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Abstract. We show that not every Salem number appears as the growth rate of a
cocompact hyperbolic Coxeter group. We also give a new proof of the fact that the growth
rates of planar hyperbolic Coxeter groups are spectral radii of Coxeter transformations,
and show that this need not be the case for growth rates of hyperbolic tetrahedral Coxeter
groups.

1. Introduction

Let P ⊂ Hn be a compact hyperbolic Coxeter polyhedron of dimension n ≥ 2.
This means that P is a convex polyhedron bounded by N ≥ n+ 1 hyperbolic
hyperplanes H1, . . . ,HN that either intersect under a dihedral angle of the form
π/k for an integer k ≥ 2 or admit a common perpendicular in Hn. The group
generated by the reflections ri in the hyperplanes Hi, 1 ≤ i ≤ N, is a discrete
group G ⊂ IsomHn called a (cocompact) hyperbolic Coxeter group. When N is
small, their quotient spaces Hn/G give rise to hyperbolic orbifolds and manifold
covers enjoying particularly nice extremality properties. The simplest examples
of hyperbolic Coxeter groups arise from Coxeter k-gons P = (p1, . . . ,pk)⊂H2, for
k≥ 3, where the integers p1, . . . ,pk ≥ 2 satisfy 1/p1 + · · ·+1/pk <k−2. In particular,
there exist infinitely many non-isometric Coxeter polygons. Furthermore, a well-
known result of Siegel states that the hyperbolic 2-orbifold of minimal volume
originates from the Coxeter triangle (2,3,7).

A hyperbolic Coxeter group is a geometric realisation of a certain abstract
Coxeter system. A Coxeter system (W,S) of rank N consists of a group W with
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finite generating set S = {s1, . . . ,sN} and with relations (sisj)mij = 1 for all in-
dices i, j. Here the integers mij satisfy mii = 1 and mij = mji ∈ {2,3, . . . ,∞},
otherwise. An exponent mij =∞ indicates that the product sisj is of infinite
order. The growth series fS(t) of (W,S) is given by

fS(t) = 1 +
∑
k≥1

akt
k,

where ak ∈ Z equals the number of words w ∈W with S-length k, and it charac-
terises the complexity of W . By a result of Steinberg, fS(t) is a rational function
that depends on the set of finite subgroups of W . The inverse τ = 1/R of the radius
of convergence R of fS(t) is a real algebraic integer called the growth rate of W ,
or also the growth rate of its Coxeter polyhedron.

For a hyperbolic Coxeter group G ⊂ IsomHn, the growth rate satisfies τ > 1
so that G is of exponential growth. More specifically, for G compact, results of
Floyd, Plotnick and Parry imply that τ is a Salem number or a quadratic unit
when n = 2 or n = 3. Recall that a Salem number is a real algebraic integer > 1
such that all Galois conjugates have absolute value not greater than 1 and at
least one of them has absolute value equal to 1. An interesting example is given
by the growth rate of the reflection group associated with the Coxeter triangle
(2,3,7). It is equal to Lehmer’s number αL ≈ 1.176281 with minimal polynomial
L(t) = t10 + t9− t7− t6− t5− t4− t3 + t+1. Observe that αL is the smallest Salem
number known to date.

In reverse, our first main result sheds light on the realisation of Salem numbers
as growth rates of hyperbolic Coxeter groups and their polyhedra.

Theorem 1. Not every Salem number is the growth rate of a compact hyperbolic
Coxeter polyhedron.

Consider an abstract Coxeter system (W,S) of rank N together with its natural
representation as a discrete group of reflections in GLN (V ) for a certain quadratic
real vector space V . A Coxeter element c ∈W is a word of S-length N so that
every generator in S appears exactly once. Its representative C ∈GLN (V ) is called
a Coxeter transformation. By means of its order and the eigenvalue spectrum, one
can decide about the nature of W . For example, W is finite if and only if C is of
finite order; see [15].

For integers p1, . . . ,pk ≥ 2, consider the star graph Star(p1, . . . ,pk) given by the
tree with one vertex of valency k that has k outgoing paths of respective lengths
pi− 1. Such a graph describes a Coxeter system (W,S) as follows. Each node s
of the graph yields a generator in S, and the relations of W = 〈S〉 are defined
by s2 = 1, by (st)3 = 1 if the nodes s, t are joined by an edge, and by (st)2 = 1,
otherwise.

Our second main result establishes a bridge between the growth rates of reflecti-
on groups of planar hyperbolic Coxeter groups and the spectral radii of Coxeter
transformations of suitably parametrised star graphs.
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Theorem 2. Let k≥ 3, p1, . . . ,pk ≥ 2 be integers with 1/p1 + · · ·+ 1/pk <k− 2.
Then the growth rate of the reflection group given by the compact Coxeter k-
gon (p1, . . . ,pk) in H2 equals the spectral radius of the Coxeter transformation
of Star(p1, . . . ,pk).

This result is implicitly stated in the work of E. Hironaka [13] and based on
a connection to Alexander polynomials of pretzel links and the theory of fibered
knots and links [12], [14]. Our method of proof of Theorem 2 is different and does
not use any topology. Instead, we provide and exploit explicit recursion formulas.

Conversely, for dimensions n > 2, we show that not every growth rate of a
compact Coxeter polyhedron in Hn is equal to the spectral radius of a Coxeter
transformation. In fact, in contrast to the Coxeter tetrahedron with Coxeter symbol
[4,3,5], the growth rate of the Coxeter tetrahedron [3,5,3] is not equal to the
spectral of a Coxeter transformation. Note that the tetrahedron [4,3,5] has minimal
volume among all hyperbolic Coxeter tetrahedra while [3,5,3] has minimal growth
rate among all Coxeter polyhedra in H3.

The paper is organised as follows. In Section 2, we recall in the first part 2.1 the
essential concepts of Coxeter group, Coxeter graph and Coxeter transformation. In
the second part 2.2, we describe hyperbolic Coxeter polyhedra and their associated
reflection groups. Some examples provide a glimpse into the wealth of hyperbolic
Coxeter groups which–in contrast to the spherical and affine Coxeter groups–are far
from being classified; see [33] and [8], for example. In Section 3, we review the basic
notions of growth series and growth rate of a Coxeter system. The partial order on
the set of Coxeter systems and its implication for growth rates and minimality of
certain Coxeter systems are presented. These aspects will be useful tools in some of
our proofs. This first part 3.1 is completed by a brief discussion of the connection
of certain growth rates with Salem numbers. In part 3.2, we identify the planar
hyperbolic Coxeter group having the second smallest growth rate as a preparation
to prove Theorem 1. Section 4 is devoted to the proof of Theorem 2, and in Section
5, we show that not every growth rate of a hyperbolic Coxeter group is the spectral
radius of a Coxeter transformation.

Acknowledgements. The authors would like to thank Yohei Komori for some
helpful comments on an earlier draft of the article.

2. Geometric Coxeter groups

2.1. Coxeter groups and Coxeter elements

A Coxeter system (W,S) is a group W with finite generating set S = {s1, . . . ,sN}
and with the relations (sisj)mij = 1 for all indices i, j, where the integers mij satisfy
mii = 1 and mij = mji ∈ {2,3, . . . ,∞}, otherwise. Here, mij =∞ means that the
product sisj is of infinite order. The group W is a Coxeter group of rank N. Given
a Coxeter system (W,S), the corresponding Coxeter diagram Γ is the weighted
graph whose vertices v1, . . . ,vN correspond to the generators s1, . . . ,sN , and an
edge of weight mij joins vi to vj when mij ≥ 3. Edge weights are typically omitted
if they equal 3.
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Coxeter groups admit a canonical geometrical representation. Let V be a real
vector space with basis e1, . . . ,eN , where the vector ei corresponds to the gene-
rator si of S, say. Equip V with the symmetric bilinear form B defined by

B(ei,ej) =
{
−cos(π/mij) mij <∞ ;
−1 mij =∞. (1)

The geometric representation ρ :W →GLN (V ) defined by

ρ(si)(v) = v−2B(ei,v)ei (v ∈ V )

associates to each generator si the corresponding reflection ri = ρ(si) with respect
to the subspace Hi = {v ∈ V |B(ei,v) = 0}. The map ρ preserves the form B and is
faithful with discrete image. In this context, it is not difficult to see that the group
W is finite if and only if the form B is positive definite. Suppose that (W,S) is
irreducible, that is, its Coxeter diagram Γ is connected. Then W is called spherical
or affine if the form B is of signature (N,0) or (N−1,0), respectively. The spherical
and affine Coxeter groups are completely classified for arbitrarily large N (see [16]
for details).

Let (W,S) be a Coxeter system of rank N . A word c ∈W of S-length N so
that every generator in S appears exactly once is called a Coxeter element. If the
Coxeter diagram Γ is a tree, then the different Coxeter elements form a single
conjugacy class in W by a result of Steinberg [30]. The image C = ρ(c) ∈GLN (V )
of a Coxeter element c ∈W is called a Coxeter transformation. By means of its
order and its eigenvalues one can decide about the nature of W ; see [1] and [15].
In particular, the Coxeter group W is finite and spherical if and only if the order
of c is finite. Consider the Coxeter adjacency matrix A = 2I−2B of the Coxeter
diagram Γ. If Γ is a tree and α is the leading eigenvalue of A, then the spectral
radius λ of the Coxeter transformation C satisfies the equation

α2 = 2 +λ+λ−1. (2)

For a reference, see McMullen [23]. We note that if all the weights of the Coxeter
diagram Γ are equal to 3, then the Coxeter adjacency matrix A equals the adjacen-
cy matrix of the underlying abstract graph.

2.2. Hyperbolic Coxeter groups
Let Hn denote the standard hyperbolic n-space in its linear model

Hn =
{
x ∈ Rn+1 | qn,1(x) = x2

1 + · · ·+x2
n−x2

n+1 =−1, xn+1 > 0
}
.

In this setting, a hyperbolic hyperplane H is given by the intersection of Hn
with the Lorentzian-orthogonal complement eL of a (space-like) vector e ∈ Rn+1

normalised to be of norm qn,1(e) = 1. The reflection r = rH with respect to the
hyperbolic hyperplane H of Hn is given by x 7→ r(x) = x− 2〈e,x〉n,1 e where
〈x,y〉n,1 denotes the bilinear form of signature (n,1) associated with qn,1. The
isometry group of Hn is given by the group O◦(n,1) of positive Lorentzian matrices;
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see [27, Chap. 3]. Notice that each isometry is a finite composition of reflections
in hyperbolic hyperplanes.

A Coxeter polyhedron P ⊂Hn is a convex polyhedron all of whose dihedral angles
are of the form π/m for an integer m ∈ {2,3, . . . ,∞}. We always assume that P is
of finite volume and hence bounded by finitely many hyperplanes H1, . . . ,HN with
N ≥ n+1. Represent each hyperplane Hi = eLi by a unit normal vector ei directed
away from P so that the half-space H−i = {x ∈ Hn | 〈x,ei〉n,1 ≤ 0} contains P .
In particular, P =

⋂N
i=1H

−
i . For i = 1, . . . ,N , the reflections ri with respect to

Hi generate a discrete group G = (G,S) of hyperbolic isometries with generating
set S = {r1, . . . , rN}. The elements of S satisfy r2

i = 1 and, for i 6= j, the rotation
relations (rirj)mij = 1 if mij <∞. In particular, the exponents mij are symmetric
with respect to i, j, and when finite, they are closely related to the dihedral angles
formed by Hi,Hj when intersecting in Hn. Products rirj of infinite order can be
described in a geometric way as well (see below). As a consequence, the group G is
a Coxeter group which we call a hyperbolic Coxeter group. Furthermore, the group
G can be described by a Coxeter diagram Γ as above.

Consider the Gram matrix Gram(P ) =
(
〈ei,ej〉n,1

)
whose entries are described

as follows:

〈ei,ej〉n,1 =

−cos(π/mij) if Hi,Hj intersect at π/mij in Hn;
−1 if Hi,Hj meet at ∂Hn forming the angle 0;
−cosh(lij) if Hi,Hj are at distance lij > 0 in Hn.

(3)

Many combinatorial and geometric features of P can be read off from its Gram
matrix Gram(P ); see [33]. For example, the polyhedron P is a compact n-simplex
if Gram(P ) is an indecomposable and invertible matrix of signature (n,1) such
that all principal submatrices are positive definite.

In view of (3), a product rirj is of infinite order if the hyperplanes Hi,Hj are
(hyperbolic) parallel or at distance lij in Hn. We take this additional information
into account and describe the Coxeter polyhedron P and its Coxeter group
G= (G,S) by means of their Coxeter diagram Γ as follows. If Hi,Hj meet at ∂Hn,
then we join the nodes vi,vj by a bold edge (omitting the weight ∞); if Hi,Hj are
at distance lij > 0 in Hn, then vi,vj are joined by a dotted edge (usually without
the weight lij). In [9, Thm. A], Felikson and Tumarkin showed that the Coxeter
diagram of a compact Coxeter polyhedron in Hn has always a dotted edge if n≥ 5
(compare also with Example 3 below).

In the case that the Coxeter polyhedron P is bounded by only a few hyperplanes,
its description by the Coxeter symbol is more convenient. For example, [p1, . . . ,pk]
or [q1, . . . , ql,∞] with integer labels pi, qj ≥ 3 are associated with linear Coxeter
diagrams with k or l+ 1 edges marked by the respective weights. The Coxeter
symbol [(pk, q)] describes a cyclic Coxeter diagram with k ≥ 1 consecutive edge
weights p followed by the weight q; see [17, Appendix], for example.

Example 1. Let k ≥ 3 and p1, . . . ,pk ≥ 2 be integers. A compact Coxeter k-gon
P = (p1, . . . ,pk) with interior angles π/p1, . . . ,π/pk exists in H2 if and only if its
(normalised) angle sum satisfies 1/p1 + · · ·+ 1/pk < k−2.
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Example 2. As in the 2-dimensional case, there are infinitely many non-isometric
compact Coxeter polyhedra in H3. Their description is not of the same elementary
nature as in Example 1, but there is a complete characterisation due to Andreev;
see [28], for example.

Example 3. Compact Coxeter n-simplices were classified by Lannér and exist for
n ≤ 4 only (see [34, Part II, Chap. 5]). Of particular interest will be the Coxeter
tetrahedra given by the symbols [3,5,3] and [4,3,5]. Due to work of Koszul and
Chein, non-compact Coxeter n-simplices are classified as well and exist for n≤ 9.
All their volumes are computed in [17].

Example 4. Compact Coxeter polyhedra with mutually intersecting bounding
hyperplanes exist in Hn for n ≤ 4, only. Such a polyhedron is either a simplex
or one of the seven Esselmann polyhedra. These results are due to Felikson and
Tumarkin [9, Thm. A]. For more detailed information, see [8].

3. Salem numbers and growth rates

3.1. Growth series and growth rates
For a Coxeter system (W,S) with generating set S = {s1, . . . ,sN} we introduce
the notion and review the relevant properties of the growth series of (W,S); for
references, see [1], [18] and [19]. The growth series fS of W is given by

fS(t) =
∑
w∈W

tlS(w) = 1 +
∑
k≥1

akt
k,

where ak ∈ Z equals the number of words w ∈W with S-length k. By Steinberg’s
formula,

1
fS(t−1) =

∑
WT <W

|WT |<∞

(−1)|T |

fT (t) , (4)

where WT , T ⊂ S, is a finite Coxeter subgroup of W , and where W∅ = {1}. By
a result of Solomon, the associated growth polynomials fT are given explicitly in
terms of their exponents n1, . . . ,np according to

fT (t) =
p∏
i=1

[ni+ 1]. (5)

Here we use the standard notations [l] := 1 + t+ · · ·+ tl−1. By replacing t by t−1,
one gets [l](t) = tl−1[l](t−1).

For the exponents n1 = 1,n2, . . . ,np of GT , see [7, Sect. 9.7], for example.
In particular, the dihedral group Dl2, l ≥ 2, has exponents 1, l− 1 and growth
polynomial [2][l]. As a consequence, in its disk of convergence, the growth series
fS(t) of a Coxeter system (W,S) is a rational function and quotient of coprime
monic polynomials p(t), q(t) ∈ Z[t] of equal degree. The growth rate τW = τ(W,S) is
defined by

τW = limsup
k→∞

k
√
ak
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and equals the inverse of the radius of convergence R of fS(t).
Growth rates satisfy a nice monotonicity property on the partially ordered set

of Coxeter systems. For two Coxeter systems (W,S) and (W ′,S′), one declares
(W,S) ≤ (W ′,S′) if there is an injective map ι : S→ S′ such that mst ≤m′ι(s)ι(t)
for all s, t ∈ S. If ι extends to an isomorphism between W and W ′, one writes
(W,S)' (W ′,S′), and (W,S)< (W ′,S′) otherwise. In the latter case, we often say
that the Coxeter system (W ′,S′) dominates the system (W,S). This partial order
satisfies the descending chain condition since mst ∈ {2,3, . . . ,∞} where s 6= t. In
particular, any strictly decreasing sequence of Coxeter systems is finite, which, in
the hyperbolic case, leads to the notion of minimal hyperbolic Coxeter systems;
see [23]. In this context, we shall exploit the following result of Terragni [31, Sect.
4.3].

Lemma 1. If (W,S)≤ (W ′,S′), then τ(W,S) ≤ τ(W ′,S′).

Example 5. Instead of defining and ordering (abstract) Coxeter systems, we
indicate their ordering on the level of Coxeter graphs. Consider the Coxeter graphs
ordered according to Figure 1:

s s s s s s s ss��TT≤ ≤8 ∞
∞

Figure 1: The naturally ordered Coxeter systems [3,8] ≤ [3,∞] ≤ [(32,∞)]

Then, by Lemma 1, we deduce that τ[3,8] ≤ τ[3,∞] ≤ τ[(32,∞)].

Consider a hyperbolic Coxeter group G = (G,S) with set S of generating ref-
lections in hyperplanes of Hn as usual. By [6, Corollary, p. 376], if the Coxeter
polyhedron P of G is compact, then the rational function f(t) = fS(t) is reciprocal
(resp. anti-reciprocal) for n even (resp. n odd), that is

f(t−1) =
{
f(t) for n≡ 0(2);
−f(t) for n≡ 1(2). (6)

As a consequence of (4)–(6), the growth function of a compact hyperbolic Coxeter
polygon P = (p1, . . . ,pk)⊂H2 can be determined as follows. Since

1
f(t) = 1

f(t−1) = 1− k

[2] +
k∑
i=1

1
[2][pi]

, (7)

one deduces that (see also [10, Sect. 2])

f(t) =: [2] [p1] · · · [pk]
∆p1,...,pk

(t) = [2] [p1] · · · [pk]

[2] [p1] · · · [pk]−
k∑
i=1

t [p1] · · · [pi−1] · · · [pk]
. (8)

In general, the growth rate τG = τP = 1/R of G (and of P ) is an algebraic integer
which, by results of Milnor and de la Harpe, is always strictly bigger than 1.
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By results of Floyd, Plotnick and Parry (see also [21]), the growth rate τP of a
compact Coxeter polyhedron P ⊂ Hn with n = 2 and n = 3 is either a quadratic
unit or a Salem number, that is, τP is a real algebraic integer > 1 all of whose
Galois conjugates have absolute value not greater than 1 and at least one of them
has absolute value equal to 1.

The smallest Salem number known to date is Lehmer’s number αL ≈ 1.176281
with minimal polynomial L(t) = t10 + t9− t7− t6− t5− t4− t3 + t+1. By a result of
E. Hironaka [12] (see also [19]), Lehmer’s number αL is the minimal growth rate τ1
among all τP with P a compact hyperbolic Coxeter polygon, and it is realised by
the triangle P = (2,3,7) in a unique way. In this context, recall Siegel’s result that
the associated Coxeter group [3,7] yields the (unique) minimal volume quotient
space among all hyperbolic 2-orbifolds of finite volume; the second smallest hyper-
bolic 2-orbifold is given by the compact quotient space H2/[3,8]. In comparison
with αL, the growth rate τ2 of the triangle group [3,8] has minimal polynomial
t10− t7− t5− t3 + 1 and is ≈ 1.230391. By looking at the complete list (L) of all
Salem numbers of degree ≤ 44, which is due to Boyd, Mossinghoff and others (for a
survey, see [29]; for the list (L), see [24]), the growth rate τ2 is the seventh smallest
Salem number in the list (L), only.

For compact Coxeter polyhedra P ⊂ H3, the smallest growth rate has been
determined by Kellerhals and Kolpakov in [19]. It is realised by the Coxeter group
[3,5,3] in a unique way and of value ≈ 1.350980 with minimal polynomial t10−
t9− t6 + t5− t4− t+1. In this way, τ[3,5,3] is bigger than the first 47 smallest Salem
numbers as listed in (L).

Remark 1. It is interesting to compare the compact Coxeter tetrahedra [3,5,3] and
[4,3,5]. In contrast to the growth rate, the volume of [4,3,5] is smaller than the
one of [3,5,3]; see [17, Appendix]. However, the Coxeter diagram of [3,5,3] has an
internal symmetry, and by results of Martin and his co-authors (see [22] and the
references therein), the quotient of H3 by the Z2-extension of the group [3,5,3] has
smallest volume among all hyperbolic 3-orbifolds.

Note that for higher dimensional Coxeter polyhedra P ⊂ Hn, n ≥ 4, there are
many examples whose growth rates are not Salem numbers anymore. A simple
example is given by the compact right-angled 120-cell C ⊂H4 with f0 = 600 vertices
and f3 = 120 dodecahedral facets. As a consequence of [20, Prop. 3.2], the growth
function f(t) of C is given by

f(t) = [2]4

t4−116 t3 + 366 t2−116 t+ 1 ,

whose denominator polynomial is irreducible over Z with two inversive pairs of
positive real roots. In particular, the growth rate τC ≈ 112.763387 is not a Salem
number. In [32], Umemoto constructed an infinite sequence of non-isometric 4-
dimensional compact Coxeter polyhedra whose growth rates are real 2-Salem num-
bers. These are algebraic integers α> 1 which have exactly one conjugate β outside
the closed unit disk, and at least one conjugate on the unit circle. Then all other
conjugates of α different from α−1, β and β−1 lie on the unit circle. As in the
case of Salem numbers and their minimal polynomials, called Salem polynomials,
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the minimal polynomial or 2-Salem polynomial of α is an irreducible palindromic
polynomial of even degree.

Remark 2. In general, it is a difficult problem to decide whether a palindromic
monic polynomial p(t) ∈ Z[t] is irreducible. Specifically, for a palindromic monic
polynomial with four simple roots that are positive real and the other roots on the
unit circle, it is difficult to decide whether it is a 2-Salem polynomial or splits into
two Salem polynomials and possibly cyclotomic polynomials over Z.

In [4, Thms. 6.3, 7.1] (see also [5, Thm. 2.12]), Cannon provides a necessary
and sufficient condition for p(t) to be a Salem polynomial, and he showed that the
growth rate of a compact hyperbolic 4-simplex is not a Salem number.

Remark 3. Salem numbers and real 2-Salem numbers are special Perron numbers.
A Perron number is a real algebraic integer > 1 all of whose conjugates are of
strictly smaller absolute value. In [20], Kellerhals and Perren formulate a conjecture
which can be stated in a modified way as follows: For every n≥ 2, the growth rate
of a hyperbolic Coxeter n-polyhedron is a Perron number. By means of the software
package CoxIter [11] and its webversion, both due to Guglielmetti, one verifies that
the conjecture is true for all known hyperbolic Coxeter polyhedra of finite volume.

3.2. Not every Salem number appears as a growth rate
With these preliminaries, we are now ready to prove that not every Salem number
is the growth rate of a hyperbolic Coxeter group. As a first step, we consider
hyperbolic Coxeter polygons whose growth rates are small Salem numbers and
prove the following result.

Proposition 1. The second smallest growth rate τ2 of a compact Coxeter polygon
in H2 is realised in a unique way by the triangle with Coxeter symbol [3,8]. The
Salem number τ2 ≈ 1.230391 has minimal polynomial t10− t7− t5− t3 + 1 and is
the seventh smallest Salem number in the list (L).

Proof. The strategy of the proof is similar to the one given for τ1 in [19, Sect.
4.1]. By Steinberg’s Formula 4 (see also (8)), the growth function f[3,8](t) of the
Coxeter triangle group [3,8] equals

f[3,8](t) = p(t)
t10− t7− t5− t3 + 1 ,

with a certain numerator polynomial p(t) ∈ Z[t].
Let P ⊂ H2 be a compact Coxeter polygon with number of vertices f0 and

associated Coxeter group G. Denote by π/kv the interior angle at the vertex v in
P . That is, the vertex stabiliser Gv ⊂G is the dihedral group Dkv

2 of order 2kv ≥ 4,
with growth polynomial [2][kv]. As a consequence,

1
f(t) =1− |S|[2] +

∑
v∈P

1
[2][kv] = 1− 1

[2]
∑
v∈P

{
1− 1

[kv]

}
=1− t

[2]
∑
v∈P

[kv−1]
[kv] =: 1− t

[2]
∑
v∈P

hv(t),
(9)
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where the help functions hv, v ∈ P, and their sum H(t) can be written in the form

hk(t) = hkv (t) = [n(k)]
[n(k) + 1] , H(t) :=

∑
v∈P

hk(t), (10)

since the exponents of the group Dkv
2 are equal to n1 = 1 and n2 = n(k) = kv−1.

By results of [19, Sect. 3.1], we have the following properties for the functions
hk(t) and [n] for all x ∈ (0,1].

(a) For all i < j, 0< hi(t)< hj(t)< 1.

(b) For any positive integer l, 2
[2] >

[l]
[l+ 1] .

In order to show that the growth rate τ for any compact Coxeter polygon P ⊂H2

which is not isometric to a Coxeter triangle [3,m] for m = 7,8 satisfies τ > τ[3,8],
it is sufficient to show that for each t ∈ (0,1/τ[3,8]], the value 1/f[3,8](t) is strictly
bigger than the corresponding value 1/f(t) for P . By the identities (9) and (10),
this means that we have to show that

H(t)>H[3,8](t) = 1
[2] + [2]

[3] + [7]
[8] for all t ∈ (0,1/τ[3,8]]. (11)

To this end, we consider three cases in terms of the number of vertices f0 ≥ 3.
Case 1. Let f0 ≥ 5, and consider compact Coxeter polygons with at least five

vertices. Here, all the interior angles may be equal to π/2. Hence, by (11) and (b),
we get the obvious estimate

H(t)≥ 5
[2] >H[3,8](t).

Case 2. Let f0 = 4, and consider hyperbolic Coxeter quadrilaterals P by noticing
that they may have at most three right angles. Hence, by the properties (a) and
(b) above, we get the estimate

H(t)≥ 3
[2] + [2]

[3] . (12)

Therefore, (11), (b), and (12) imply that a compact Coxeter quadrilateral has
strictly bigger growth rate than the triangle [3,8].

Case 3. Let f0 = 3, and let P be a Coxeter triangle with angular existence
condition 1/p+ 1/q+ 1/r < 1 for integers p,q,r ≥ 2. Hence, at most one angle
of P can be equal to π/2, for example. The angular existence condition and the
properties (a) and (b) imply that H must satisfy at least one of the following
inequalities.

H(t)≥ 1
[2] + [2]

[3] + [l]
[l+ 1] =:Hl(t) for l ≥ 7, (13a)

H(t)≥ 1
[2] + [3]

[4] + [4]
[5] =:H4(t)>H[3,8](t), (13b)

H(t)≥ 2 [2]
[3] + [3]

[4] =:H34(t)>H[3,8](t), (13c)
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with equality in (13a) only if l = 7 and therefore G ∼= [3,8]. Indeed, the first
inequality holds for all Coxeter triangles having angles π/2,π/3, and by comparison
with (11), the function Hl(t), l ≥ 7 does coincide with H[3,8](t) precisely for l = 7.
As for (13b), which concerns right-angled Coxeter triangles with no angle equal to
π/3, we consider the difference function ∆b(t) := H4(t)−H[3,8](t) for t ∈ (0,1]. A
straightforward computation yields

∆b(t) = t2F (t)
[2][3][5] (t2 + 1)(t4 + 1) ,

where F (t) = t8 + t7− t5− t4− t3 + t+1 = t7 +(1− t3)(1+ t− t5) so that ∆(t)> 0
on (0,1]. Finally, for (13c) and the comparison with Coxeter triangles with no
angle equal to π/2, we study the difference function ∆c(t) :=H34(t)−H[3,8](t) for
t ∈ (0,1]. One easily checks that

∆c(t) = t(1− t3 + t6)
[2][3] (t2 + 1)(t4 + 1) > 0 for t ∈ (0,1] .

Therefore, [3,8] has smallest growth rate among all compact planar Coxeter tri-
angles different from [3,7]. Hence, we proved our assertion. �

Remark 4. Consider the hyperbolic Coxeter triangles with Coxeter symbols [3,8]
and [3,∞], respectively. In contrast to [3,8], the Coxeter triangle [3,∞] is not
compact but still of finite area. By Steinberg’s formula (4), the difference of their
inverted growth functions satisfies

1
f[3,8](t)

− 1
f[3,∞](t)

= t9

[3][8] > 0 for t > 0 . (14)

This fact shows that τ2 = τ[3,8] < τ[3,∞] which sharpens the first part of the
estimate given in Example 5.

We are now ready to prove our first main result as given by Theorem 1 in
Section 1. It provides the answer to a question which the first author raised at the
Oberwolfach Mini-Workshop on Reflection Groups in Negative Curvature in April
2019.

Proof of Theorem 1. Let P ⊂Hn be a compact Coxeter polyhedron of dimension
n ≥ 2 and denote by G = (G,S) its associated Coxeter group. Let τ = τP = τG
be the growth rate of P and G. For n = 2, the smallest growth rate τ1 = τ[3,7]
equals the smallest known Salem number given by Lehmer’s number αL, and the
second smallest growth rate τ2 = τ[3,8] is the seventh smallest Salem number by
Proposition 1. Hence the five Salem numbers strictly in between τ1 and τ2 in the
list (L) of [24] do not appear as growth rates of compact Coxeter polygons in
H2. This holds, for example, for the fifth smallest Salem number ≈ 1.216391 with
minimal polynomial t10− t6− t5− t4 + 1.
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For n= 3, we know by [19, Sect. 3] that the minimal growth rate is the Salem
number with minimal polynomial t10− t9− t6 + t5− t4− t+ 1 and belongs to the
Coxeter tetrahedron [3,5,3]. Since τ[3,5,3] ≈ 1.350980, it follows that none of the
first 47 smallest Salem numbers as listed in (L) appear as growth rates of compact
Coxeter polyhedra in H3.

Suppose that n≥ 4. Our strategy is to show that the growth rate τP of a compact
Coxeter polyhedron P ⊂ Hn is either not a Salem number or satisfies τP > τ[3,8].
We distinguish between the two cases that (i) P has mutually intersecting facets
or that (ii) the polyhedron P has a pair of disjoint facets.

In case (i), we know by Example 4 that P is of dimension four and equals
either one of the five Coxeter simplices or one of the seven Esselmann polyhedra.
By Remark 2, the growth rates of the five Coxeter 4-simplices are not Salem
numbers anymore. For the seven Esselmann polyhedra Ei, the growth functions
fi(t), 1≤ i≤ 7, can be determined by means of Steinberg’s formula; see also [26, pp.
89–90]. This can also be achieved by using the software CoxIter [11]. Then, by
analysing the sign changes of the denominator polynomials of f(t), one checks
that the biggest real pole lies — roughly — between 1.90 and 2.61. The smallest
growth rate among the Esselmann polyhedra is ≈ 1.902812 and belongs to the
group with Coxeter symbol [8,3,4,3,8]. Hence, for 1≤ i≤ 7, the growth rate τi of
Ei satisfies τi > τ[3,8].

In case (ii), P has a pair of disjoint facets. It follows that the Coxeter group
G = (W,S) of rank N > 5 associated with P has a Coxeter diagram ΓG with a
dotted edge (see Section 2.2). Denote by v,w two nodes connected by a dotted
edge in ΓG. The product of the corresponding generators in S encoded by v,w is
of infinite order ∞. Consider the abstract Coxeter graph Γ of (W,S) that results
from ΓG by replacing all present bold and dotted edges by edges with weight ∞.
The graph Γ contains the edge of weight ∞ connecting the nodes v,w. Since Γ is
connected of order N > 5, there is a node u in Γ which is connected to one or both
of the nodes v,w by an edge with weight 2≤ k≤∞ and with weight 3≤ l≤∞, say.
The nodes u,v and w determine a subgraph Γuvw of Γ. Hence we get the following
sequence of ordered Coxeter graphs by taking into account Figure 1:

s s s s s s s ss��TTv w

u

k l≤ ≤ ≤ Γ8 ∞
∞

Figure 2: A sequence of ordered Coxeter graphs

By means of the growth rate monotonicity given by Lemma 1, combined with
Remark 4, (14), we deduce that τ[3,8] < τ[3,∞] ≤ τG as asserted. �

Remark 5. The proof of Theorem 1 shows that if the growth rate τP of a compact
hyperbolic Coxeter polyhedron P of dimension n ≥ 4 happens to be a Salem
number, then τP > τ[3,8]. However, there is no example known to date where this
is the case.
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4. The spectral radius of a Coxeter transformation

Consider an (abstract) Coxeter system (W,S) of rank N with finite gene-
rating set S = {s1, . . . ,sN} and associated Coxeter diagram Γ. Denote by c ∈W
a Coxeter element and represent it geometrically by its Coxeter transformation
C = ρ(c) ∈GLN (V ). Recall that all Coxeter elements are conjugate in W if Γ is a
tree. In this case, the spectral radius λ of C is related to the leading eigenvalue α
of the adjacency matrix of Γ by α2 = 2 +λ+λ−1 (see Section 2.1).

Recall that if all the weights of the edges of a Coxeter diagram Γ are equal to 3,
then the Coxeter adjacency matrix equals the adjacency matrix of the underlying
abstract graph. In this case, we will sometimes simply write “graph” instead of
“Coxeter diagram”. We will also write “Coxeter tree” to stress the case where the
underlying abstract graph of a Coxeter diagram is a tree.

We now define specific Coxeter diagrams that we use in this section.
Let k≥3 and p1, . . . ,pk≥2 be integers. Recall that the star graph Star(p1, . . . ,pk)

is defined to be the tree with one vertex of valency k that has k outgoing paths
of respective lengths pi− 1. For example, Star(2,3,7) the graph of the Coxeter
group E10.

Suppose now that 1/p1 + · · ·+1/pk < k−2, and consider the Coxeter diagram
Γ(p1, . . . ,pk) of the compact hyperbolic Coxeter polygon P = (p1, . . . ,pk)⊂H2 (see
Example 1). Recall that its growth rate τ is a Salem number.

The goal of the section is to prove our second main result as stated by Theorem 2
in Section 1.

For a Coxeter tree Γ, we denote by CΓ the associated Coxeter transformation
and by ΦΓ(t) its characteristic polynomial. Given a graph Γ and a vertex v of Γ,
we denote by Γ−v the subgraph obtained by deleting v and all its adjacent edges
from Γ. A leaf of a tree is a vertex of valency one.

Lemma 2. Let Γ be a Coxeter tree and let v be a leaf. Let v′ be the unique vertex
adjacent to v, and let m be the weight of the edge connecting v and v′. Then we
have the following identity in R[t]:

ΦΓ(t) = (1 + t) ·ΦΓ−v−4cos2
( π
m

)
t ·ΦΓ−v−v′(t).

Proof. Since the conjugacy class of the Coxeter transformation does not depend
on the Coxeter element, we are free to choose the bipartite Coxeter transformation
for our calculations. More precisely, we partition the vertices of Γ into two sets V1
and V2 so that all edges of Γ connect a vertex from V1 with a vertex in V2. We then
choose an ordering of the vertices of Γ so that all vertices in V1 appear before the
vertices of V2, and take the corresponding Coxeter element. See Figure 3 below for
an example of a bipartite ordering of the vertices of a tree. Now, let

(
0 X
X> 0

)
be

the adjacency matrix with respect to our chosen bipartite ordering of the vertices.
For the Coxeter transformation, we then get that

CΓ =
(−I X

0 I

)( I 0
X> −I

)
=−

(
I−XX> X

−X> I

)
=−

(
I X
0 I

)( I 0
−X> I

)
.
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For the characteristic polynomial, we obtain
ΦΓ(t) = det(t · I−CΓ) (15)

= det(t · I+
(
I X
0 I

)( I 0
−X> I

)
) (16)

= det(t ·
(

I 0
X> I

)
+
(
I X
0 I

)
). (17)

The matrix we are taking the determinant of can be chosen to have the form

0 0

(1 + t)I
...

... ∗
0 0

0 · · · 0 1 + t 2cos(π/m) ∗ · · · ∗
0 · · · 0 2cos(π/m)t 1 + t 0 · · · 0

∗ 0

∗
...

... (1 + t)I
∗ 0


,

where the two middle columns and rows correspond to the vertices v and v′. The
assertion follows by developing the column and the row that correspond to the
vertex v. �

We now specialise Lemma 2 to the trees given by star graphs Star(p1, . . . ,pk). In
order to do so, we first simplify our notation as follows. Let Cp1,...,pk

be the Coxeter
transformation of Star(p1, . . . ,pk), and denote by Φp1,...,pk

(t) the characteristic
polynomial of Cp1,...,pk

. The following statements follow directly from Lemma 2.
Lemma 3. Let p1, . . . ,pk ≥ 2 be integers.

(1) If pk ≥ 4, we have the following equality in Z[t]:
Φp1,...,pk

(t) = (1 + t) ·Φp1,...,pk−1(t)− t ·Φp1,...,pk−2(t).
(2) If pk = 3, we have the following equality in Z[t]:

Φp1,...,pk−1,3(t) = (1 + t) ·Φp1,...,pk−1,2(t)− t ·Φp1,...,pk−1(t).
Example 6. The Coxeter transformation of the star graph with k ≥ 1 arms of
length one has characteristic polynomial (t+ 1)k−1(t2− (k−2)t+ 1). This can be
verified, for example, by an inductive argument and Lemma 2.
Definition 1. For integers p1, . . . ,pk ≥ 2, define ∆p1,...,pk

(t) ∈ Z(t) by

∆p1,...,pk
(t) := [2]

k∏
i=1

[pi]
(

1− k

[2] +
k∑
i=1

1
[2][pi]

)
= [2]

k∏
i=1

[pi]−k
k∏
i=1

[pi]+
k∑
i=1

∏
j 6=i

[pj ].

Recall that for k ≥ 3 and 1/p1 + · · ·+ 1/pk < k− 2, the growth function fP (t)
of a compact hyperbolic polygon P = (p1, . . . ,pk) is reciprocal and given by (see
(6)–(8))

fP (t) =
[2]
∏k
i=1[pi]

∆p1,...,pk
(t) .
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Example 7. For p1 = · · ·= pk = 2, we obtain

∆2,...,2(t) = [2]k+1−k[2]k+k[2]k−1 = (t+ 1)k−1(t2− (k−2)t+ 1).

This polynomial equals the characteristic polynomial of the Coxeter transformation
of the star graph with k ≥ 3 arms of length one, see Example 6.

Proposition 2. Let p1, . . . ,pk ≥ 2 be integers. We have the following equality
in Z[t] :

∆p1,...,pk
(t) = Φp1,...,pk

(t).

In order to prove Proposition 2, we establish recursion formulas for the polyno-
mial ∆p1,...,pk

(t). These recursion formulas have the same form as the recursion
formulas we gave for the polynomial Φp1,...,pk

(t) in Lemma 3. This is the content
of the following lemma.

Lemma 4. Let p1, . . . ,pk ≥ 2 be integers.
(1) If pk ≥ 4, we have the following equality in Z[t]:

∆p1,...,pk
(t) = (1 + t) ·∆p1,...,pk−1(t)− t ·∆p1,...,pk−2(t).

(2) If pk = 3, we have the following equality in Z[t]:

∆p1,...,pk−1,3(t) = (1 + t) ·∆p1,...,pk−1,2(t)− t ·∆p1,...,pk−1(t).

Proof. We have

∆p1,...,pk
(t) = [2]

k∏
i=1

[pi]−k
k∏
i=1

[pi] +
k∑
i=1

∏
j 6=i

[pj ]

= [pk]
(

[2]
k−1∏
i=1

[pi]−k
k−1∏
i=1

[pi] +
k−1∑
i=1

∏
j 6=i,k

[pj ]
)

+
k−1∏
i=1

[pi]

= [pk]
(

∆p1,...,pk−1(t)−
k−1∏
i=1

[pi]
)

+
k−1∏
i=1

[pi]

= [pk]A+B,

where the polynomials A=
(

∆p1,...,pk−1(t)−
∏k−1
i=1 [pi]

)
and B =

∏k−1
i=1 [pi] do not

depend on pk. We now calculate

∆p1,...,pk
(t) = [pk]A+B

= ((1 + t)[pk−1]− t[pk−2])A+B

= (1 + t)([pk−1]A+B)− t([pk−2]A+B) .

If pk ≥ 4, the last line equals (1 + t) ·∆p1,...,pk−1(t)− t ·∆p1,...,pk−2(t), which
proves (1). On the other hand, if pk = 3, we have ([pk−2]A+B) = ∆p1,...,pk−1(t),
since [1] = 1. This proves (2). �
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Proof of Proposition 2. First of all, we note that we can permute the pi without
changing ∆p1,...,pk

(t) or Φp1,...,pk
(t). Repeatedly using the recursion formulas (1)

of Lemma 3 and Lemma 4, the statement can hence be reduced to the class of cases
where all pi are in the set {2,3}. Within this class, we now proceed by induction
on the number N of pi = 3.

We have two base cases, N = 0 and N = 1. If N = 0, we are in the case k
arbitrary and pi = 2 for all i. In this case, we are done by the Examples 6 and 7.
If N = 1, there are two possibilities to consider. If k = 1, then ∆3(t) = [4] = Φ3(t)
is a straightforward verification. If k ≥ 2, we use the recursion formulas (2) of
Lemma 3 and Lemma 4 to reduce the statement to the case N = 0.

For the inductive step, we assume that N ≥ 2. As before, we use the recursion
formulas (2) of Lemma 3 and Lemma 4 to reduce the statement to the case N−1.
This finishes the proof. �

We are now ready to prove our second main result.

Proof of Theorem 2. By definition, the spectral radius of the Coxeter transforma-
tion of the star graph Star(p1, . . . ,pk) equals the absolute value of the largest root
of Φp1,...,pk

(t). By Proposition 2, this in turn equals the absolute value of the
largest root of ∆p1,...,pk

(t).
For 1/p1 + · · ·+ 1/pk < k− 2, consider the growth series f(t) of the compact

hyperbolic Coxeter polygon P = (p1, . . . ,pk). Since the denominator polynomial of
the rational function f(t) equals ∆p1,...,pk

(t), the growth rate τ of P , as given by
the inverse of the radius of convergence of f(t), also equals the absolute value of
the largest root of ∆p1,...,pk

(t). �

5. The tetrahedral groups [3,5,3] and [4,3,5]

In the previous section, we have shown that the growth rates of planar hyper-
bolic Coxeter groups are spectral radii of Coxeter transformations. In this section,
we start the investigation of this property in dimension three. By giving both an
example of a growth rate that is the spectral radius of a Coxeter transformation
and an example that is not, we illustrate that the question becomes more difficult.

Definition 2. For integers i,k ≥ 2 and j ≥ 1, let H(i, j,k) be the connected tree
with two vertices v1,v2 of valency three that are connected by a path of length j.
Furthermore, v1 has two additional outgoing paths: one of length i−1 and one of
length 1. Similarly, v2 has two additional outgoing paths: one of length k−1 and
one of length 1.

For example, Figure 3 depicts the graph H(2,8,3).
Consider the compact Coxeter tetrahedron [4,3,5] (see also Remark 1). The

associated growth rate τ[4,3,5] is the Salem number with minimal polynomial

p(t) = t8− t7 + t6−2t5 + t4−2t3 + t2− t+ 1.

This follows from work of Parry [25] and can be conveniently verified by means
of the software CoxIter [11]. In particular, the growth rate τ[4,3,5] is the largest
root of p(t) and is ≈ 1.359999. This number equals the spectral radius of the
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1 297 3 41110 5 61412

138

Figure 3: The graph H(2,8,3) with a bipartite ordering of its vertices

Coxeter transformation associated with the graph H(2,8,3), depicted in Figure 3.
In fact, using Equations (15)–(17) from the proof of Lemma 2, one can compute
the characteristic polynomial of the Coxeter transformation of H(2,8,3) as the
determinant of a block matrix involving identity matrices and the matrix X which
is defined via a bipartite adjacency matrix of the graph. In the case of H(2,8,3),
with the numbering of the vertices indicated in Figure 3, the matrix X becomes

1 1 1 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 1

 .

A straightforward computation yields that the characteristic polynomial of the
Coxeter transformation is given by

t14 + t13− t12−2t11− t10− t4−2t3− t2 + t+ 1,

which factors as

(t8− t7 + t6−2t5 + t4−2t3 + t2− t+ 1)(t4− t2 + 1)(t+ 1)2.

In particular, we see that the spectral radius of the Coxeter transformation asso-
ciated with H(2,8,3) equals the Salem number with minimal polynomial p(t).
Proposition 3. The growth rate of the tetrahedral group [3,5,3] is not equal to
the spectral radius of a Coxeter transformation.

The growth rate τ[3,5,3] of the compact Coxeter tetrahedron [3,5,3] is equal to
the Salem number λ0 ≈ 1.350980 with minimal polynomial

t10− t9− t6 + t5− t4− t+ 1,

(see Section 3.1). Our proof of Proposition 3 is based on McMullen’s classification
of minimal hyperbolic Coxeter systems (see Section 3.1). Firstly, we note that by
Proposition 7.5 of McMullen [23], if a Coxeter transformation has spectral radius
smaller than the golden ratio (1 +

√
5)/2, then it is the Coxeter transformation

associated with a Coxeter diagram whose underlying abstract graph is a tree, with
no restriction on edge weights. We need a slightly stronger statement, given by the
following lemma.
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Lemma 5. If λ < 1.35999 is the spectral radius of a Coxeter transformation,
then λ is also the spectral radius of a Coxeter transformation of a tree with constant
edge weights all equal to 3.

Proof. By Proposition 7.5 of McMullen [23], we know that λ must be the spectral
radius of a Coxeter transformation of a tree. We now want to show that we can
assume the tree to have constant edge weights all equal to 3. To this end we
assume that λ < 1.35999 is the spectral radius of a Coxeter transformation of
a tree Γ with at least one edge weight ≥ 4. By McMullen’s classification of the
38 minimal hyperbolic Coxeter diagrams [23], the Coxeter tree Γ must dominate
either the Star(2,4,5) or the Star(2,3,7). Indeed, the Coxeter transformation of all
the other minimal hyperbolic Coxeter trees have larger spectral radii.

Now, at least one edge of Γ must have weight ≥ 4. The only possibility for this
to happen is if the weight is exactly 4 and the edge weighted 4 is adjacent to a
leaf of Γ. Indeed, in all other cases, a minimal diagram given in [23, Table 5] other
than Star(2,4,5) or Star(2,3,7) would be dominated by Γ, and hence the spectral
radius would have to be larger than 1.35999.

The result now follows from the following observation: a leaf v that is connected
to a vertex w by an edge of weight 4 can be replaced by two leaves v1 and v2 that are
both connected to w by an edge of weight 3, without changing the spectral radius
of the adjacency matrix. Hence the spectral radius of the Coxeter transformation
does not change by this replacement, since it is uniquely determined by the spectral
radius of the adjacency matrix. Let Γ′ be the result of this replacement, and assume
the vertices w and v are the two last ones with respect to the numbering for
the adjacency matrix. Then it can be verified directly that if (v1, . . . ,vr,x,y)>
is the Perron–Frobenius eigenvector of the adjacency matrix of Γ, the vector
(v1, . . . ,vr,x,y/

√
2,y/
√

2)> is the Perron–Frobenius eigenvector of the adjacency
matrix of Γ′ and the two Perron–Frobenius eigenvalues agree. In particular, the
spectral radii of the adjacency matrices of Γ and Γ′ agree. �

The second ingredient we need for the proof of Proposition 3 is purely graph-
theoretical and follows from the classification of trees whose adjacency matrices
have small spectral radii. We stress that we deal with graph-theoretical adjacency
matrices here, that is, all coefficients are nonnegative integers.

Lemma 6. Let α0 > 2 be defined by α2
0 = λ0 +λ−1

0 +2, where λ0 ≈ 1.350980 is the
growth rate of the Coxeter tetrahedron [3,5,3]. Then α0 is not the spectral radius
of an adjacency matrix of a graph.

Proof. We note that α0≈ 2.0226674<
√

2 +
√

5 and use the classification of graphs
with spectral radius smaller than

√
2 +
√

5, due to Brouwer and Neumaier [3]. This
classification states that the graphs whose adjacency matrices have spectral radii
strictly in between 2 and

√
2 +
√

5 are the following:

(1) Star(p,q,r) where (p,q,r) is among
1. (2,3, r) with r ≥ 7,
2. (2,4, r) with r ≥ 5,
3. (2, q,r) with q ≥ r ≥ 5,
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4. (3,3, r) with r ≥ 4,
5. (3,4,4).

(2) H(i, j,k) where (i, j,k) is among
1. (i, j,k) with j ≥ i+k,
2. (3, j,k) with j ≥ k+ 2,
3. (2, j,k) with j ≥ k−1,
4. (2,1,3), (3,4,3), (3,5,4), (4,7,4) or (4,8,5).

To finish the proof, we use the values of spectral radii of adjacency matrices
depicted in Table 1.

Graph Approx. spectral radius of the adjacency matrix
Star(2,4,5) 2.0153161
Star(2,4,6) 2.0236833
Star(2,5,5) 2.0285235
Star(3,3,4) 2.0285235
H(2,9,3) 2.0227871
H(2,10,3) 2.0220988
H(3,20,3) 2.0227871
H(3,21,3) 2.0224205

Table 1: Some approximate spectral radii of graphs

We first deal with the cases of the star graphs, and use that the spectral radii
of adjacency matrices are monotonic with respect to taking subgraphs (see, for
example, [2, Prop. 3.1.1]).

The stars (3,4,4) and (3,3, r) with r ≥ 4 have (3,3,4) as a subgraph, and hence
the spectral radius of their adjacency matrix is > α0. This deals with cases 1(d)
and 1(e).

The stars (2, q,r) with q ≥ r ≥ 5 have (2,5,5) as a subgraph and hence the
spectral radius of their adjacency matrix is > α0. This deals with case 1(c).

The star (2,4,5) has spectral radius <α0. Furthermore, all stars (2,4, r) for r≥ 6
have (2,4,6) as a subgraph and hence the spectral radius of their adjacency matrix
is > α0. This deals with the case 1(b).

In order to treat case 1(a), we note that the sequence of spectral radii of the
adjacency matrices of the graphs H(2, j,3) is monotonically decreasing in j. This
follows from the fact that subdividing an edge that does not lie on an endpath does
not increase the spectral radius (see, for example, [2, Prop. 3.1.4]). From Table 1
we obtain that H(2,10,3) is smaller than α0 and hence so is the spectral radius
of H(2, j,3) for all j ≥ 10. In particular, since every star of the type (2,3, r) is the
subgraph of a graph H(2, j,3) for j large enough, also the spectral radii of the
stars (2,3, r) are smaller than α0.

We now deal with the graphs of type H(i, j,k).
As soon as i or k is ≥ 4 and j 6= 3, it follows by the classification that the star

of type (2,4,6) is a subgraph. Hence the spectral radius is > α0, which must also
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be the case for j = 3, since the spectral radius is monotonically decreasing in j.
This eliminates many cases. Up to graph isomorphism, the only cases that we still
have to consider are the following ones:

(i) H(2, j,3) where j ≥ 1,
(ii) H(3, j,3) where j ≥ 4.

In both cases, the spectral radius is again a decreasing sequence in the para-
meter j. Hence, in both cases the values given in Table 1 suffice to exclude that
a spectral radius of the adjacency matrix of a graph of type H(i, j,k) equals α0.
This concludes the proof. �

We are now ready to prove Proposition 3.

Proof of Proposition 3. We want to show that λ0 ≈ 1.350980 is not the spectral
radius of a Coxeter transformation. By Lemma 5, if λ0 was the spectral radius of a
Coxeter transformation, then there would exist a tree Γ with constant edge weights
all equal to 3 and such that λ0 is the spectral radius of the Coxeter transformation
associated with Γ. The spectral radius λ of the Coxeter transformation is related
to the spectral radius α of the adjacency matrix of Γ by the identity (2). We note
that in the case of constant edge weights equal to 3, the Coxeter adjacency matrix
equals the graph-theoretic adjacency matrix of the tree. But then, by Lemma 6,
Equation (2) does not have a solution among trees for λ = λ0. It follows that λ0
cannot be the spectral radius of a Coxeter transformation. �
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