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Sakuranetin is 	avonoid phytoalexin that serves as a plant antibiotic and exists in Prunus and several other plant species. Recently,
we identi
ed the anti-in	ammatory e�ect of Prunus yedoensis and found that there were few studies on the potential anti-
in	ammatory activity of sakuranetin, one of the main constituents of Prunus yedoensis. Here, we isolated peritoneal macrophages
from thioglycollate-injected mice and examined whether sakuranetin a�ected the response of the macrophages in response to
lipopolysaccharide (LPS) plus interferon- (IFN-) � or LPS only. Sakuranetin suppressed the synthesis of iNOS and COX2 in
LPS/IFN-� stimulated cells and the secretion of TNF-�, IL-6, and IL-12 in LPS stimulated cells. �e surface expression of the
costimulatory molecules, CD86 and CD40, was also decreased. Among the LPS-induced signaling molecules, STAT1, JNK, and
p38 phosphorylation was attenuated. �ese 
ndings are evidence that sakuranetin acts as anti-in	ammatory 	avonoid and further
study is required to evaluate its in vivo e�cacy.

1. Introduction

In	ammatory responses are protective against further tissue
damage and help to repair wounds. In	ammatory stimuli not
only are con
ned tomicrobes, but also include endogenously
generated substances, as seen with gout and atherosclerosis
[1]. In	ammation should be self-limiting, but when this
capacity is impaired, the response will result in continued
tissue destruction. �e reasons for the chronicity of in	am-
mation include microbes that evade the immune system,
accumulating metabolic or cellular byproducts, and autoim-
mune diseases generated by unknown causes.

Depending on the time required to initially respond, the
site of 
rst contact with the antigen, and the ability to acquire
memory, the immune system is divided into innate and
adaptive systems. Cells that belong to the innate immune sys-
tem confront the antigens and respond to them immediately
but do not acquire memory. On the other hand, adaptive

immune cells make 
rst contact with antigens in secondary
lymphoid tissue such as lymph nodes, which explains why
they take time to respond, and acquire memory, letting
the cells mount a faster response to the next exposure of
the antigen. Macrophages belong to the innate immune
system but present antigens to T cells, acting as a bridge
between the innate and adaptive immune systems. Generally,
macrophages are the 
rst sensor to detect and react to foreign
microbes and, when necessary, recruit other circulatingwhite
blood cells to the site [2]. During in	ammatory responses,
macrophages recognize the presence of the causative agent
through pattern recognition receptors such as toll-like recep-
tor (TLR) and activate the NF-�B pathway and mitogen-
activated protein kinases (MAPK) pathway, terminating in
the expression of in	ammatory enzymes such as inducible
nitric oxide synthases (iNOS) and cyclooxygenase- (COX-) 2
and in	ammatory cytokines such as tumor necrosis factor-
(TNF-) �, interleukin- (IL-) 6, and IL-12 [3]. In addition,
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macrophages upregulate the surface expression of costimu-
latory molecules such as CD80/CD86 and CD40 in order to
form stable contacts with T cells. �us, the above molecules
are targets of anti-in	ammatory agents for the control of
chronic in	ammation.

Sakuranetin is 	avonoid phytoalexin that serves as a plant
antibiotic [4] and exists in the Prunus species, Baccharis
species, Betula species, and rice [5]. Recently, we identi
ed
the in vitro and in vivo anti-in	ammatory e�ects of Prunus
yedoensis bark [6, 7] and found that reports on the anti-
in	ammatory mechanism of sakuranetin, one of the main
constituents of Prunus yedoensis bark, were scarce. A litera-
ture search on sakuranetin showed that it inhibits chemically
induced edema in mice [8] and alleviates the allergen-
induced lung injury model through control of NF-�B [9].
Here, we sought to investigate the anti-in	ammatory activity
of sakuranetin and its mechanism using lipopolysaccharide
(LPS) plus interferon- (IFN-) � or LPS stimulated macro-
phage model.

2. Materials and Methods

2.1. Animals. Seven-week-old male BALB/c mice (Samtaco,
Osan, Korea) were purchased and kept in a temperature- and
humidity-controlled, pathogen-free animal facility at Kyung
HeeUniversity.�emice were providedwith standardmouse
chow and water ad libitum in accordance with the Guide for
the Care and Use of Laboratory Animals issued by the United
States National Research Council (1996), and the protocol
(KHUSASP(GC)-10-001) was approved by the Kyung Hee
University Institutional Animal Care and Use Committee.

2.2. Cell Culture. Mice were injected intraperitoneally with
2mL of 3.5% sterile thioglycollate solution (BD, Sparks, MD,
USA). �ree days later, mice were sacri
ced by cervical
dislocation and macrophages were isolated by peritoneal
lavage with cold DMEM. A�er centrifugation, cells were
resuspended in DMEM with 10% fetal bovine serum (FBS;
Hyclone, Utah, USA) and 1% penicillin-streptomycin and
incubated overnight in a humidi
ed atmosphere of 5% CO2
at 37∘C. A�er nonadherent cells were removed, cells were
seeded for subsequent assays.

2.3. Viability Assay. Cells were seeded in quadruplicate in 96-
well plates and stimulated for 24 h at increasing concentra-
tions of sakuranetin (Sigma, St. Louis, MO, USA). Cell
viability was determined using the MTS (3-(4,5-dimethylthi-
azol-2-yl)-5-3(carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-
tetrazolium) reduction method (CellTiter 96 One Solution
Cell Proliferation Assay Kit, Promega, Madison, WI, USA),
based on the measurement of mitochondrial respiration in
living cells. Optical density was measured at 490 nm with
a microplate reader (Molecular Devices, Sunnyvale, CA,
USA).

2.4. Measurement of Nitrites. Cells were stimulated with
1 ng/mL of recombinant IFN-� (BD Pharmingen, San Diego,
CA, USA) and 100 ng/mL LPS (Sigma) in the presence
of sakuranetin or 1 �M dexamethasone (Sigma) for 16 h.

Supernatant was obtained for the evaluation of nitrite levels
using the Griess Reagent System (Promega). �e absorbance
at 550 nm was measured with the microplate reader.

2.5. Cytokine Measurement. Cells were cultured with 100 ng/
mL LPS and sakuranetin for 6 h or 24 h. �e cytokine
levels fromappropriately diluted supernatantsweremeasured
by ELISA according to the manufacturer’s protocol (BD
Pharmingen).

2.6. Western Blotting. To detect iNOS and COX-2, cells were
stimulated with LPS/IFN-� in the presence of sakuranetin
for 16 h. To detect phospho-STAT1, cells were pretreated with
sakuranetin for 1 h and then stimulated with LPS for 3 h. To
detect I�B� and phospho-MAPK, cells were pretreated with
sakuranetin for 1 h and then LPS was added for 15min. Total
cell extracts were prepared by resuspending the cells in lysis
bu�er (50mM Tris-HCl, pH 7.5; 150mMNaCl; 1mM EDTA;
20mM NaF; 0.5% NP-40; and 1% Triton X-100) containing a
phosphatase inhibitor cocktail (Sigma) and an Xpert protease
inhibitor cocktail (GenDEPOT, TX, USA). Protein concen-
trationwas determined using the Bradford assay. Cell extracts
were separated on an 8% or 10% sodium dodecyl sulfate-
polyacrylamide gel and were transferred to polyvinylidene
	uoride membrane. �e membranes were blocked with 5%
skimmilk in Tris-bu�ered saline with 0.1% Tween 20 (TBST)
for 1 h and then incubated overnight at 4∘C with iNOS, I�B�,
tubulin, or GAPDH (Santa Cruz Biotechnology, Santa Cruz,
CA, USA), phospho-STAT1, STAT1, phospho-JNK, JNK,
phospho-p38, p38, phospho-ERK, or ERK (Cell Signaling
Technology, CA, USA) diluted at 1/1000 in 5% skim milk in
TBST.�e blots were washedwith TBST and incubated for 1 h
with anti-rabbit horseradish peroxidase-conjugated antibody
(diluted at 1 : 5000 in 5% skim milk in TBST). Protein
bands were detected with EzWestLumi plus (ATTO, Japan)
and analyzed using an EZ-Capture MG (ATTO). �e band
density of each protein was quanti
ed using ImageJ so�ware
and normalized with internal control.

2.7. Flow Cytometry. Cells were washed twice in cold phos-

phate bu�ered saline (PBS) and resuspended at 1 × 106

cells/mL in FACS bu�er (PBS/0.1% NaN3/1% FBS). Cells
were blocked with rat anti-mouse CD16/CD32 (BDPharmin-
gen) at 4∘C for 5min and then stained for 30min with
FITC-conjugated anti-mouse-CD40 and PE-conjugated anti-
mouseCD86 (BDPharmingen) on ice in the dark. For isotype
controls, FITC-conjugated rat IgG2a � or PE-conjugated rat
IgG2a � (BD Pharmingen) was used. �e cells were washed
twice and resuspended in FACS bu�er. Ten thousand cells
were collected for each sample and analyzed on aNavios Flow
Cytometer (BeckmanCoulter, Brea, CA, USA).�e data were
analyzed with Kaluza so�ware.

2.8. Statistical Analysis. Statistical analysis was performed
using Student’s �-test or ANOVA followed by the SNK test
using IBM Statistics SPSS version 22. � values less than 0.05
were considered signi
cant.
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Figure 1: E�ects of sakuranetin on cell viability. Mouse peritoneal macrophages were cultured with sakuranetin for 24 h and cell viability was
determined using the MTS assay. Data are represented as a percentage of control cells (0�g/mL) (� = 4). ∗∗∗� < 0.005 versus control.
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Figure 2: E�ects of sakuranetin on the release of nitric oxide and the synthesis of inducibleNO synthase (iNOS) andCOX2 in LPS/interferon-
(IFN-) � stimulated cells. Mouse peritoneal macrophages were stimulated with IFN-� and LPS in the presence of sakuranetin for 24 h. (a)
NO in the supernatant was detected by the Griess reaction. Dexamethasone (1�M) was treated as a reference drug. Data are expressed as
mean ± SD (� = 3), ∗� < 0.05 and ∗∗∗� < 0.005 versus controls (LPS/IFN-� treated cells). (b)�e expression of iNOS and COX2 protein was
analyzed by Western blotting using tubulin as an internal control. One of the three independent experiments is shown.

3. Results

3.1. E
ect of Sakuranetin on Cytotoxicity. First, we sought to
determine the noncytotoxic range of sakuranetin using the
MTS assay. A culture of peritoneal macrophages incubated
with 200�M for 24 h resulted in no e�ect on cell viability,
but cells incubated with 400 �M sakuranetin showed a rapid
decrease in number (Figure 1). Based on these results,
subsequent assays were performed at no higher than 100 �M.

3.2. E
ect of Sakuranetin on the NO Production and the
Expression of iNOS andCOX-2 in LPS/IFN-� Stimulated Cells.
When LPS and IFN-� are coadministered to macrophages,
full production of NO occurs [10]. In an e�ort to explore
the anti-in	ammatory potential of sakuranetin, we 
rst
measured the level of NO in the supernatant from acti-
vated macrophages. Sakuranetin was added to the cells

simultaneously with those in	ammatory stimuli. Dexam-
ethasone (1�M) was used as a reference chemical. Since NO
has a short half-life [11], the level of nitrite, another product
obtained during NO synthesis, was measured using the col-
orimetric method. A reduction in NO release by sakuranetin
occurred in a dose-dependentmanner (Figure 2(a)).�enwe
examined whether this reduction was due to iNOS protein
inhibition. �e suppressive e�ect of sakuranetin on iNOS
protein was dose-dependent, as measured by Western blot-
ting (Figure 2(b)). We also measured the level of COX-2 pro-
tein from the same cells. A higher concentration (100�M) of
sakuranetin was required to inhibit COX-2 protein than that
used in iNOS protein synthesis.

3.3. E
ect of Sakuranetin on Soluble In�ammatory Cytokine
Expression. We stimulated macrophages with LPS in the



4 Evidence-Based Complementary and Alternative Medicine

###

##

###

###

0

500

1000

1500

2000

2500

3000

3500

0 0 10 50 100 Dex

LPS

S (�M)

∗∗∗

∗∗∗

∗∗∗

∗∗∗T
N

F
-�

(p
g/

m
l)

6h

24h

(a)

###

#

#

###
###

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

IL
-6

 (
p

g/
m

l)

0 0 10 50 100 Dex

LPS

S (�M)

6h

24h

∗∗∗
∗∗

∗∗

∗

∗

(b)

###

#

### ###
0

500

1000

1500

2000

2500

IL
-1

2 
(p

g/
m

l)

0 0 10 50 100 Dex

LPS

S (�M)

∗∗∗ ∗∗∗∗∗∗∗∗

6h

24h

(c)

Figure 3: Sakuranetin decreases the secretion of tumor necrosis factor- (TNF-) �, interleukin- (IL-) 6, and IL-12. Mouse peritoneal
macrophages were stimulated with LPS in the presence of sakuranetin or dexamethasone (1�M) for 6 h or 24 h, and the levels of TNF-�
(a), IL-6 (b), and IL-12 (c) in the supernatant were analyzed by ELISA. Data are expressed as mean ± SD (� = 3). ∗� < 0.05, ∗∗� < 0.01, and
∗∗∗� < 0.005 versus controls (cells treated with LPS for 6 h); #� < 0.05, ##� < 0.01, and ###� < 0.005 versus controls (cells treated with LPS
for 24 h).

presence of sakuranetin for 6 h or 24 h, and the levels of
TNF-�, IL-6, and IL-12 were measured by ELISA. From a gap
in cytokine level at 6 h and 24 h, it was clear that the peak
of TNF-� secretion was earlier than those of IL-6 and IL-12
(Figure 3). Sakuranetin at 50 and 100 �Mand dexamethasone
decreased the levels of all the cytokines tested at each time
point.

3.4. E
ect of Sakuranetin on Surface Costimulatory Molecules.
We analyzed the in	uence of sakuranetin on the surface
expression of costimulatory molecules CD86 and CD40
using 	ow cytometry. Treatment of macrophages with LPS
increased the mean 	uorescence intensity (MFI) of CD86
from 5.24 to 10.95 and that of CD40 from 2.69 to 8.01
(Figure 4). �e MFI value of CD86 was decreased in
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Figure 4: Sakuranetin decreases the expression of costimulatory molecules. Mouse peritoneal macrophages were stimulated with LPS in the
presence of sakuranetin for 24 h. �e cells were stained for FITC-conjugated CD40 antibody or PE-conjugated CD86 antibody and analyzed
using 	ow cytometry. (a) Representative histograms are shown. (b) �e value of mean 	uorescence intensity (MFI) was analyzed and data
are expressed as mean ± SD (� = 4). ∗� < 0.05 and ∗∗∗� < 0.005 versus controls (cells treated with LPS only).

a dose-dependent manner with 75% and 65% of control
cells at 50 and 100 �M, respectively. CD40 expression was
decreased by 15% at 100 �M compared with controls.

3.5. E
ects of Sakuranetin on I�B� Degradation and MAPK
Activation. �e in	ammatory gene expression initiated by

LPS/TLR4 signaling depends on the NF-�B and MAPK
signaling pathways. I�B� plays a critical role in the control
of NF-�B signaling by preventing it from migrating to the
nucleus [12]. Sakuranetin had no e�ect on I�B� degradation
at 15min (Figure 5). We examined the in	uence of saku-
ranetin on the activation of MAPK (p38, JNK, and ERK).
�e expression of phosphorylated JNK was attenuated in a
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Figure 5: E�ects of sakuranetin on LPS-induced I�B� degradation and activation of JNK, ERK1/2, and p38. Cells were pretreated with
sakuranetin for 1 h and then stimulated with LPS for 15min. Total protein was extracted and assayed for signaling molecules by Western
blotting. GAPDH was used as an internal control. (a) One of the three experiments is shown. (b) �e band density of each phosphorylated
protein was normalized with GAPDH. ∗� < 0.05 and ∗∗∗� < 0.005 versus controls (cells treated with LPS only).

dose-dependent manner while that of phosphorylated p38
was suppressed at 100 �M (Figure 5).

3.6. E
ect of Sakuranetin on STAT1Activation. STAT1 is a crit-
ical signaling molecule for the expression of IFN-mediated
genes such as iNOS [13]. STAT1 activation elicited by LPS
is weak and delayed relative to addition of IFN-� [14]. We
found that LPS alone induced STAT1 activation (Figure 6).
�e expression of phospho-STAT1 was suppressed at 100�M
of sakuranetin (Figure 6).

4. Discussion

Flavonoids are the most abundant polyphenols with a C6-
C3-C6 backbone structure. Flavonoids exist in vegetables
and fruits and are suggested to account for some of the
known biological functions of herbal plants. In particular,
anti-in	ammatory actions of 	avonoids are summarized
into antioxidant activity and modulation of arachidonic
acid metabolizing enzymes and in	ammatory molecules
[15]. Flavonoids can inhibit enzymes that produce oxygen-
derived free radicals and directly reduce those oxidants, thus

protecting cells from oxidative damage [16]. Also, 	avonoids
are reported to interfere with generation of in	ammatory
eicosanoids and cytokines at multiple levels.

In the case of eicosanoids, arachidonic acids are released
from membrane phospholipids by phospholipase A2 and
then further converted into prostaglandins by cyclooxyge-
nase or leukotrienes by lipoxygenase. Sakuranetinwas proven
to be a potent inhibitor of leukotriene B4 production in rat
neutrophils through modulation of 5-lipoxygenase activity,
with IC50 of 9 �M, but it failed to inhibit prostaglandin E2
production at 25�M in macrophages [8]. Corroborating the
prior study, a higher concentration (100�M) of sakuranetin
was required to inhibit COX2 synthesis.

Although sakuranetin was not very e�ective in themodu-
lation of the COX2 pathway, this 	avonoid was very potent in
the suppression of NO and iNOS. NO is produced from argi-
nine and oxygen by NO synthase. While NO is constitutively
produced in neurons and endothelial cells by neuronal NO
synthase and endothelial synthase, respectively, the expres-
sion of iNOS in macrophages is inducible in the presence
of in	ammatory stimuli such as LPS and cytokines [17]. �e
role of NO depends on the cell type. For example, neuronal
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Figure 6: Sakuranetin attenuates LPS-induced STAT1 phosphorylation. Cells were pretreated with sakuranetin for 1 h and then stimulated
with LPS for 3 h. Total protein was extracted and assayed for phosphorylated STAT1 by Western blotting. Tubulin was used as an internal
control. (a) One of the three experiments is shown. (b) �e band density of phosphorylated STAT1 was normalized with tubulin. ∗∗� < 0.01
and ∗∗∗� < 0.005 versus controls (cells treated with LPS only).

NO is a neurotransmitter, endothelial NO functions as a
vasodilator and antiplatelet agent, and NO in macrophages
is microbicidal. However, when NO is excessively produced
by iNOS, it is harmful to cells because of its toxic e�ects
produced by reacting to the thiol group of proteins, nucleic
acids, unsaturated lipids, divalent cations, and other reactive
oxygen species. STAT1 is necessary for NO production in
macrophages in response to LPS plus type I IFN (IFN-�,	) or
type II IFN (IFN-�) [13]. STAT1 activation occurs when type
I IFN or type II IFN binds to its receptor. Since the promoters
of the iNOS gene have binding sites of NF-�B and STAT1,
maximal expression of iNOS in mouse macrophages can be
achieved with stimulation of LPS and IFN-� [17]. Since saku-
ranetin had no e�ect on I�B� degradation, its e�ect on iNOS
protein is unlikely to involve NF-�B signaling. Rather, the
reduction of iNOS by sakuranetin partly appears to depend
on the inhibition of STAT1 activity.

TNF-�, IL-6, and IL-12 are the major cytokines released
by activated macrophages during an early in	ammatory
response. One of their roles is to induce di�erentiation
and migration of other immune cells, bridging innate and
adaptive immunity. Importantly, IL-12 is a cytokine that
determines the di�erentiation of CD4 T cells into IFN-�-
producing T helper cells, which further activatemacrophages
[18]. Sakuranetin decreased the levels of these cytokines in
a dose-dependent manner. MAPK and their downstream
e�ector proteins are involved in the modulation of transcrip-
tion factor required for in	ammatory genes or the stability
of the mRNAs [3]. Several studies have demonstrated that
pharmacological inhibitors of JNK, ERK1/2, or p38 suppress
LPS-induced iNOS, TNF-�, IL-6, and IL-12 gene expres-
sion [19–21]. It is possible that sakuranetin interferes with
downregulation of the cytokines and partly of iNOS via its
inhibitory e�ect on JNK and p38 activation.

CD86 and CD40 are o�en used as activation markers
of macrophages [22]. �e mode of these costimulatory

molecules is contact-dependent. Contact between CD86 on
macrophages and CD28 on T cells or between CD40 on
macrophages and CD40 ligand on activated T cells enhances
each cell’s own activity. For example, CD40 itself enhances
macrophages’ function by increasing the expression of NO,
TNF-�, IL-6, and CD86 [23]. Inhibition of these costimula-
tory molecules is expected to attenuate interactions between
macrophages and T cells observed in chronic in	ammatory
responses. �e upregulation of CD86 and CD40 depends
on NF-�B and STAT1 [13, 24]. �e inhibitory e�ect of
sakuranetin on these costimulatory molecules seems to be
attributed to its attenuation of STAT1. Interestingly, the
decrease of CD40 and COX2 requires a higher concentra-
tion than was necessary to induce the decrease of CD86,
cytokines, and iNOS. LPS and its sensor TLR4 use two sepa-
rate adaptormolecules,Myd88 andTRIF, respectively.Myd88
is responsible for early NF-�B and MAPK activation or
in	ammatory genes, while TRIF is associated with late acti-
vation of NF-�B andMAPK and adaptive immune responses
such as IFN-inducible genes [25]. �erefore, certain in	am-
matory proteins are Myd88- and TRIF-codependent while
others are TRIF-dependent only [26]. It is possible that
sakuranetin di�erentially acts in these signaling pathways.

5. Conclusions

Taken together, these 
ndings are evidence that sakuranetin
acts as an anti-in	ammatory 	avonoid by inhibiting the
expression of iNOS, TNF-�, IL-6, and IL-12 and by down-
regulating the surface expression of costimulatorymolecules.
Some of the cellular signalingmechanisms regulated by saku-
ranetin are based on its modulation of JNK, p38, and STAT1
phosphorylation.
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