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ABSTRACT

A novel object-based quality measure, which contains three distinct components that consider aspects of

the structure (S), amplitude (A), and location (L) of the precipitation field in a prespecified domain (e.g.,

a river catchment) is introduced for the verification of quantitative precipitation forecasts (QPF). This

quality measure is referred to as SAL. The amplitude component A measures the relative deviation of the

domain-averaged QPF from observations. Positive values of A indicate an overestimation of total precipi-

tation; negative values indicate an underestimation. For the components S and L, coherent precipitation

objects are separately identified in the forecast and observations; however, no matching is performed of the

objects in the two datasets. The location component L combines information about the displacement of the

predicted (compared to the observed) precipitation field’s center of mass and about the error in the

weighted-average distance of the precipitation objects from the total field’s center of mass. The structure

component S is constructed in such a way that positive values occur if precipitation objects are too large

and/or too flat, and negative values if the objects are too small and/or too peaked. Perfect QPFs are

characterized by zero values for all components of SAL. Examples with both synthetic precipitation fields

and real data are shown to illustrate the concept and characteristics of SAL. SAL is applied to 4 yr of daily

accumulated QPFs from a global and finer-scale regional model for a German river catchment, and the SAL

diagram is introduced as a compact means of visualizing the results. SAL reveals meaningful information

about the systematic differences in the performance of the two models. While the median of the S com-

ponent is close to zero for the regional model, it is strongly positive for the coarser-scale global model.

Consideration is given to the strengths and limitations of the novel quality measure and to possible future

applications, in particular, for the verification of QPFs from convection-resolving weather prediction mod-

els on short time scales.

1. Introduction

Verification of numerical forecasts is an essential

part of the numerical weather prediction (NWP) enter-

prise. On the one hand, it helps identify model short-

comings and systematic errors; on the other hand, it is

key for a quantitative assessment of the improvement

with time of current forecasting systems and of their

predictability limits. Quality measures like the root-

mean-square (RMS) difference or anomaly correlations

are simple in terms of implementation and are there-

fore routinely used to monitor and compare general

forecast quality at operational prediction centers (e.g.,

Simmons and Hollingsworth 2002). The quality of

quantitative precipitation forecasts (QPF) is typically

measured in terms of categorical verification scores

(Jolliffe and Stephenson 2003), a process that requires
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the specification of a precipitation threshold. Examples

for this category of QPF verification studies can be

found, for instance, in Damrath et al. (2000) for Ger-

many and Ebert et al. (2003) for the United States,

Australia, and Germany.

Gridpoint-based error measures are appropriate for

the verification of fields dominated by synoptic-scale

structures (e.g., the 500-hPa geopotential height field),

but for parameters like precipitation, which are char-

acterized by complex structures on scales of less than

100 km, these measures are regarded as problematic

and several new approaches have been suggested and

developed during the last decade (e.g., Ebert and

McBride 2000; Casati et al. 2004; Davis et al. 2006a, and

references therein). The classical example to illustrate

the limitations of gridpoint-based error measures is the

“double penalty problem”: a prediction of a precipita-

tion structure that is correct in terms of amplitude, size,

and timing but (maybe only slightly) incorrect concern-

ing position is very poorly rated by categorical error

scores and the RMSE. In such a situation, the hit rate of

the forecast with the misplaced precipitation structure

is as bad as that of a forecast that totally missed the

event, and the RMSE is even worse. Also, hit rate and

RMSE are equally bad for forecasts that misplaced the

event, independent of the degree of the misplacement

(see Figs. 1a,b, modified from Davis et al. 2006a), and

therefore the verification result does not pinpoint the

nature of the error (i.e., the displacement). These issues

become even more important with the advent of very-

high-resolution numerical models (with horizontal grid

spacings of 1–4 km), which produce precipitation fields

that are comparable to radar information in terms of

complexity and variety of structures.

The novel approaches of QPF verification try to

avoid the double penalty problem and aim to provide

useful information about the characteristics and scales

of the identified prediction error. They can be catego-

rized into “fuzzy” scores, techniques that focus on spa-

tial scales, and object-based approaches. Different

fuzzy scores have been proposed (e.g., Theis et al. 2005;

Roberts and Lean 2008) that consider neighboring grid

points when comparing simulated and observed fields

to account for spatial and temporal uncertainty in the

forecast. In the second category, the approach of Casati

et al. (2004) using a two-dimensional wavelet decom-

position yields useful skill information on different spa-

tial scales. A typical result is that the loss of forecast

skill is due to relatively intense events on scales smaller

than 40 km. A pioneering study for the object-based

category is the one by Ebert and McBride (2000), who

decomposed the total mean squared error into compo-

nents associated with the location, rain volume, and

pattern of identified precipitation objects (referred to

as “contiguous rain areas”). For the identification of

such objects in daily accumulated precipitation fields in

Australia, a fixed threshold of 5 mm day�1 has been

used. It was found that the volume error is typically

smallest, except for intense events where underestima-

tion of rainfall amounts becomes an issue. Another ob-

FIG. 1. A schematic example of various forecast and observation combinations, modified from Davis et al.

(2006a). For the qualitative application of SAL, it was assumed that precipitation rates are uniform and the same

in all objects.
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ject-based technique has been introduced by Davis et

al. (2006a), who used a convolution, smoothing, and

thresholding procedure to define meaningful objects. A

matching algorithm served to find object pairs in the

forecast and observations. For hourly forecasts pro-

duced by the Weather Research and Forecasting

(WRF) model with a horizontal resolution of 22 km

over the United States, one of the interesting results

was that the model overestimated the size of the ob-

jects, in particular during the later afternoon. Also, it

turned out that object matching was increasingly diffi-

cult for smaller-scale objects. In a companion study

(Davis et al. 2006b), the technique was applied to con-

vection-resolving WRF simulations, again revealing

valuable information about the model’s QPF perfor-

mance that could not be obtained with standard verifi-

cation approaches. An alternative object-based ap-

proach has been proposed by Marzban and Sandgathe

(2006), based on a cluster analysis technique. Finally,

the study by Keil and Craig (2007) is mentioned, who

focused on the forecasts’ displacement error, which has

been calculated with a pyramid matching algorithm,

without specifying individual objects.

It is important to note that the current efforts to

define alternative error measures are not only moti-

vated by practical and technical issues (i.e., by the fact

that gridpoint-based error measures do not provide

enough useful information, and that they suffer from

the double penalty problem) but they are also rooted in

our current understanding of atmospheric predictabili-

ty. Theoretical and model studies on error propagation

(e.g., Zhang et al. 2002, 2003, 2006; Walser et al. 2004;

Walser and Schär 2004; Hohenegger et al. 2006) indi-

cate that the predictability limit falls off rapidly toward

small scales (1–100 km) mainly due to upscale error

propagation associated with individual convective cells.

However, several of these studies also emphasize that

predictability of QPFs strongly depends on the weather

situation and the underlying topography. The presence

of convection alone does not necessarily limit predict-

ability, at least in mountainous regions (Walser and

Schär 2004), and strongly organized convective systems

tend to be characterized by increased predictability

(Fritsch and Carbone 2004).

In this study, a novel three-dimensional quality mea-

sure is proposed, which separately considers aspects of

the structure (S), amplitude (A), and location (L) of a

QPF in a certain region of interest (e.g., a major river

catchment). This quality measure, referred to as SAL,

aims to address the following issues:

1) it measures quantitatively three distinct aspects of

the quality of an individual precipitation forecast in

a previously specified area, integrated over time pe-

riods ranging from 1 to 24 h;

2) it takes into account the “structure” of the precipi-

tation event (e.g., scattered convective cells, convec-

tive complex, frontal rain system), which is regarded

as a direct fingerprint of the physical nature of the

event;

3) it does not require a one-to-one matching between

the identified objects in the observed and simulated

precipitation fields; and

4) it is close to a subjective visual judgment of the ac-

curacy of a regional QPF.

To accomplish these tasks, simple measures are

specified to characterize the forecast quality in terms of

structure, amplitude, and location. For the structure

and location components, it will be necessary to iden-

tify coherent objects in the observed and predicted pre-

cipitation fields. The definition of the three compo-

nents and some technical details are given in the next

section. In section 3, idealized examples are presented

to illustrate the functioning of SAL. A first application

of SAL to daily accumulated precipitation forecasts for

a German river catchment is presented in section 4 for

a global and limited-area NWP model, respectively.

2. Definition of the three components of SAL

Consider a domain D (e.g., a catchment area) repre-

sented by a set of N grid points in both the observa-

tional and model datasets. The precipitation field is de-

noted as R, and where a distinction between observed

and simulated precipitation is necessary, the symbols

Robs and Rmod are used (see also Table 1 for an over-

view on the notation).The order in which the compo-

nents of SAL are described is guided by their degree of

complexity and goes from A to L and finally to S. But

first, the issue of the identification of objects is briefly

discussed.

a. The identification of objects

The computation of the location and structure com-

ponents (as defined later) requires first the identifica-

tion of individual precipitation objects within the con-

sidered domain, separately for the observed and fore-

cast precipitation fields. Several possibilities exist to

perform this task, for instance, the method introduced

by Davis et al. (2006a). Here we use a simple (and

subjective) approach, where a threshold value

R* � fRmax �1�

is specified to identify coherent objects enclosed by

the threshold contour. Rmax denotes the maximum
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value of precipitation that occurs within the domain D.

Grid points belonging to an object are selected using an

algorithm developed previously for the identification of

coherent potential vorticity features (Wernli and

Sprenger 2007). Starting from a grid point that corre-

sponds to a local precipitation maximum exceeding the

threshold R*, neighboring grid points are included in

the object as long as the grid point values Rij are larger

than R*. The objects are denoted as R n, n � 1, . . . , M,

where M corresponds to the number of objects in D.

The choice of the factor f in Eq. (1) is not based on

objective criteria. Our choice used throughout this

study ( f � 1/15) was motivated by the fact that for most

considered cases (like the examples shown in Fig. 6),

this contour separates features of the precipitation field

that correspond reasonably well to distinct objects that

can be identified by eye. When discussing the results of

SAL in section 4, consideration will be given to their

sensitivity to the choice of the threshold factor.

b. The amplitude component A

The amplitude component of SAL corresponds to

the normalized difference of the domain-averaged pre-

cipitation values:

A �
D�Rmod� � D�Robs�

0.5�D�Rmod� � D�Robs��
. �2�

Here, D(R) denotes the domain average of R:

D�R� �
1

N �
�i,j�∈D

Rij, �3�

where Rij are the gridpoint values. This provides a

simple measure of the quantitative accuracy of the total

amount of precipitation in a specified region D, ignor-

ing the field’s subregional structure. The values of A

are within [�2 . . . �2] and 0 denotes perfect forecasts

in terms of amplitude. The value of A � �1 indicates

that the model overestimates the domain-averaged pre-

cipitation by a factor of 3; a value of A � �1 goes along

with an underestimation by a factor of 3. Overestima-

tions by factors of 1.5 and 2 lead to values of A � 0.4

and 0.67, respectively.

c. The location component L

The location component of SAL consists of two

parts: L � L1 � L2. The first one measures the nor-

malized distance between the centers of mass of the

modeled and observed precipitation fields,

L1 �
|x�Rmod� � x�Robs�|

d
, �4�

where d is the largest distance between two boundary

points of the considered domain D and x(R) denotes

the center of mass of the precipitation field R within D.

According to Eq. (4), the values of L1 are in the range

[0 . . . 1]. The term L1 gives a first-order indication of

the accuracy of the precipitation distribution within the

domain. In case of L1 � 0, the centers of mass of the

predicted and observed precipitation fields are identi-

cal. However, many different precipitation fields can

have the same center of mass, and therefore L1 � 0

does not necessarily indicate a perfect forecast. For in-

stance, a forecast with two precipitation events on op-

posite sides in the considered domain can have the

same center of mass as an observed precipitation field

with one event located in between the two predicted

events (see also discussion in section 3a).

The second part, L2, aims to distinguish such situa-

tions and considers the averaged distance between the

center of mass of the total precipitation fields and in-

dividual precipitation objects. After identifying the ob-

jects separately in the observations and the forecast (as

outlined in section 2a), the integrated amount of pre-

cipitation is calculated for every object as

Rn � �
�i, j�∈R n

Rij .

The weighted averaged distance between the centers of

mass of the individual objects, xn, and the center of

mass of the total precipitation field, x, is then given by

r �

�
n�1

M

Rn|x � xn|

�
n�1

M

Rn

� �5�

TABLE 1. Notation used in this study.

D Considered domain for verification (set of grid

points in domain)

N Number of grid points in domain

d Largest distance of two grid points in domain

R Precipitation field

Rij Precipitation value at grid point (i, j)

x Center of mass of precipitation field in domain

Rmax Maximum precipitation value in domain

R* Threshold value to identify objects

R n Precipitation object with index n (set of grid points

that belong to object)

M Number of precipitation objects in domain

Rmax
n Maximum precipitation value in object n

Rn Area-integrated precipitation in object n

xn Center of mass of precipitation object n

Vn Scaled precipitation volume of object n

V Weighted average of the scaled precipitation

volumes of all objects in the domain

r Weighted averaged distance between individual

objects and x
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The maximum value of r is d/2 (i.e., half the maximum

distance between two grid points in the domain). In the

case of a single object in the domain, Eq. (5) yields r �

0. As an aside, it is noted that the denominator in Eq.

(5) is not equal to the sum involved in the computation

of D(R) [see Eq. (3)], because the latter includes all

grid points whereas �M
n�1Rn extends only over grid

points with Rij � R*. Now, L2 can be calculated as the

difference of r calculated for the observed and fore-

casted precipitation fields:

L2 � 2�|r�Rmod� � r�Robs�|

d
� � �6�

This quantity can only differ from zero if at least one of

the datasets contains more than one object in the con-

sidered domain. The factor of 2 is used to scale L2 to

the range [0 . . . 1] (i.e., the same range as for L1).

Hence, the total location component L can reach values

between 0 and 2, and the value of 0 can be obtained

only for a forecast, where both the center of mass as

well as the averaged distance between the objects and

the center of mass agree with the observations. As a

caveat, it is mentioned that despite the consideration of

L2, different situations can still yield the same value of

L1 � L2. In particular, the definition of L is not sensi-

tive to rotation around the center of mass.

d. The structure component S

Finally, for the structure component S, the basic idea

is to compare the volume of the normalized precipita-

tion objects. As will be shown in several examples, such

a measure captures information about the size and

shape of precipitation objects. Technically, for every

object a “scaled volume” Vn is calculated as

Vn � �
�i,j�∈R n

Rij �Rn
max � Rn�Rn

max, �7�

where Rmax
n denotes the maximum precipitation value

within the object (i.e., Rmax
n � Rmax). The scaling with

Rmax
n is necessary to make S distinct from the amplitude

component A (see examples in next section). The

scaled volume Vn is calculated separately for all objects

in the observational and forecast datasets. Then, the

weighted mean of all objects’ scaled precipitation vol-

ume, referred to as V, is determined for both datasets.

As in Eq. (5), the weights are proportional to the ob-

jects’ integrated amount of precipitation Rn:

V�R� �

�
n�1

M

RnVn

�
n�1

M

Rn

. �8�

Note that V(R) is proportional to the second moment

of the precipitation field [V(R) 	 �R2
n], whereas D(R)

(used for the computation of the A component) is pro-

portional to the first moment. The component S is then

defined as the normalized difference in V, analogous to

the A component [cf. Eq. (2)]:

S �
V�Rmod� � V�Robs�

0.5�V�Rmod� � V�Robs��
. �9�

Here, S becomes large if the model predicts, for in-

stance, widespread precipitation in a situation of small

convective events. The possibility to identify these

kinds of errors is one of the key characteristics of SAL.

Negative values of S occur for too small precipitation

objects, too peaked objects, or a combination of these

factors (see examples in sections 3 and 4).

3. Idealized examples

To illustrate the characteristics of the precipitation

field captured by the SAL components, it is useful to

apply their definitions to synthetic precipitation objects

with highly idealized, simple shapes. First, a few ex-

amples are considered in a qualitative way, and then

SAL is applied quantitatively to a set of synthetic fields.

a. Qualitative considerations

For simplicity, it is assumed that the observations

contain only one object in the considered domain, with

a right circular conelike shape (Fig. 2). The left panel

shows a contour plot of the object with a maximum

value of Rmax
obs and a threshold R* defining the border of

the object. The center panel provides a section across

the center of the object, and the right panel shows the

same cross section, after applying the scaling with Rmax
obs .

For the calculation of Vn [Eq. (7)], only the grid points

of the circular cone where Robs 
 R* are considered

(see gray shaded area).

SAL is now qualitatively determined for different

forecast examples (Figs. 3, 4), which are also character-

ized by circularly symmetric objects, however differing

in amplitude, size, shape, or number. For single-object

situations (examples 1–3), the calculation and interpre-

tation of the L component is straightforward and the

discussion therefore focuses on A and S.

1) EXAMPLE 1

For the first example (Fig. 3a), the forecast object has

the same base area but a reduced amplitude compared

to the observed object (Fig. 2; i.e., Rmax
mod � Rmax

obs ). The

object identification threshold R* does not play a role

for the calculation of A, and therefore A simply de-
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pends on the ratio of the maximum values. For the

situation shown in Fig. 3a, area-integrated precipitation

is underestimated by the model, yielding a negative

value for A. The independent scaling with the maxi-

mum value in both datasets leads to two identical ob-

jects (cf. right-hand sides of Figs. 2, 3a), and therefore

the structure component S becomes zero. The interpre-

tation is, according to SAL, that the simulated precipi-

tation field has the correct structure (S � 0) while un-

derestimating the total amount of precipitation (A � 0).

FIG. 3. Same as Fig. 2, but now for three forecast objects: (a) a right circular cone with reduced amplitude

(compared to Fig. 2); (b) a right circular cone with reduced amplitude and larger base area (but with the same total

precipitation amount as the object in Fig. 2); and (c) a peaked circular cone with the same base area as in Fig. 2.

FIG. 2. Idealized precipitation object with the shape of a right circular cone (assumed to represent the obser-

vations). (left) Contour plot of the object with a maximum value of R
max (denoted briefly as R

m in the figure) and

a threshold R* defining the border of the object. (center) Section across the center of the object. (right): Same cross

section after applying the scaling with R
max. The volume V is marked by gray shading.
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Note that application of the so-called contiguous rain

areas (CRA) technique introduced by Ebert and

McBride (2000) would lead to a different result: for the

considered example, their error decomposition yields

both a volume and a pattern error. Also, the volume

error would be positive and not point to the underes-

timation of the precipitation amplitude in the forecast.

2) EXAMPLE 2

We now consider a case (Fig. 3b) in which the errors

in the amplitude and base area of the simulated circular

conelike object compensate for each other, such that

the domain-integrated precipitation value is the same

as in the observations (Fig. 2). Consequently, there is

no amplitude error (A � 0). However, because the base

area of the precipitation object is overestimated by the

model, the scaling in the calculation of S [Eq. (7)] leads

to a larger scaled precipitation volume in the simula-

tion and to a positive value for S. In this case, the fore-

cast has no amplitude error but rather a positive struc-

ture error due to the too large base area of the object.

Again, as for the first example, the CRA error decom-

position would lead to both a volume and a pattern

error.

From these two examples it becomes obvious that A

and S are distinct components of SAL—and that they

differ significantly from the volume and pattern com-

ponents of the Ebert and McBride (2000) decomposi-

tion of the mean squared error. The scaling involved in

the calculation of V [Eq. (7)] is essential to allow for

S � 0 in the presence of an amplitude error (first ex-

ample) and for identifying a structure error also in case

of a correct total precipitation amount (second ex-

ample). Also note that for these examples, a simpler

definition of S that considers only the objects’ base area

would lead to the same results as the more complex

definition applied here [Eq. (9)]. The next example il-

lustrates the additional distinction that is possible when

considering the scaled volume instead of the base area

for the calculation of S.

3) EXAMPLE 3

Figure 3c shows a circular object that has the same

base area but is more peaked than the right circular

cone (Fig. 2). To focus on S, we can assume that the

amplitudes of the two objects are such that they yield

the same domain-averaged precipitation values. How-

ever, scaling with R
max leads to a smaller value of V for

the peaked object and therefore to a negative value of

S. Similarly, a flat object with a concave shape would

lead to a positive value of S, if compared with the right

circular cone (Fig. 2). This example shows that SAL

[with the S component as defined in Eq. (9)] is able to

distinguish between peaked and flat objects, even if

they provide the same total amount of precipitation.

The usefulness of this distinction stems from the as-

sumption that widespread stratiform precipitation typi-

cally leads to flat objects, whereas in convective situa-

tions, objects tend to be much more peaked. It is in this

sense that SAL is sensitive to the physical nature of the

precipitation event.

Now we consider a few examples in which the simu-

lated precipitation field contains more than one object

in the considered domain. For simplicity, we still as-

sume that the observed precipitation is given by the

single object shown in Fig. 2.

4) EXAMPLE 4

If the simulated field has two objects like the one

shown in Fig. 2, then the total amount of precipitation

is overestimated by a factor of 2, leading to a value of

A � 2/3 [Eq. (2)]. The component S is zero, because

both objects have the correct scaled volume Vn (recall

that for the calculation of S, the averaged value of all Vn

is considered). The component L depends on the loca-

tion of the two simulated objects relative to the ob-

served one. This is discussed in more detail in the next

example.

5) EXAMPLE 5

If the simulated field has two objects, like the one

shown in Fig. 3a, that are right circular cones with half

the amplitude compared to the single observed object,

then both A and S are zero. In the special situation in

which the two objects are displaced by the same dis-

tance relative to the observed object but exactly in the

opposite direction, then the two centers of mass are

identical and the component L1 is zero. It is for this

reason that we introduced the second component L2,

which is positive in this situation and avoids a nonper-

fect forecast yielding zero values for all components of

SAL. Clearly, if the two objects are located in a differ-

ent way relative to the observed object, then L1 is also

positive leading to a larger location error L. These con-

siderations are equally valid for example 4.

6) EXAMPLE 6

As a last example, consider the situation in which the

simulated field has a large object (as shown in Fig. 3b)

and a peaked object with a (much) smaller base area (as

shown in Fig. 3c). The component A is most likely posi-

tive in this case, unless both objects have a much

smaller amplitude than the observed one. As discussed

above, V1(Rmod) (the scaled volume of the large object)

is larger, and V2(Rmod) (the scaled volume of the small
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object) is smaller than the scaled volume of the ob-

served object (Fig. 2). Because according to Eq. (8), the

resulting V(Rmod) depends on the objects’ total precipi-

tation, S can be either positive or negative. If the

peaked object has a small base area and/or amplitude,

then the large object dominates the calculation of

V(Rmod) and S will be positive. In contrast, if the large

object has a much smaller amplitude than the peaked

one, then the latter might dominate (in the sense of

having a larger weight Rn) and S turns out to be nega-

tive. This example shows that due to the weighting of

the objects’ scaled volumes Vn with their contribution

Rn to the total precipitation, the structure component S

yields information primarily about the most relevant

objects.

Before we turn to a quantitative application of SAL,

an important caveat associated with the choice of

threshold R* used for the identification of objects

should be discussed. In certain situations in which the

precipitation field in a given domain contains several

local maxima, the identification of objects can be am-

biguous, in the sense that a small change of the thresh-

old can lead to a different number and size of objects,

and therefore to different values of S and L2 (note that

A and L1 are independent of the object identification).

We refer to this effect as the “camel effect” because it

can be illustrated in a simple way with a double-hump

precipitation structure (see Fig. 4). Depending on the

minimum amplitude Rmin along a line connecting the

two maxima, the structure will be identified as a single

object (Rmin

 R*) or as two objects (Rmin

� R*). This

has a large effect on S: assuming the two humps to be

equal in size and amplitude, then V is larger by about a

factor of 2 for the single object. This means that in a

situation in which both observations and simulation

yield a camel-like object, a relatively large (positive or

negative) S value can occur if the minimum Rmin is

(slightly) above the threshold in one of the two fields

and (slightly) below in the other. For such precipitation

fields, a slight change of the threshold can significantly

influence the values of SAL—which is not a desired

property of object-oriented error measures. However,

such situations are relatively rare and do not influence

the results of a climatological evaluation of precipi-

tation forecasts with SAL, as further discussed in sec-

tion 4.

It is also possible to use SAL to reconsider the sche-

matic examples of observed and forecasted precipita-

tion objects discussed by Davis et al. (2006a; see Fig. 1).

Assuming uniform precipitation rates, forecasts shown

in Figs. 1a,b,d yield no amplitude and no structure error

(A � S � 0). However, they differ in terms of L, with

FIG. 4. Example of a precipitation structure with two local maxima to illustrate the camel effect. In the top right

situation, one object is identified, whereas two objects are found in the bottom right situation. The two situations

depicted on the right differ only in terms of Rmin, the minimum precipitation value along a straight line that

connects the two local maxima.
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the smallest location error associated with Fig. 1a. Be-

cause SAL does not consider the orientation of objects,

it is not able to distinguish between predictions shown

in Figs. 1b,d. The too-large precipitation objects in Figs.

1c,e lead to positive values of S and A. Note that the

example shown in Fig. 1e, which scores best in terms of

the hit rate, is regarded as a very poor prediction in

terms of SAL, whereas the example in Fig. 1a is re-

garded as the best.

b. A quantitative evaluation

Figure 5 shows eight idealized precipitation fields on

a quadratic grid with 99 � 99 grid points. They are

labeled as fields B to I (the label A has been omitted to

avoid confusion with the amplitude component A).

Here, B–E are single right circular cones (cf. Figure 2),

and when compared to B, C has a larger base area; in D,

the object is shifted toward the lower right corner, and

E has a reduced amplitude (by a factor of 2). The F and

G are precipitation fields with two local maxima (of

equal amplitude) that are farther apart in G compared

to F. The object in H is convex (or flat) with a large

plateau, whereas the object in I is peaked (cf. Figure

3c). A threshold factor of f � 1/15 is used [cf. Eq. (1)]

and with this threshold two objects are identified in G

and only one in all other situations (including F).

SAL has been applied quantitatively to all possible

pairs of these fields, and the results are summarized in

Table 2. The entries in the row B and column C, for

instance, indicate the SAL values in the situation in

which B represents the forecast and C the observations.

All diagonal elements are zero, which shows that all

components of SAL are zero if the observed and pre-

dicted fields are identical. No values are given to the

left of the diagonal because the table obviously is anti-

symmetric for S and A, but symmetric for L.

Results from the quantitative evaluation (Table 2)

agree with the qualitative considerations in the previ-

ous subsection. First, situations are discussed where

only one of the three components are non zero. BE

only yields an amplitude error. BD and BG only yield

a location error, however for different reasons: for BD,

the component L1 is positive (D is shifted relative to B),

whereas for BG, L2 is responsible for the location error.

Consequently, DG yields a location error that corre-

sponds to the sum of the L components of BD and BG.

BF is the only situation with only a structure error (that

arises mainly because the precipitation object F is

larger than B).

Now considering situations in which at least two com-

ponents of SAL are nonzero, there are several ex-

amples in which the components S and A have the same

FIG. 5. Contour plots of idealized precipitation objects used for a quantitative evaluation of SAL. The objects are referred to as B,

C, D, etc. (from top left to bottom right). The scale is arbitrary, with dark gray denoting more intense precipitation. Compared to the

right circular cone (object B), the objects differ as follows: C has a larger base area; D is shifted; E has a reduced amplitude; F and G

consist of two right circular cones, each with the same amplitude as E, which overlap in the case of F and don’t overlap in the case of

G; H is a flat and I a peaked cone.
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sign (e.g., BC and CE) and only one where the signs

differ (EI). This indicates that in most of these idealized

situations, an underestimation of the amplitude goes

along with a negative structure error (e.g., BC) and an

overestimation of the amplitude with a positive value of

S (e.g., CI). It is important to note that this is not a

consequence of the mathematical design of the SAL

components but rather due to the chosen examples.

Consider, for instance, forecast B and observations C,

and increase the amplitude of B continuously: this

would not change S � 0, but it would increase the A

component until it eventually becomes positive. Inter-

esting is the comparison EI in which the simulated right

circular cone underestimates the amplitude of the ob-

served peaked object, along with a positive structure

error. This can occur if a forecast misses the high-

amplitude localized nature of a convective precipitation

event.

Also of interest is FG, in which two seemingly similar

precipitation fields are compared. However, in F the

two local maxima are close to each other and only one

object is identified. Compared to G with two well-

separated objects, this yields a positive structure error

(the object in F is too large) and a nonzero location

error (due to L2).

A caveat of SAL can be noticed for CD and CG:

here, the error components are very similar, however

the fields D and G, which both score poorly compared

to C, are rather different. This shows that SAL might

indicate similar errors for differently shaped precipita-

tion fields—a direct consequence of trying to capture

the essential aspects of complex precipitation fields

with three scalar parameters only.

4. Application to precipitation forecasts for the

German part of the Elbe catchment

In this section, operational QPFs from the regional

model Consortium for Small-Scale Modeling-Alpine

Model (COSMO-aLMo) and the global European Cen-

tre for Medium-Range Weather Forecasts (ECMWF)

model will be considered for the summer seasons 2001–

04. Results of the application of SAL will be presented,

first for four selected examples (section 4a), and then

for a climatological analysis of the entire time period

(section 4b). Also, to assess these results statistically,

they will be compared with SAL calculations for per-

sistence and random forecasts in section 4c.

COSMO-aLMo is a version of the nonhydrostatic

limited-area model developed by COSMO (Steppeler

et al. 2003) and operated at Meteo Swiss. Its horizontal

resolution is 7 km on a rotated stereographic grid. The

model has 40 vertical levels, subgrid-scale convection is

parameterized with the Tiedtke scheme, and a single-

moment bulk microphysical scheme is used that consid-

ers cloud water and cloud ice (since September 2003).

Advection of precipitating hydrometeors is neglected

until the implementation of a so-called prognostic pre-

cipitation scheme in November 2004 for the hydrome-

teor classes of rain and snow. Initial and boundary con-

ditions were provided by the global model of the Ger-

man Weather Service (GME), until September 2003,

and by the ECMWF thereafter. Here, COSMO-aLMo

forecasts that were started at 0000 UTC are used, and

daily precipitation totals were taken as the accumulated

precipitation between forecast times 6 and 30 h.

For the time period considered, operational

ECMWF forecasts have a spectral resolution of T511,

corresponding to about 0.4° latitude–longitude. To per-

form the comparison on the same grid, ECMWF fore-

casts have been interpolated onto the COSMO-aLMo

grid with 7-km resolution. Also here, daily totals cor-

respond to accumulated precipitation between forecast

steps 6 and 30 h from simulations started at 0000 UTC.

The observational dataset of 24-h accumulated pre-

cipitation is based on rain gauge measurements, which

are recorded daily at 0630 UTC. About 3500 stations in

Germany are operated by the German Weather Ser-

TABLE 2. SAL values (format S/A/L) for all possible pairs of precipitation structures B–I as shown in Fig. 5. The matrix is antisym-

metric for A and S, but symmetric for L. To enhance readability only values above the diagonal are given. Columns denote observations,

and rows denote forecasts.

B C D E F G H I

B 0/0/0 �0.88/�0.88/0 0/0/0.14 0/0.67/0 �0.67/0/0 0/0/0.18 �0.68/�0.67/0 0.40/0.38/0

C 0/0/0 0.88/0.88/0.14 0.88/1.35/0 0.24/0.88/0 0.88/0.88/0.18 0.23/0.25/0 1.17/1.16/0

D 0/0/0 0/0.67/0.14 �0.67/0/0.14 0/0/0.32 �0.68/�0.67/0.14 0.40/0.38/0.14

E 0/0/0 �0.67/�0.67/0 0/�0.67/0.18 �0.68/�1.20/0 0.40/�0.31/0

F 0/0/0 0.67/0/0.18 �0.01/�0.67/0 1.00/0.38/0

G 0/0/0 �0.68/�0.67/0.18 0.40/0.38/0.18

H 0/0/0 1.01/0.98/0

I 0/0/0
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vice, and the average distance between the stations is

10 km. Using the gridding technique of Frei and Schär

(1998), the observations have been interpolated to the

COSMO-aLMo grid. Further details of this gridded ob-

servational dataset for Germany can by found in Paulat

(2007).

In summary, all three datasets of daily precipitation

used in this study are available during four summer

seasons on the same grid with a horizontal resolution of

7 km covering Germany. To illustrate the application of

SAL, this study focuses on the summer season, which

presents the largest variability in terms of precipitation

structures, from small convective cells to widespread

stratiform rain. The region considered is the German

part of the catchment of the Elbe River, with an area of

97 175 km2. The Elbe originates in the Czech Republic,

flows across eastern Germany, and has a total length of

1165 km. As a side remark, it is noted that in August

2002 (i.e., within the considered time period) a three-

week flooding of the Elbe River saw water levels reach

150-yr highs (Rudolf and Rapp 2002). Large areas were

inundated and the resulting insurance claims were in

the multimillion Euro range.

a. Selected examples

Four days have been selected during summer 2001

for a detailed consideration of the application of SAL.

They differ in terms of meteorological conditions and

the resulting daily total precipitation patterns.

• Case 1 (2 June 2001): An intense low-pressure system

was located over Denmark; warm and cold fronts

moved over Germany, leading to widespread precipi-

tation in the Elbe catchment (Fig. 6a). Maximum

temperatures in the catchment were below 17°C.

• Case 2 (6 June 2001): Maximum temperatures were

again rather low (� 18°C). A developing depression

over the North Sea led to scattered showers in the

Elbe area (Fig. 6c).

• Case 3 (7 July 2001): A mesoscale cyclone with a

pronounced warm sector crossed Germany, leading

to very intense precipitation (Fig. 6e). Maximum

temperatures were up to 32°C.

• Case 4 (29 July 2001): A large-scale high-pressure

system was situated over western and central Europe

and maximum temperatures were again up to 32°C.

Localized convection occurred in parts of the Elbe

catchment (Fig. 6g).

Table 3 presents the SAL values for these examples.

In the first example (Figs. 6a,b), the precipitation dis-

tribution is fairly homogeneous, and therefore at al-

most all grid points Rij exceeds the threshold R*. In

both datasets there is just one large object. All compo-

nents of SAL are fairly small, indicating a high-quality

forecast.1 The largest error occurs in terms of amplitude

(A � 0.312), which is mainly due to an overestimation

of precipitation in the northwest part of the domain.

The two centers of mass nearly coincide, and therefore

L is essentially zero.

In the second example (Figs. 6c,d), the precipitation

distribution is more variable, in particular in the obser-

vations. Four larger (and several very small) objects are

found in the observations and one dominant large one

in the forecast. The large positive value of S indicates

that the forecast does not capture the localized and

rather peaked character of the observed precipitation.

Also, there is a general overestimation of the precipi-

tation amount (A � 0.88). The location error is much

larger than in the first example (but still moderate). The

main contribution to L stems from the second compo-

nent, L2, because the model does not capture the dis-

tribution of the objects relative to the center of mass.

The latter, however, is very well predicted in the west-

ern part of the catchment and hence L1 is almost zero.

Very intense precipitation is observed and simulated

in the third example (Figs. 6e,f). Both observations and

forecasts are dominated by one large object. The am-

plitude component A is essentially zero. The compo-

nent S is negative (but in absolute numbers much

smaller than the positive S values for examples 2 and 4),

indicating that the model object is not flat enough. In

the forecast, there are too-steep gradients between the

heavy rain area and the surroundings, which are af-

fected only by light rain. The location error is almost

identical as in the second example, however with re-

versed importance of the two components. Here, the

contribution of L2 can be neglected (as expected if most

of the precipitation occurs in single objects), and the

fairly large value of L1 corresponds to the significant

eastward shift of the precipitation area in the forecast.

Finally, the fourth example presents a rather poor

forecast as indicated by the large values of S, A, and L.

The model predicts one large object with intense rain-

fall in the southern part, whereas the observations re-

veal several small objects and showerlike precipitation

in the central part of the catchment. Consequently, all

three components of SAL are positive, indicating an

overestimation of the total precipitation in the catch-

ment, a failure in capturing the rather small-scale and

peaked character of the precipitation objects, and a sig-

nificant southwestward shift of the rainfall area.

1 Here, an SAL component is termed “small” if it is much

smaller than typical values of a random reference forecast, as

discussed in section 4c.
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FIG. 6. Examples of daily precipitation fields in the German part of the Elbe catchment. (left) Ob-

servations and (right) COSMO-aLMo forecasts. (a),(b) 0600 UTC 2 Jun–0600 UTC 3 Jun 2001; (c),(d)

6–7 Jun 2001; (e),(f) 7–8 Jul 2001; (g),(h) 29–30 Jul 2001. The thin black line denotes the threshold value

R* used for the identification of the objects. The black cross [white in (e)] denotes x, the center of mass

of the precipitation field in the domain.
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It is instructive to consider the sensitivity of the S and

L components to the subjective choice of the object

identification threshold [Eq. (1)] for these real data ex-

amples. In addition to the standard value f � 1/15, four

different threshold factors between 1/17 and 1/13 have

been used for the calculation of SAL. For three ex-

amples (1, 2, and 4) the variability of S and L is fairly

small: S varies by less than 1.5% (which is negligible),

and L by 2%–3% for examples 2 and 4, and by 10% for

example 1 (note that for this example L is almost zero

anyway). For example 3, the values are also almost con-

stant for 1/14 � f � 1/17. However, the camel effect

(see discussion toward the end of section 3a) occurs if

the threshold factor is further increased to f � 1/13: S

jumps from �0.430 to �0.830, and L from 0.196 to

0.366. The reason is that in this example, similar to the

idealized situation shown in Fig. 4, two almost equally

large objects are identified in the forecast (Fig. 6f) when

using this larger threshold, instead of one object with

the slightly lower thresholds. The two objects in the

forecast compare even less favorably with the observa-

tions than the single object identified with the standard

threshold factor f � 1/15, and therefore S attains a more

negative value and L increases due to an additional

contribution from L2. All in all, this brief sensitivity

analysis indicates that the SAL values are robust, ex-

cept for the well-understood situations where the camel

effect occurs.

b. Comparison of global and mesoscale model

forecasts

Here we perform a climatological SAL analysis of

the QPF capabilities of the global model ECMWF and

the limited-area model COSMO-aLMo in the German

part of the Elbe catchment for the four summers 2001–

04. The main goals are (i) to introduce the compact

SAL diagram, (ii) to quantify SAL values of QPFs from

state-of-the-art NWP models, and (iii) to identify sys-

tematic differences in terms of SAL performance be-

tween coarser and finer-scale models. A threshold of

0.1 mm (corresponding about to the observational de-

tection limit) is used for the maximum gridpoint value

of precipitation in the domain to distinguish between

days with rain (wet days) and without rain (dry days).

In case of a dry forecast and/or dry observations, no

SAL values can be computed, because, for instance, the

center of mass of the precipitation distribution is not

defined in such a situation.

Figure 7 shows SAL diagrams for the COSMO-

aLMo (Fig. 7a) and ECMWF (Fig. 7b) models, respec-

tively. The small contingency table in the bottom right-

hand corner of the SAL diagram provides information

about the number of dry and wet days in the observa-

tions and forecasts, respectively. Only one day was dry

according to both observations and COSMO-aLMo

(Fig. 7a). On 18 days, the model missed the precipita-

tion event, and on 13 days, the model produced a false

alarm. It is important to consider the number of these

cases, because they correspond to particular categories

of poor forecasts but are not accessible to the SAL

technique. Accordingly, they do not appear in the SAL

diagram. During the majority of days (334), both ob-

servations and forecasts were characterized by rain, and

all these days contribute with one entry to the SAL

diagram. Abscissa and ordinate correspond to the S and

A components, respectively, and the color of the dots

represents the L component (see grayscale in the top

left). Excellent forecasts (small values of all three com-

ponents) are found as white and light gray dots in the

center of the diagram. Dashed lines indicate the median

values of S and A, and the gray-shaded box denotes the

25th and 75th percentiles of the two components. The

median and the 25th and 75th percentiles of L are in-

dicated by the thick and thinner white lines plotted in

the grayscale.

For COSMO-aLMo (Fig. 7a), most forecasts are

found in the first (top right) and third (bottom left)

quadrant of the diagram. In the first quadrant, forecasts

overestimate both the amplitude and the structure com-

ponents of SAL. In the third quadrant, both compo-

nents are underestimated. The high density of entries

along the main diagonal indicates that the model typi-

cally tends to overestimate the precipitation amount in

the considered area by producing too-large and/or flat

precipitation objects. Analogously, underestimations of

the amount go typically along with too-small and/or

peaked objects. Particularly notable is the cluster of

dark gray dots in the top right-hand corner of the dia-

gram. Further analysis shows that in these cases fairly

little precipitation was observed, but the model pre-

dicted significant precipitation both in terms of ampli-

tude and extension. These cases can also be regarded as

false alarms. In comparison, the lower density of dots in

the bottom left-hand corner indicates that the model

rarely missed a significant precipitation event (values of

TABLE 3. SAL values for the four example cases shown in Fig.

6. Also shown are the two parts L1 and L2 that contribute to the

L component. For the definition of objects a threshold of R* �

1/15 • Rmax has been chosen.

Case S A L L1 L2

1 0.119 0.312 0.033 0.033 0.000

2 1.597 0.877 0.202 0.026 0.176

3 �0.430 �0.057 0.196 0.191 0.005

4 1.598 1.325 0.303 0.174 0.129
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A � �1.5 are relatively rare). The second (top left) and

fourth (bottom right) quadrant contain only few SAL

entries. Forecasts in the second quadrant produce too

much rain, however, with objects that are too small

and/or too peaked. This could occur, for instance, if

intense showers are predicted in a situation with rather

weak stratiform precipitation. Predictions in the fourth

quadrant underestimate the amplitude of precipitation

and simultaneously produce objects that are too large

and/or flat. A possible scenario here is an erroneous

forecast of stratiform rain in a situation with intense

localized showers. It is notable that no forecasts are

situated in the top left-hand and bottom right-hand cor-

ners of the diagram, indicating that it is difficult to pro-

duce for instance a strong overestimation of precipita-

tion amplitude with much too small objects. The L com-

ponent does not show a systematic behavior with the

other two components. Light and dark dots (i.e., fore-

casts with a small and large location error, respectively)

occur in all quadrants. A slight concentration of white

dots occurs near the center, and darker dots are more

frequent in the left and right part of the diagram (i.e.,

for large absolute values of S). The median values of S

and A are positive (both about 0.3), whereas the inter-

quartile distance is about 1.2 for A and 1.5 for S. These

values of the interquartile distances are relatively large

and indicate that frequently COSMO-aLMo forecasts

score poorly in terms of one of the two or both com-

ponents.

As for the four examples in section 4a, sensitivity

calculations have been performed to assess the fre-

quency of the camel effect. Comparison of S and L

values computed with f � 1/13 and 1/17 (recall that our

standard value is f � 1/15) for the 334 COSMO-aLMo

forecasts in the Elbe catchment yielded for S an abso-

lute difference of more than 0.1 in 10% and of more

than 0.3 in 3% of the cases. For L, a difference of more

than 0.1 occurred in 5% and of more than 0.3 in 2% of

the cases. This indicates that the sensitivity of the SAL

values with respect to the threshold factor f is typically

small and that the camel effect, which is associated with

a large sensitivity to f, occurs in about 3% of the cases.

Note that for a more complete analysis of the uncer-

tainties of the resulting SAL values, it would be impor-

tant to also consider the uncertainties associated with

the observational dataset, for instance, through proba-

bilistic upscaling by ensembles of stochastic simulations

conditioned to the available observations (Ahrens and

Beck 2008).

Now considering the performance of the global

ECMWF model (Fig. 7b), a striking difference occurs.

Almost all forecasts are characterized by positive val-

ues of S. Compared to the results for COSMO-aLMo,

the entire distribution is shifted toward the right, indi-

cating that the global model produces too large and/or

too flat precipitation objects. This is not surprising,

given the coarser model resolution; however, unlike

classical error scores, SAL is able to identify and quan-

FIG. 7. SAL diagrams for the daily precipitation forecasts of the (a) COSMO-aLMo and (b) ECMWF models

during the summer seasons 2001–04 in the German part of the Elbe catchment. Every dot shows the values of the

three components of SAL for a particular day. The L component is indicated by the color of the dots (see grayscale

in top left). Median values for the S and A components are shown as dashed lines, and the gray box extends from

the 25th to the 75th percentile of the distribution of S and A, respectively. See section 4b for more details.
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tify this specific characteristic of the forecasts. Consid-

ering the two other aspects (A and L components), the

two models perform similarly, except that strongly

negative values of A occur less frequently for the global

model. Note also that the number of missed events and

false alarms is slightly larger for the regional model. In

summary, SAL indicates that in the considered area,

summertime QPFs from the higher-resolution regional

model are superior to the ones from the global model,

because they are superior in capturing the structure of

the precipitation objects.

c. Comparison with persistence and random

forecasts

For a statistical investigation of the SAL results pre-

sented in the previous subsections, the SAL technique

has also been applied to sets of persistence and random

forecasts, respectively. This is important to assess the

quality of NWP model predictions relative to standard

reference forecasts. Both reference forecasts are based

on the observational dataset described in section 4a and

therefore independent of a particular NWP model. For

the persistence forecasts, observations from a given day

are used as predictions for the next day. For the random

forecasts, for every day, a forecast field has been ran-

domly chosen among the set of observed fields, in such

a way that every observed field is chosen once as a

forecast. In other words, every observed field is consid-

ered once as the observations and once as the forecast.

The results of these experiments are shown in Fig. 8.

Clearly, in both cases there are much fewer SAL values

in the center of the diagrams. The median values of A

and S are close to zero, which should be expected be-

cause of the symmetry in the construction of the ex-

periments. The median values of L are about 0.3 for the

persistence and almost 0.5 for the random forecasts,

respectively. They are both larger than the correspond-

ing values for the NWP model forecasts (see Fig. 7).

The interquartile distances of A and S (i.e., the gray

boxes) are much larger than in Fig. 7, which statistically

corroborates the quality of the QPFs from the numeri-

cal models, at least for a significant portion of the fore-

casts. Table 4 provides quantitative information on this

issue. The radius � of a sphere in the three-dimensional

space spanned by the components of SAL has been

calculated, which contains the best 5%, 10%, 20%, and

50% of the forecasts. The values reveal that at least

20% of the COSMO-aLMo forecasts are better than

the 5% best random forecasts, and 50% of the

COSMO-aLMo forecasts are better than the best about

25% of the random forecasts. Comparing with the

SAL values of the examples discussed in section 4a

TABLE 4. Radius � of the sphere in SAL space that contains the

best 5%, 10%, 20%, and 50% of the forecasts, for the NWP model

COSMO-aLMo and for the persistence and random forecasts.

Forecast

� for best forecasts

5% 10% 20% 50%

COSMO-aLMo 0.30 0.40 0.55 1.05

Persistence 0.35 0.55 0.85 1.45

Random 0.55 0.70 0.95 1.65

FIG. 8. SAL diagrams for (a) persistence and (b) random forecasts. Plot conventions as in Fig. 7. See section 4c

for details.
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(cf. Table 3) indicates that example 1 belongs to the 5%

best COSMO-aLMo forecasts, and example 3 to the

best 15%. These forecasts are better than random fore-

casts with a statistical significance of more than 95%. In

contrast, the QPFs shown in examples 2 and 4 score

rather poorly (S 
 1.5) and have a quality that is met

also by about 50% of the persistence or random fore-

casts.

Note that similar to the results for the COSMO-

aLMo model (Fig. 7a), the SAL values for the persis-

tence and random forecasts are rarely in the second and

forth quadrants of the diagram (Fig. 8). This indicates

that the predominance of SAL values in the first and

third quadrants, found for COSMO-aLMo, is not a par-

ticular feature of the model but a rather intrinsic char-

acteristic of SAL. It reflects the fact that it is difficult to

strongly overestimate the amount of precipitation with

too-small objects (and vice versa). In contrast, the shift

toward positive values of S for the ECMWF model (Fig.

7b) points to a systematic deficiency of the coarser-

scale global model in realistically capturing the struc-

ture of precipitation events.

5. Discussion

A novel quality measure, SAL, has been introduced

for the verification of QPFs. It can be categorized as an

object-oriented verification approach, with the specific

characteristics outlined at the end of section 1. The

three components of SAL quantify distinct aspects of

the quality of a QPF, which are associated with the

structure, amplitude, and location of the precipitation

field. These three components describe aspects of QPF

quality that are directly relevant to forecast users. Con-

sider, for example, the hydrological modeling for a river

catchment: the A component is based on the catchment

mean precipitation and hence describes the overall bias

in the precipitation input to the hydrological model.

Obviously, errors in A can be expected to result in

systematic runoff biases. On the other hand, the L com-

ponent describes the accuracy with which precipitation

is located/distributed between several subcatchments.

Forecasts with nonzero L would give rise to random

errors in the resulting river runoff. Finally, the S com-

ponent specifically addresses the effect of QPF errors in

connection with the nonlinear processes at the soil sur-

face. The spatial intensity distribution is critical for the

repartitioning of precipitation water between surface

runoff and infiltration into soils. A nonzero value of S

in the time mean will affect the soil water balance even

when the domain mean value is correct (i.e., A � 0).

Moreover, it has consequences on the frequency statis-

tics of runoff, unless compensated for by other errors.

Altogether, SAL is a quality measure that helps the

user to anticipate effects of QPF limitations in a hydro-

logical application.

The SAL technique has been tested with synthetic

fields and applied to forecasts from a regional and glob-

al NWP model, as well as to persistence and random

forecasts. To this end, it was important to have all

datasets (observations and forecasts) available on the

same grid. It was shown that for case studies, SAL can

provide meaningful and quantitative information about

QPF errors. When applied to a large set of QPFs, it

pinpointed the generally more realistic structure of pre-

cipitation events as one of the major advantages of

QPFs from high-resolution models. It was also shown

that the COSMO-aLMo model performed significantly

better than random forecasts that are not based on a

NWP model.

In the following paragraphs, a few aspects will be

discussed in more detail, related to the choice of the

threshold for the definition of objects, absolute versus

relative quality measures, and alternative definitions of

the components S and L. Also, possibilities for future

extensions and applications of SAL are mentioned

briefly.

In contrast to other object-oriented verification ap-

proaches (e.g., Ebert and McBride 2000; Davis et al.

2006a), no fixed precipitation threshold is used to iden-

tify the objects. The advantage of a fixed threshold is

that verification can focus on a particular category, for

instance, of intense events, and the statistical results are

not blurred by (very) weak events that might be of less

interest. However, specification of a fixed threshold ex-

cludes poor forecasts from an object-oriented verifica-

tion in situations in which the threshold is not exceeded

in either the model (“missed events”) or the observa-

tions (“false alarms”). This leads to a positive bias in

the object-oriented evaluation of a model’s QPF per-

formance, because only reasonably good forecasts en-

ter the statistics. It is for this reason that we adopted an

alternative approach and used a flexible threshold for

the identification of objects, which in general differs in

the forecast and observations. With this approach, very

few days are excluded from the analysis (only when one

of the two datasets contained no precipitation in the

entire domain). The possibility still exists to stratify the

results according to the observed intensity of the events

and thereby to learn more about the QPF performance

for weak, medium, and intense events. Such an analysis

is documented in Paulat (2007).

Another difference, for instance, to the CRA method

by Ebert and McBride (2000) is that the three compo-

nents of SAL are not absolute but relative (dimension-

less) measures. The motivation for the use of relative

measures is that they potentially allow a direct com-
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parison of the QPF performance during weak and in-

tense precipitation events.

A third and important difference is that our defini-

tions of the three components do not follow from a

mathematical decomposition of a well-known error

measure (like the mean-squared error in case of the

CRA technique). This renders the definition of the

components subjective, at least to a certain degree. The

advantage, however, is that the components can be tai-

lored such that they become close to a subjective visual

judgment. In any case, other definitions would be pos-

sible and could be regarded as variants of the SAL

technique proposed here. For instance, instead of an

absolute displacement component L1, a vector location

error L1 would provide additional information about

the direction of the displacement. Alternatively, the

Hausdorff distance metric could serve as a more sophis-

ticated approach to define a location error component

(Venugopal et al. 2005). For the structure component,

the volume of the scaled precipitation objects has been

used as the key parameter. A simpler possibility would

be to use the objects’ base area. However, this would

lead to a loss of information, because no distinction

would be possible between peaked and flat objects. In

contrast, a more refined alternative would be to use the

surface of the objects instead of their volume. This

would allow to additionally distinguish, for instance,

between right circular cones and right elliptic cones

with the same base area, because these objects have the

same volume but not the same surface. Such an exten-

sion of S would be desirable; however, the accurate

computation of the surface of complex-shaped precipi-

tation objects is not straightforward and for this reason

has not been pursued in this study.

In the future, SAL will be applied to assess the QPF

performance of several models on daily and hourly time

scales. Currently, several forecasting centers are about

to introduce operational short-range forecasts with

high-resolution, convection-resolving model versions

(e.g., at the German Weather Service, the 21-h

COSMO-DE forecasts with a horizontal resolution of

2.8 km). There are considerable expectations that this

new model generation can significantly advance QPF

quality and overcome some of the inherent problems

with the parameterization of deep convection (Ebert et

al. 2003; Fritsch and Carbone 2004). Model case studies

without parameterized convection (e.g., Steppeler et al.

2003; Done et al. 2004; Trentmann et al. 2007) indicate

that this new category of NWP models provides a more

accurate depiction of the physics of convective systems

(e.g., cold pool formation and the organization of the

systems). However, for single cases, this does not nec-

essarily imply an improved QPF performance (Zhang

et al. 2006). First statistical investigations indicate an

improved prediction of larger accumulations when us-

ing convection-resolving models compared to coarser-

scale models with parameterized convection (Mitter-

maier 2006, using the technique introduced by Casati et

al. 2004). Also, as found by Davis et al. (2006b), a con-

vection-resolving version of WRF tends to delay the

onset of precipitation systems, which then last too long

and are characterized by a too-broad intensity distribu-

tion. It will be interesting to compare QPFs from the

two categories of NWP models with the SAL tech-

nique.

Another application of SAL will be to quantitatively

analyze QPF differences in case study sensitivity ex-

periments, where model numerics, physical parameter-

izations, or the initial and boundary data are varied to

assess the importance of this NWP component for QPF

accuracy. Here, SAL might be useful to categorize the

simulation differences in terms of key aspects of the

precipitation field. Along the same lines, forecasts from

an ensemble prediction system could be compared to

observations and the ensemble spread of the precipita-

tion forecast expressed in terms of the three compo-

nents of SAL. Also, SAL can be used to compare the

characteristics of different climatological precipitation

datasets, for instance, provided by regional climate

models and satellite retrieval methods (Früh et al.

2007).
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