sent
between entities over a public channel.

(2) A can be a malicious insider in the CS or Sj and has access to the database’s informa-
tion.

(3) A can steal the user’s SC and use power analysis [49] to extract information from
the SC.

(4) A can affect the protocol’s security by obtaining random numbers.

Figure 5. Login and key agreement phase.

4. Security Analysis
4.1. Formal Security Analysis

In this section, we utilize the ROR model [45,46] to formally demonstrate the security
of the proposed protocol. By playing different games, we can calculate the probability of
an attacker (A) breaking the protocol (P) under various conditions.
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Attacker model: We assumed that A has the following capabilities based on the
well-known Dolev–Yao (DY) [47] and Canetti–Krawczyk (CK) [48] models:

(1) A has the ability to eavesdrop, intercept, tamper with, and replay messages sent
between entities over a public channel.

(2) A can be a malicious insider in the CS or Sj and has access to the database’s information.
(3) A can steal the user’s SC and use power analysis [49] to extract information from

the SC.
(4) A can affect the protocol’s security by obtaining random numbers.

4.1.1. Security Model

The proposed protocol contains three entities, Ui, Sj, and CS. Here, we used Πx
Ui

, Πy
Sj

,
and Πz

CS to represent the x-th user instance, y-th cloud server instance, and z-th control
server instance, respectively. Suppose A has the following query capabilities:

(1) Execute(Z): A executing this query can intercept the messages Mi transmitted over
the public channel between Ui, Sj, and CS, where Z = {Πx

Ui
, Πy

Sj
, Πz

CS}.
(2) Send(Z , Mi): When A executes the query, A sends an Mi to Z , then receives a

response from the Z .
(3) Hash(string): Through executing this query, A can obtain the hash value of the string

after the input string.
(4) Corrupt(Z): A can obtain some private values by executing this query, such as the

long-term private key, temporary value, and parameters in the SC.
(5) Test(Z): When A performs this operation, he/she flips the coin c. If c = 0, A can

obtain a random value with the same length as SK. Otherwise, if c = 1, A can obtain
the correct SK.

Based on the attacker model and Section 4.1.1, the security of the proposed protocol is
demonstrated using the theorem and proof below.

Theorem 1. Within polynomial time complexity, the advantage thatA can break P is AdvPA(ξ) ≤
qsend/2l−1 + 3q2

hash/2l + 2max{C′ · qs′
send, qsend/2l}. Here, qsend and qhash denote the number of

hashes and queries executed, respectively. l represents the bit length of the biometric, and C′ and s′

are constants.

Proof. Seven rounds of games are played in the ROR model to verify the above theorem,
denoted as GM0–GM6. Here, SuccGMi

A (ξ) refers to the event in which A can win in GMi.
The process of A simulating the queries is described in detail in Table 2. The steps of the
proof are as follows.

GM0: GM0 does not initiate query operations. Here, the game starts by flipping the
coin c. Thus, the probability of GM0 is

AdvPA(ξ) = |2Pr[SuccGM0
A (ξ)]− 1|. (1)

GM1: GM1 adds the Execute(Z) operation. At this point, A intercepts messages
{M1, M2, M3, M4} transmitted over the public channel. Because the random numbers Ni,
Nj, and Ncs are not available, A using the Test(Z) query cannot calculate SK. Therefore,
the probability of GM1 does not change and is

Pr[SuccGM1
A (ξ)] = Pr[SuccGM0

A (ξ)]. (2)

GM2: GM2 adds the Send(Z) operation. GM2 refers to Zipf’s law [50], and its proba-
bility is

|Pr[SuccGM2
A (ξ)]− Pr[SuccGM1

A (ξ)]| ≤ qsend/2l . (3)
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GM3: GM3 introduces the Hash(Z) operation while decreasing the Send(Z) operation.
Given the birthday paradox, it can be deduced that the probability of GM3 is

|Pr[SuccGM3
A (ξ)]− Pr[SuccGM2

A (ξ)]| ≤ q2
hash/2l+1. (4)

GM4: In GM4, we assumed that A uses Πx
Ui

, Πy
Sj

, or Πz
CS to obtain a random number

from the entities. Although A can obtain a random number Ni chosen by Ui, the values of
Nj and Ncs are unknown, and thus, A cannot calculate SK. Similarly, assume that A has
access to Nj or Ncs, and SK is also not computed. Therefore, the probability of GM4 is

|Pr[SuccGM4
A (ξ)]− Pr[SuccGM3

A (ξ)]| ≤ q2
hash/2l+1. (5)

GM5: In GM5, suppose thatA can obtain {RU, SU, TU} in SC by executing a Corrupt(Z)
query. Subsequently, A utilizes these parameters to perform an offline password guessing
attack to determine the user’s correct password. However, A cannot obtain ri and σi,
and thus, A cannot guess PWi. The probability that A guesses the biometric of l bits is 1/2l .
Based on Zipf’s law [50], the probability of A guessing the correct PWi when qsend ≤ 106 is
greater than 1/2. Therefore, the probability of GM5 is

|Pr[SuccGM5
A (ξ)]− Pr[SuccGM4

A (ξ)]| ≤ max{C′ · qs′
send, qsend/2l} (6)

GM6: GM6 is designed to demonstrate that the proposed protocol can withstand
impersonation attacks. Assuming that A can successfully obtain SK by using the h(Ni ‖
Nj ‖ Ncs) query, the game terminates. Therefore, the probability of GM6 is

|Pr[SuccGM6
A (ξ)]− Pr[SuccGM5

A (ξ)]| ≤ q2
hash/2l+1. (7)

Both the success and failure probabilities for GM6 are equal to 1/2. Consequently,
the probability that A calculates SK is

Pr[SuccGM6
A (ξ)] = 1/2. (8)

Given the probabilities of GM0 to GM6, we obtain

1/2AdvPA(ξ) = |Pr[SuccGM0
A (ξ)]− 1/2|

= |Pr[SuccGM0
A (ξ)]− Pr[SuccGM6

A (ξ)]|
= |Pr[SuccGM1

A (ξ)]− Pr[SuccGM6
A (ξ)]|

≤
5

∑
i=0
|Pr[SuccGMi+1

A (ξ)]− Pr[SuccGMi
A (ξ)]|

= qsend/2l + 3q2
hash/2l+1 + max{C′ · qs′

send, qsend/2l}

(9)

Finally, we obtained the following:

AdvPA(ξ) ≤ qsend/2l−1 + 3q2
hash/2l + 2max{C′ · qs′

send, qsend/2l}. (10)

4.2. Informal Security Analysis
4.2.1. Replay Attacks

In our protocol, each message transmitted on a public channel contains timestamp
Ti. Only within a valid timestamp can the receiver pass the check and continue with the
subsequent computation. Here, take message M1 = {PIDi, W1, W2, V1, T1} as an example.
Suppose A repeatedly sends M1 to Sj. After receiving M1, Sj checks the validity of its
timestamp by computing |T1 − Tc| ≤ ∆T. Because T1 in M1 exceeds a limited time,
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Sj terminates this session process. Therefore, the replay attacks were invalid for our
proposed protocol.

4.2.2. Privileged Insider Attacks

Case 1 : Suppose A can steal data {PIDi, ri} and {PSIDj, rj} from CS and attempt
to compute Ni and Nj using messages intercepted on the public channel, where Ni =
W1 ⊕ h(ri ‖ QUi) and Nj = W3 ⊕ h(SIDj ‖ QSj). However, A cannot obtain the values
QUi, QSj, and SIDj, and thus, Ni and Nj cannot be calculated. Ncs is a number randomly
chosen by the CS and is different in each session such that A does not obtain Ncs. Thus, A
does not obtain session key SK, where SK = h(Ni ‖ Nj ‖ Ncs).

Case 2 : Assume that A has access to the data {PIDi, RS} in Sj and attempts to
calculate the value Nj, where Nj = W3 ⊕ h(SIDj ‖ QSj). However, A cannot obtain the
values QSj or SIDj; thus, A cannot compute Nj. Similarly, (Ni ‖ Ncs) cannot be computed
by (Ni ‖ Ncs) = W5 ⊕ h(QSj ‖ Nj). Therefore, A cannot successfully calculate the SK.

Table 2. Simulation of the Send, Execute, Hash, Corrupt, and Test queries.

Query Description

Send(Z , Mi)

For a query Send(Πx
Ui

,start), suppose Πx
Ui

selects Ni, SIDj, and T1, and compute
W1 = Ni ⊕ h(ri ‖ QUi), W2 = SIDj ⊕ h(Ni ‖ QUi), V1 = h(PIDi ‖ SIDj ‖ QUi ‖ Ni)
in a normal state. Then, the query returns the output M1 = {PIDi, W1, W2, V1, T1}.
On a query Send(Πy

Sj
, (PIDi, W1, W2, V1, T1)), suppose Πy

Sj
is in a normal state and

performs the following operations: computes QSj, and selects Nj, T2; then, computes
W3, V2. The query is answered by M2 = {PIDi, PSIDj, W1, W2, W3, V1, V2, T2}.
On a query Send(Πz

CS, (PIDi, PSIDj, W1, W2, W3, V1, V2, T2)), upon receiving the send
query message (PIDi, PSIDj, W1, W2, W3, V1, V2, T2), Πz

CS computes QUi, Ni, SIDj and
checks V1. If it is equal, then it computes QSj, Nj and checks V2. If it is equal, it
generates Ncs, T3 and computes W4, W5, SK, V3, V4. Then, Πz

CS returns the output
M3 = {W4, W5, V3, V4, T3}.
For a query Send(Πy

Sj
, (W4, W5, V3, V4, T3)), suppose Πy

Sj
computes (Ni ‖ Ncs), SK

and checks V3 in a normal state. If V3 holds, it selects T4. Then, the query returns the
output M4 = {W5, V4, T4}.
For a query Send(Πx

Ui
, W5, V4, T4), upon receiving the send query message (W5, V4, T4),

Πx
Ui

computes (Nj ‖ Ncs), SK and checks V4. If V4 is incorrect, the query process is
terminated. Finally, Πx

Ui
accepts and terminates.

Execute(Z)

We proceed with the send query for the Execute(Z) query as follows.
(PIDi, W1, W2, V1, T1)←−Send(Πx

Ui
, start), (PIDi, PSIDj, W1, W2, W3, V1, V2, T2)←−

Send( Πy
Sj

, (PIDi, W1, W2, V1, T1)), (W4, W5, V3, V4, T3)←−Send(Πz
CS, (PIDi, PSIDj, W1,

W2, W3, V1, V2, T2)), (W4, W5, V3, V4, T3)←−Send(Πy
Sj

, (W4, W5, V3, V4, T3)). The query

is answered with transcripts (PIDi, W1, W2, V1, T1),(PIDi, PSIDj, W1, W2, W3, V1, V2, T2),
(W4, W5, V3, V4, T3), and (W5, V4, T4).

Hash(string)
For a Hash(string) query, if the query is executed and a record (string, s) appears
in the query, s = hash(string) is returned. Otherwise, an element s is selected, and
(string, s) is added to the list and returns s.

Corrupt(Z) For a Corrupt(Πx
Ui
), if the (Πx

Ui
) is accepted, executing the query returns the parame-

ters {RU, SU, TU} in SC.

Test(Z) The coin c is flipped; if c = 0, return a random value with the same length as SK;
otherwise, return the correct SK.

An analysis of the above two cases leads to the conclusion that privileged insider
attacks are not valid for our proposed protocol.

4.2.3. Man-in-the-Middle Attacks

We assumed that A can intercept the message M2 = {PIDi, PSIDj, W1, W2, W3, V1, V2,
T2} sent from Sj to CS and attempt to modify the authentication values V1 and V2, where
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V1 = h(PIDi ‖ SIDj ‖ QUi ‖ Ni) and V2 = h(PSIDj ‖ V1 ‖ Nj ‖ QSj). However, A cannot
obtain the values SIDj, QUi, QSj, Ni, and Nj; A cannot calculate V1 and V2. Therefore,
after the CS receives the message sent by A, it is not allowed to pass this authentication.
Similarly, A eavesdrops the message M4 = {W5, V4, T4} sent from Sj to Ui and attempts
to change the authentication value V3, where V3 = h(Nj ‖ QSj ‖ SK). Because A cannot
obtain the value Nj and cannot compute the SK, it cannot calculate the correct authentication
value V3. It can be observed that the request sent by A cannot be authenticated by Ui.
Consequently, our protocol is immune to man-in-the-middle attacks.

4.2.4. User Impersonation Attacks

Suppose that A can intercept message M1 = {PIDi, W1, W2, V1, T1}. If A imitates a
legitimate Ui to communicate with the CS, A must construct the correct authentication
value V1, where V1 = h(PIDi ‖ SIDj ‖ QUi ‖ Ni). However, A cannot obtain SIDj, QUi,
and Ni; therefore, the correct authentication value V1 cannot be calculated. Therefore,
the message delivered by A cannot pass CS authentication. The proposed protocol can
withstand user impersonation attacks.

4.2.5. Cloud Sever Impersonation Attacks

Assume that A wants to impersonate a legitimate Sj to establish communication
with the CS. A must intercept the message M1 = {PIDi, W1, W2, V1, T1} on the public
channel and construct the correct authentication value V2, where V2 = h(PSIDj ‖ V1 ‖
Nj ‖ QSj). However, A cannot obtain the values Nj and QSj and cannot calculate the valid
parameter V1; thus, A cannot compute the correct V2. Thus, the request sent by A cannot
be authenticated by CS. Our protocol can resist cloud server impersonation attacks.

4.2.6. Anonymity and Untraceability

In our protocol, the real identities of Ui and Sj are hidden using random numbers
and a hash function. Only pseudo-identities PIDi or PSIDj are used in the authentication
process to ensure the anonymity of Ui and Sj. In addition, attackers cannot trace Ui
or Sj through an intercepted message because both entities use pseudo-identities when
communicating with CS. Furthermore, the random number in the message was different
for each session, ensuring that each entity was untraceable. Thus, the proposed protocol
guarantees anonymity and untraceability.

4.3. ProVerif

ProVerif is a simulation tool proposed by Blanchet [51] for the automatic verification
of encryption protocols. ProVerif can handle basic encryption operations based on the DY
model [47], such as hashing, XOR, and fuzzy extraction. In this study, to demonstrate the
security of our protocol, we simulated the entire registration and authentication procedure
for Ui, Sj, and CS using the ProVerif tool.

Figure 6 illustrates the ProVerif code symbols and operational definitions. Figure 7
shows the query operations and events. There are six events involved in the protocol, namely
IoTDeviceStarted(), IoTDeviceAuthed(), ControlServerAcIoTDevice(), ControlServerAcCould-
Server(), CouldServerAcControlServer(), and IoTDeviceAcControlServer(), which represent
that Ui begins the authentication process, Ui completes the authentication, CS completes
the authentication of the Ui, CS completes the authentication of the Sj, Sj completes the
authentication of the CS, and Ui completes the authentication of the CS.
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Figure 6. Definitions.

Figure 7. The queries and events.

Figure 8 shows the Ui execution process, Sj execution process, and CS verification
process. Here, we take the process of Ui as an example to explain. “out(sch,(PIDi))” is
the statement that Ui initiates registration to CS, and “in(sch,xQUi:bitstring,xri:bitstring))”
represents that Ui receives messages from the CS during the registration phase, which
means that the registration phase is over. “out(ch,(PIDi,W1,W2,V1,T1))” means Ui sends a
authentication request to the CS. “in(ch,(xW5:bitstring,xV4:bitstring,xT4:bitstring))” rep-
resents that Ui receives messages from the CS. Finally, in Figure 9, we can observe that
A cannot calculate SK between Ui, Sj, and CS, which means that the proposed protocol
is secure.
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Figure 8. Execution process of Ui, Sj, and CS.

Figure 9. Verification result.
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5. Security and Performance Comparisons

In this section, the security and performance of our proposed protocol are compared
with that of existing protocols [13,23,24,40].

5.1. Security Comparisons

In this section, the security of our proposed protocol is compared with that of current
protocols. X indicates that the protocol can withstand an attack, whereas × indicates that
the protocol cannot. The primary attacks include: S1, mutual authentication; S2, session key
disclosure attacks; S3, forward secrecy; S4, user anonymity; S5, temporary value disclosure
attacks; S6, impersonation attacks; S7, replay attacks; S8, offline password guessing attacks.
Table 3 shows that Zhou et al.’s protocol [23] does not guarantee forward secrecy and is not
resistant to temporary value disclosure attacks and impersonation attacks, and Martinez-
Pelaez et al.’s protocol [24] does not guarantee mutual authentication and anonymity and is
not resistant to session key disclosure attacks, impersonation attacks, and replay attacks.
The protocols of Huang et al. [13] and Wu et al. [40] have the same security as our proposed
protocol, which can resist known attacks.

Table 3. Comparisons of security.

Attack Methods Huang et al. [13] Zhou et al. [23] Martinez-Pelaez et al. [24] Wu et al. [40] Ours

S1 X X × [39] X X
S2 X X × [39] X X
S3 X × [38] X X X
S4 X X × [39] X X
S5 X × [38] X X X
S6 X × [38] × [39] X X
S7 X X × [39] X X

5.2. Performance Comparisons

The performance comparison includes both the computational and communication
costs. In comparing the computational cost, the cost of ⊕ and ‖ is too small to be negligible,
and the hash function and fuzzy extractor both execute at the same time [52]; thus, we used
the time to execute a hash function to represent the execution time of the fuzzy extractor.
Wang et al. [53] showed that the runtime of the system using SGX increases by only 20 us,
which shows that the computational volume of SGX is relatively low. Therefore, we ignored
the computational cost of SGX in the computational cost comparison. In addition, we
conducted simulation experiments to estimate the computational cost of the protocols.
Here, we used an MI 8 to simulate Ui, a Lenovo desktop computer to simulate Sj, and
a Lenovo laptop to simulate CS. The phone used a packaged algorithmic time application,
and the computer development software was IntelliJ idea version 2020.3. The equipment
configuration and operation runtime are listed in Table 4, in which the execution time
is obtained by running 10 times and averaging. Here, we compared only the protocol’s
login and key agreement phases. As can be observed from Table 5 and Figure 10, since
Martinez-Pelaez et al. [24] used symmetric key encryption/decryption in their protocol, the
computational cost of their protocol was the highest among all protocols. In addition,
the computational cost of our protocol was slightly higher than that of Huang et al.’s
protocol [13], but our protocol had a lower computational cost compared to Zhou et al. [23]
and Wu et al. [40].

Table 4. The configuration of the equipment and operation times.

MI 8 Lenovo Desktop Computer Lenovo Laptop

Operating System Android system Windows 10 Windows 10

CPU Qualcomm Snapdragon
845

Intel(R) Core(TM)
i5-9500 CPU @ 3.00 GHz

Intel(R) Core(TM)
i7-6700HQ CPU @ 2.60 GHz

Running memory 6 GB 16 GB 8 GB
Symmetric key encryption/decryption 0.2554 ms 0.1385 ms 0.1874 ms

Hash function 0.0045 ms 0.0026 ms 0.0035 ms
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Table 5. Computational cost comparison.

Protocols Ui (ms) Sj (ms) CS (ms) Total (ms)

Huang et al. [13] 8Th ≈ 0.036 4Th ≈ 0.010 10Th ≈ 0.035 0.081
Zhou et al. [23] 10Th ≈ 0.045 7Th ≈ 0.018 19Th ≈ 0.067 0.130

Martinez-Pelaez et al. [24] 3Ts + 7Th ≈ 0.798 3Ts + 6Th ≈ 0.431 2Ts + 26Th ≈ 0.466 1.695
Wu et al. [40] 12Th ≈ 0.054 8Th ≈ 0.021 19Th ≈ 0.067 0.142

Ours Tf + 10Th ≈ 0.049 6Th ≈ 0.016 12Th ≈ 0.042 0.107
Here, Ts denotes the symmetric key encryption/decryption operation’s execution time, Tf denotes the fuzzy
extraction function’s execution time, and Th denotes the hash operation’s execution time.

Figure 10. Computational cost comparison [13,23,24,40].

In comparing the communication costs, we assumed that the length of identity |ID|,
timestamp |T|, one-way hash function |H|, random number |Z∗p|, and symmetric key encryp-
tion/decryption |E|were 160, 32, 256, 128, and 256 bits, respectively. In our proposed protocol,
the messages transmitted on the public channel included M1 = {PIDi, W1, W2, V1, T1}, M2 =
{PIDi, PSIDj, W1, W2, W3, V1, V2, T2}, M3 = {W4, W5, V3, V4, T3}, and M4 = {W5, V4, T4}.
Thus, it can be calculated that the communication cost of our protocol is 8|Z∗p| + 4|T| +
3|ID| + 6|H| = 3168 bits; the communication costs of Huang et al.’s protocol [13] is 6|Z∗p|
+ 3|T| + 3|ID| + 8|H| = 3392 bits; Zhou et al.’s protocol [23] is 15|Z∗p| + 3|ID| + 6|H|
= 3936 bits; Martinez-Pelaez et al.’s protocol [24] is 14|Z∗p| + 3|T| + 3|ID| + 6|E| + |H| =
4160 bits; Wu et al.’s protocol [40] is 15|Z∗p| + 3|ID| + 7|H| = 4192 bits. Table 6 shows that the
communication cost of our protocol was lower than that of the protocols of Huang et al. [13],
Zhou et al. [23], Martinez-Pelaez et al. [24], and Wu et al. [40]. Figure 11 shows visually the
communication costs per protocol.

Table 6. Communication cost comparison.

Protocols Rounds Communication Cost

Huang et al. [13] 4 3392 bits(+7.07%)
Zhou et al. [23] 4 3936 bits(+24.24%)

Martinez-Pelaez et al. [24] 6 4160 bits(+31.31%)
Wu et al. [40] 5 4192 bits(+32.32%)

Ours 4 3168 bits
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According to the above comparison results, it can be conclude that there are some
vulnerabilities to attacks in the protocols of Zhou et al. [23] and Martinez-Pelaez et al. [24],
while other protocols have the same security as our proposed protocol, which can resist
known attacks. Although the computational cost of our proposed protocol was slightly
higher than that of Huang et al. [13] by 0.026 ms, the communication cost was lower than
that of Huang et al. [13] by 224 bits (7.07%).

Figure 11. Communication cost comparison [13,23,24,40].

6. Conclusions

In this paper, we first described the necessity of combining the IoT with cloud comput-
ing. Simultaneously, we reviewed some AKA protocols designed in the IoT-enabled cloud
computing environments and found that there are still some security problems. To address
those problems, we proposed an SGX-based lightweight AKA protocol for IoT-enabled
cloud computing. Our goal was to ensure data privacy and sustainable communication
between the entities. In addition, the security of the proposed protocol was examined
using the ROR model, the ProVerif tool, and informal security analysis. According to the
comparison of the results of the security and performance, our proposed protocol can
ensure sufficient security and reduce the communication cost by 7.07% compared with
the best one among the current protocols. The limitation is that the computational cost is
slightly higher, but it is acceptable in practical application. Therefore, we will continue to
enhance the security and performance of protocols in the IoT-enabled cloud computing
environments in future work.
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Abbreviations

The following abbreviations are used in this manuscript:

IoT Internet of Things
SGX Software guard extensions
ROR Real-or-random
AKA Authentication and key agreement
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