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T his article studies the problem of sales-force compensation by considering the impact of

sales-force behavior on a firm’s production and inventory system. The sales force’s com-

pensation package affects how the salespeople are going to exert their effort, which in turn

determines the sales pattern for the firm’s product and ultimately drives the performance of

the firm’s production and inventory system. In general, a smooth demand process facilitates

production/inventory planning. Therefore, it is beneficial for a firm to induce its salespeople

to exert effort in a way that actually smoothes the demand process. The article proposes a

compensation package to induce such behavior. It evaluates and compensates the sales force

on a moving-time-window basis, where the length of the time window is determined by the

production lead time. Numerical examples show that the proposed package is beneficial to

the firm relative to a widely used compensation plan based on annual quotas.

(Sales-Force Compensation; Agency Theory; Sales-Force Management; Demand Smoothing; Produc-

tion/Inventory Planning)

1. Introduction
There is a great deal of research on the problem of

sales-force compensation. The firm benefits from sell-

ing effort, but effort is costly to the sales force, resulting

in a misalignment of objectives between the firm and

its salespeople. Thus a reward system is needed to cor-

rect this misalignment. The existing research provides

guidelines that can help a firm structure an appropri-

ate reward system.

So far, the theoretical papers in the area of sales-force

management have largely ignored the impact of sales-

force behavior as induced by a given reward system

on the firm’s production and inventory system. If

salespeople are evaluated on an annual basis according

to a quota-based plan, it is not surprising to see that

sales magically surge at the end of the year, exhibiting

the so-called “hockey stick” phenomenon.1 This sales

1There are other possible explanations for the hockey stick phenom-

enon. For example, buyers may have more incentive to buy as the

pattern causes difficulties in production planning and

thus increases the firm’s operational costs.

The objective of this paper is to investigate sales-

force compensation schemes in light of their impact on

the firm’s production/inventory system. It is well

known from the operations management literature

that an inventory system with a smoother demand

process, i.e., less variability, incurs less overage and

year comes to an end, since they face less budget uncertainty. It may

even have something to do with the human psyche (e.g., a year as a

natural unit of measurement of time) and various societal rhythms

(e.g., holidays). Moreover, the phenomenon also arises in forms

other than the flow of physical goods. In financial markets, it has

often been observed that stocks that have been doing well (resp.,

poorly) in a quarter tend to do even better (resp., worse) toward the

end of the quarter. One explanation is that at the end of a quarter,

mutual fund managers tend to sell laggards and buy winners in

order to boost their quarterly performance. This phenomenon is

known as “window dressing.” The author thanks Mark Broadie for

a discussion of this phenomenon.
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underage costs. Therefore, the firm benefits if it can

induce its salespeople to exert selling effort in a way

that actually smoothes the demand process. As it turns

out, this is possible, and the resulting benefits to the

firm can be substantial.

We consider a model where a firm sells a single

product through a single-agent sales force. The de-

mand in a period is jointly determined by the selling

effort exerted in the period and a random shock. The

firm cannot directly observe the selling effort and thus

can only reward the salesperson based on the realized

demand. This article begins with a prevalent compen-

sation package, a quota-based plan, that rewards the

sales force on an annual basis: The salesperson earns a

salary and a commission income that is a prespecified

fraction of the annual sales in excess of the quota.

Widely used in practice, this annual-quota (AQ) plan

has also been justified on theoretical grounds; see, e.g.,

Basu et al. (1985) and Raju and Srinivasan (1996). We

show how the firm can determine the optimal contract

parameters for the AQ plan after taking into account

its impact on sales as well as production and inventory

costs.

To understand how the AQ plan can be improved,

the article proceeds to consider the first-best (FB) sce-

nario, where it is assumed that selling effort is cost-

lessly observable and legally contractible. In this case,

the firm can instruct the sales force to follow a given

effort strategy, and the problem reduces to identifying

an integrated effort/replenishment strategy to maxi-

mize the firm’s profits. The FB solution suggests an

effort strategy that in fact smoothes the demand pro-

cess. Based on the structure of the FB solution, we pro-

pose an alternative compensation package to induce

the demand-smoothing behavior from the sales force

(when effort is not observable).

The proposal is the so-called moving-time-window

(MW) plan. At the end of each period t (e.g., month),

the firm determines the total sales in the current period

as well as the past L periods, where L is the production

lead time. Let the total be wt. The salesperson earns a

fixed bonus only if wt reaches a predetermined quota.

Therefore, it is still a quota-based plan, but sales per-

formance is evaluated every period based on the most

recent lead-time demand (i.e.,wt). Numerical examples

show that, compared with the AQ plan, the MW plan

can sometimes substantially increase the firm’s profits.

This article contributes to the existing sales-force

management literature in the following way. In de-

signing a sales-force compensation package, there are

invariably two basic questions: 1) How often should

the salespeople be evaluated (e.g., monthly, quarterly,

or annually)? and 2) At the time of an evaluation, how

should sales performance be measured, for example,

under monthly evaluations, should the performance

be based on sales in the most recent month or the most

recent quarter? It appears that the existing literature

does not distinguish between these two questions; e.g.,

a monthly plan evaluates salespeople at the end of

eachmonth based on sales in the currentmonth. There-

fore, sales performance is evaluated in nonoverlapping

time windows. So how long should the performance

window be? In a survey of 200 compensation plans,

31% paid salespeople incentive earnings on an annual

basis, 8% semiannually, 28% quarterly, and 33%

monthly (Churchill et al. 1993, p. 590). It is unclear on

what basis these performance windows were chosen.

Churchill et al. offer one rationale: Shorter windows

increase the motivating power of the plan but add to

the administrative expenses, suggesting that quarterly

plans appear to be a good compromise. This article

adds another dimension to this trade-off: the benefit of

demand smoothing. To induce the sales force to

smooth the demand process, its performance should

be evaluated as often as possible (every period in the

model),2 with the length of the performance window

determined by the production lead time (which can be

multiple periods). Therefore, the performance win-

dows associated with different evaluations often

overlap.

The literature on sales-force management is volu-

minous. It roughly divides into two groups. One as-

sumes deterministic sales-response functions (of sell-

ing effort); the other stochastic. The first group

considers such issues as how commission rates can be

optimally set in a multiproduct environment with a

2The optimal frequency of performance evaluation should also take

into account the cost in administering a compensation plan as well

as its psychological impact on the sales force (a high evaluation fre-

quency may decrease the potential incentive earnings at each review

to such a small amount that it no longer has any motivating power).
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multiperson sales force, when the pricing decision

should or should not be delegated to the sales force,

and the impact of dynamic effort decisions on sales-

force compensation. Sample references are Farley

(1964), Davis and Farley (1971), Tapiero and Farley

(1975), Weinberg (1975, 1978), and Srinivasan (1981).

The literature assuming a stochastic demand function

is built upon agency theory in economics. The seminal

papers in agency theory include Harris and Raviv

(1978, 1979), Holmstrom (1979, 1982), Shavell (1979),

and Grossman and Hart (1983). Basu et al. (1985) are

the first to apply the agency theory to the sales-force

problem, characterizing the form of an optimal com-

pensation plan in a single-product, single-agent set-

ting. This model is then extended by a stream of re-

search to allow for multiple sales agents, multiple

products, asymmetric information about sales-force

productivity, delegation of pricing decisions, and so

on. For more details, see Lal (1986), Lal and Staelin

(1986), Dearden and Lilien (1990), Rao (1990), Lal and

Srinivasan (1993), and Raju and Srinivasan (1996).

Porteus and Whang (1991) further extend this litera-

ture by connecting sales-force incentives to manufac-

turing incentives. Their model is single-period and

thus ignores the dynamic nature of sales-force behav-

ior. Comprehensive reviews are provided by Baiman

(1982) for agency theory and by Coughlan and Sen

(1990) and Coughlan (1993) for the sales-force

literature.

The rest of this article is organized as follows. Sec-

tion 2 presents the model basics. Section 3 analyzes the

annual-quota plan. Section 4 characterizes the first-best

solution. Section 5 describes the moving-time-window

plan. Section 6 contains the numerical examples. Sec-

tion 7 concludes.

2. Model Basics
A firm sells a single product through a single agent.

The selling price of the product is fixed; the agent is

not empowered to give price discounts to customers.

The only way to increase sales is for the agent to ex-

pend selling effort (e.g., making sales calls and visiting

customer sites). Let Dt be the demand in period t,

which is assumed to be

D � n � e ,t t t

where nt is the random shock and et the selling effort

in period t. Moreover, we assume that n1, n2, • • • are

independent and identically distributed. Both nt and et
take only nonnegative values. The above sales-

response function has appeared in Lal and Staelin

(1986), Rao (1990), and Lal and Srinivasan (1993).

The sales agent’s utility is a function of income and

effort. We assume that the agent assesses her utility on

an annual basis.3 Let H(w, e) be the agent’s utility in a

year if her annual income is w and annual effort is e.

Assume

H(w, e) � U(w) � V(e),

with U(•) strictly concave, increasing, and twice differ-

entiable, and V(•) convex, increasing, and twice differ-

entiable. Therefore, the agent is risk averse, and she

dislikes exerting effort (all else being equal). This ad-

ditive utility function has been used by others; see, e.g.,

Holmstrom (1979).

The sales agent decides how much effort to exert in

each period. The objective is to maximize her expected

utility.

The firm keeps a finished-goods inventory, and a

production manager (PM) is responsible for replenish-

ing it. In each period, he decides howmuch to produce.

The production lead time is constant. When the firm

runs out of finished-goods inventory, the customer de-

mand is assumed to be backlogged. The firm incurs

variable costs for production and procurement, as well

as linear inventory holding costs and linear back-order

penalty costs. The PM’s objective is to minimize the

long-run average operational costs, i.e., variable, hold-

ing, and back-order costs, given the demand process

that is shaped by the sales agent’s effort decisions.

The firm’s objective is to maximize its long-run av-

erage profits, i.e., revenues minus sales-force compen-

sationminus operational costs, subject to the constraint

that the expected utility for the sales agent is at least

U0, the agent’s reservation utility. This constraint is re-

quired to keep the agent from leaving the firm. Because

the selling price is fixed and the agent controls the sell-

ing effort, the long-run average revenues are beyond

the control of the PM. Thus the PM’s objective is con-

sistent with the firm’s, a simplifying assumption. This

3For convenience, the sales agent is “she.” Later, the production

manager is “he.”
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is, however, not true for the agent since she dislikes

exerting effort. Thus the firm must motivate the agent

to work (through a compensation plan). The rest of this

paper examines various types of compensation plans.

We close this section with a summary of basic

notation:

p � unit selling price.

Dt � demand in period t.

nt � random shock in period t.

f(•) � probability density function of nt,

t � 1, 2, • • •.

F(•) � cumulative distribution function of nt,

t � 1, 2, • • •.

et � selling effort in period t.

K � number of periods in a year.

c � variable production/procurement cost.

h � holding cost rate.

b � back-order cost rate.

L �replenishment lead time, a nonnegative

integer.

H(w, e) � sales agent’s utility function, w annual

income, and e annual effort

� U(w) � V(e), U(•) strictly concave, in-

creasing, and twice differentiable, and

V(•) convex, increasing, and twice

differentiable.

3. The Annual-Quota System
This section considers a prevalent reward system,

which compensates the sales agent at the end of each

year according to a quota-based plan. It has a quota q

and a commission rate b. If the annual demand4 x (in

physical units) exceeds the quota, the agent makes

commissions on the excess at rate b. That is, b(x � q)�

equals total commissions for the year. In addition, the

agent receives an annual salary, � (� 0). The sequence

of events is: 1) the firm specifies a contract (i.e., �, q,

and b); 2) the agent makes effort decisions under the

contract; and 3) the PM makes production decisions.

The contract, once determined, does not change over

time. The firm chooses the contract parameters to max-

imize its long-run average profits. We begin with the

agent’s response to a given contract.

4We use demands and sales interchangeably in this paper.

3.1. The Agent’s Response

Recall that the sales agent’s objective is to maximize

her expected utility. Because the utility is calculated on

an annual basis, the planning horizon for the agent is

effectively one year. Moreover, because neither the

compensation package nor the characteristics of the

random shocks change over time, the problem facing

the agent is the same every year. Suppose period 1 is

the first period of a year. Because there are K periods

in a year, the objective is to maximize

K K�

E U � � b D � q � V e .� t � t� � � � � � ��
t�1 t�1

Note that there exists an optimal solution with e1
� • • •� eK�1 � 0, i.e., the selling effort, if any, is con-

centrated in the last period of the year. This is because

the value of the objective function is not affected if et
for some t � K, which may be a function of the sales

in the periods before t, is postponed to periodK. There-

fore, the hockey stick phenomenon arises in this

model. At the beginning of period K, before eK is de-

cided, the agent has observed the values of n1, n2, • • • ,

nK�1. Let be the sum of these observed values. Forn̂K
convenience, replace eK with e. The agent’s problem

becomes

�ˆmax E [U(� � b(n � n � e � q) ) � V(e)].n K KK
e

Of course, the optimal solution is a function of Letn̂ .K
it be ˆe(n ).K

It is quite intuitive why the agent wants to postpone

the effort decision to the last period of the year. At any

point in time, the marginal benefit of effort depends

on past as well as future sales during the year. Post-

poning the effort decision allows the agent to learn

more about the marginal benefit of effort. Because the

cost of effort (i.e., the value of V(•)) is unaffected by

the allocation of effort over time as long as the annual

total remains fixed, it is not surprising to see that all

effort is concentrated in the last period.5

5In reality, it is possible to see selling effort exerted in other periods

as well. Perhaps this is because the amount of effort that can be

exerted in a period is often limited, e.g., there are only 24 hours in

a day. Our model assumes no such limits. This is a reasonable sim-

plification if the period in the model is fairly long, such as a quarter

or a month.
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The agent’s objective function is generally not well

behaved. The following lemma provides an easy-to-

compute upper bound that is useful in solving the

problem numerically. (All omitted proofs can be found

in the Appendix, unless otherwise mentioned.)

Lemma 1. � ê for any whereˆ ˆe(n ) n ,K K

ê � argmaxe

ˆE [U(� � b(n � n � e � q)) � V(e)].n K KK

The following lemma is expected.

Lemma 2. � 0 for any i.e., increasing sal-ˆ ˆ�e(n )/�� n ,K K

ary reduces the agent’s incentive to sell.

3.2. The PM’s Problem

Suppose the PM knows the sales agent’s decision rule.

Thus, he knows that the selling effort in a year is con-

centrated in the last period, the amount of which is

a function of the cumulative demand in that yearˆe(n ),K

before the last period. This periodic effort stream

merges with the random stream {nt} to form the de-

mand process for the firm’s product. Given this de-

mand process, the PM determines a replenishment

strategy to minimize the long-run average operational

costs, i.e., variable costs and holding and back-order

costs. Because all demands are eventually satisfied

(due to backlogging), the long-run average variable

costs are fixed. We thus focus on holding and back-

order costs.

Define (finished-goods) inventory position to be out-

standing orders plus on-hand inventory minus back

orders, and inventory level to be on-hand inventory mi-

nus back orders. Let IP(t) be the inventory position at

the beginning of period t after ordering and IL(t) the

inventory level at the end of period t. (We follow the

convention of charging holding and back-order costs

based on period-ending inventory levels.)

A period is of type k if it is the kth period in a year,

k � 1, • • • , K. Let kt be the type of period t. Let D̂t be

the total sales in periods t � 1, t � 2, • • • , t � kt � 1,

with D̂t � 0 if kt � 1. Since period t � kt � 1 is the

first period in the year that contains period t, D̂t is the

total sales before period t in that year. Since effort is

exerted only in type-K periods,

D̂ � n � n � • • •� nt t�1 t�2 t�k �1t

for all t with kt � 1. Define St � (kt, D̂t) to be the state

of the inventory system at the beginning of period t.

Note that St completely determines the probabilistic

characteristics of the demand process after t. For ex-

ample, if St � (k, z) for some k � K, then Dt � nt; if St
� (K, z), then Dt � nt � e(z). It is thus conceivable that

the optimal replenishment policy in period t depends

on St.

The stochastic process {St} is a Markov chain, with

one-step transition probabilities

Pr(S � (1,0)|S � (K, z)) � 1,t�1 t

and

Pr(S � (k � 1, z )|S � (k, z )) �t�1 t�1 t t

Pr(n � z � z ), k � 1, • • • , K � 1,t t�1 t

and Pr(St�1|St) � 0 otherwise. Let S be the state space

of the Markov chain.

The PM’s problem is somewhat similar to the inven-

tory problem studied in Chen and Song (1997), where

the demand process is driven by an exogenousMarkov

chain (whose evolution is independent of the opera-

tions of the inventory system). In our model, however,

the Markov chain {St} driving the demand process is

no longer exogenous. As it turns out, one can still use

the Chen-Song approach to characterize the optimal

policy. We state the following result without proof,

which can be found in Chen (1998).

Theorem 1. The optimal replenishment policy is to fol-

low a base-stock policy with an order-up-to level y*(s) when

the state of the Markov chain is s, s � S. That is, for any

period t with St � s, if the inventory position is below y*(s),

order to increase the inventory position to y*(s); otherwise,

do not order.

The optimality proof in Chen (1998) is in fact an al-

gorithm for finding the optimal state-dependent base-

stock levels. However, the algorithm in its current

form is rather complex. Below, we first show how an

optimal solution can easily be obtained in a special

case, and then present a dynamic programming algo-

rithm that generates a heuristic, and sometimes opti-

mal, solution.

Let D[t1, t2] be the total demand in periods t1, • • • , t2.

The following is the well-known inventory balance

equation:
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IL(t � L) � IP(t) � D[t, t � L].

Given IP(t) � y and St � s � S, the expected holding

and back-order costs in period t � L are

�G(y|s) � E[h(y � D[t, t � L])

�
� b(y � D[t, t � L]) |S � s]. (1)t

We charge G(y|s) to period t if IP(t) � y and St � s �

S. Clearly, G(y|s) is convex in y and is minimized at a

finite point, which we denote by y � yo(s). Thus yo(s)

is the myopic base-stock level for any period with state s,

i.e., setting the inventory position at this level mini-

mizes the expected holding and back-order costs one

lead time later. For convenience, we also write yo(k, z)

for yo(s) if s � (k, z).

Theorem 2. If L � 0, then the myopic base-stock policy

is optimal. That is, for any period t with St � s, if the

inventory position is below yo(s), order to increase the in-

ventory position to yo(s); otherwise, do not order.

Now suppose L � 0. Below, we present a dynamic

programming (DP) algorithm for finding a heuristic

solution. The DP algorithm relaxes the linkage be-

tween consecutive years, reducing the infinite plan-

ning horizon to a single year.

Let period 1 be the first period of a year. Suppose

the planning horizon is only one year, i.e., we try to

minimize the expected holding and back-order costs in

periods 1, 2, • • • , K. Recall that the costs charged to a

period are G(y|s) if the state is s and the inventory

position after ordering is y. Let Hk(w, z) be the mini-

mum expected holding and back-order costs in periods

k, k � 1, • • • , K given that the inventory position before

ordering in period k is w and the state is (k, z) � S, k

� 1, • • • , K. This function can be computed recursively.

First, consider period K, the last period in the planning

horizon. Because G(y|(K, z)) is convex in y and is min-

imized at y � yo(K, z),

oH (w, z) � G(max{w, y (K, z)}|(K, z)). (2)K

That is, if w � yo(K, z), order to increase the inventory

position to yo(K, z); otherwise, do not order. The fol-

lowing is the dynamic program recursion:

H (w, z) � min [G(y|(k, z)) �k
y�w

EH (y � n , z � n )], k � 1, • • • ,K � 1, (3)k�1 k k

where y is the inventory position after ordering in pe-

riod k. Equation (3) uses the fact that no effort is ex-

erted in period k, and thus Dk � nk for k � 1, • • • ,

K � 1.

Lemma 3. Hk(w, z) is convex in w for all (k, z) � S, k

� 1, • • • , K.

Therefore, solving the dynamic program amounts to

minimizing a sequence of convex functions. Let yd(k, z)

be a minimum point of G(y|(k, z)) � EHk�1(y � nk, z

� nk), k � 1, • • • , K � 1, and yd(K, z) � y0(K, z). The

optimal DP solution is a state-dependent base-stock

policy: If the state is (k, z), place an order to increase

the inventory position to yd(k, z), and do not order if

the inventory position before ordering is already above

the target. The minimum expected total cost over the

one-year planning horizon is

dH (y (1, 0), 0). (4)1

The DP solution is certainly feasible for the original

problem (with an infinite planning horizon). The re-

sulting long-run average holding and back-order costs

per year are, however, likely to be different from Equa-

tion (4), which is a lower bound on the long-run av-

erage cost of any feasible policy.

The DP solution is optimal when it has the so-called

maximum property (Zipkin 1989), i.e., the inventory po-

sition before ordering at the beginning of each year

does not exceed yd(1, 0). This holds if and only if

d dy (k, z) � (D[k, K]|(k, z)) � y (1, 0),

∀(k, z) � S, (5)

where (D[k, K]|(k, z)) denotes the total demand in pe-

riods k, • • • , K given Sk � (k, z). This turns out to be

true when K � 2.

Theorem 3. The DP solution is optimal if K � 2.

3.3. Choosing Contract Parameters

After characterizing the sales agent’s effort decisions

and the production manager’s replenishment deci-

sions, we now turn to the problem of choosing the con-

tract parameters �, q, and b. This is a typical principal-

agent problem with the firm as the principal and the

sales force as the agent.

Let P(�, q, b) be the firm’s long-run average profits

per year. The problem facing the firm is to maximize
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P(�, q, b) in anticipation of the responses of the sales

agent and the production manager. (Thus the firm is

risk neutral.) Recall that the sales agent’s optimal re-

sponse is to exert all the selling effort in a year in the

last period, and the effort level is a function of the total

demand in the prior K � 1 periods. This function is

ˆe(n ) � argmaxK e

�ˆE [U(� � b(n � n � e � q) ) � V(e)] (6)n K KK

where is, again, the demand in the first K � 1 pe-n̂K
riods of a year. Thus the annual demand is � nK �n̂K

and the expected gross profits (revenues � vari-ˆe(n ),K

able costs) per year are (p � � nK � Letˆ ˆc)E[n e(n )].K K

chb(�, q, b) be the minimum long-run average holding

and back-order costs per year. Therefore,

ˆ ˆP(�, q, b) � (p � c)E[n � n � e(n )]K K K

�ˆ ˆ� c (�, q, b) � � � bE[n � n � e(n ) � q]hb K K K

where the last two terms represent the total payment

to the sales force (salary plus commissions). To keep

the agent from leaving the firm, the firm must ensure

that her expected payoff is not lower than U0, i.e.,

�ˆ ˆEU(� � b(n � n � e(n ) � q) )K K K

ˆ� E[V(e(n ))] � U . (7)K 0

This is often referred to as the participation constraint in

agency theory. The firm’s problem can thus be written

as

max P(�, q, b)
�,q,b

s.t. Constraints (6) and (7). (8)

We evaluate the objective function by simulation. The

optimal solution can be obtained via a search. Let (�*,

q*, b*) be an optimal solution.

The following heuristic bounds are useful in obtain-

ing the optimal contract parameters. First, we conjec-

ture that if �* � 0, then the participation constraint

must be binding.6 As a result, U(�*) � U0 if �* � 0.

6The intuition is that increasing salary decreases the sales agent’s

incentive to sell (Lemma 2), and thus decreases the firm’s revenue.

Also, a higher salary leads to a higher expected payment to the agent.

Consequently, a positive salary makes sense only when the partici-

pation constraint is binding.

(Suppose U(�*) � U0. In this case, if the agent chooses

to exert zero effort, her expected utility will be at least

U(�*), which already exceeds her reservation utility.

Therefore, under the agent’s optimal response, the par-

ticipation constraint is not binding—a contradiction.)

Let be the solution to � U0. Then 0 � �* ��̂ U(�̂) �̂.

Second, it is reasonable that 0 � b* � p � c since the

firm’s profit margin does not exceed p � c. Finally, as

to the quota, note that it serves to limit the commission

income due to the random shocks, which have nothing

to do with selling effort. If q is larger than where¯Kn,

is an upper bound on the random shock in a periodn̄

(assuming it is bounded), then the commission income,

if any, comes from sales effort. Consequently, we re-

strict to 0 � q* �
¯Kn.

4. The First-Best Solution
In this section, we assume that selling effort is cost-

lessly observable and legally contractible. In this case,

the firm can instruct the sales agent to follow any given

effort strategy and pay her a salary that makes the par-

ticipation constraint binding. If the agent does not fol-

low the instruction, the firm can make her compensa-

tion so low that this becomes a less attractive option.

In other words, the firm can impose a forcing contract

on the agent. Let ẽ be the total effort in a year, which

may be a random variable. From the binding partici-

pation constraint, we have the agent’s salary � �

U�1(U0 � EV(ẽ)), where U�1(•) is the inverse function

of U(•). (Because the firm is risk neutral and the agent

is risk averse, a salary is the firm’s optimal way of com-

pensating the agent.) The firm’s objective is to choose

an integrated effort/replenishment strategy to maxi-

mize its long-run average profits (i.e., revenues minus

operational costs minus agent’s salary). The result is

the first-best solution.

The first-best solution provides a benchmark for the

original scenario with unobservable selling effort.

More important, as we will see later, it leads to an al-

ternative reward system that can improve the firm’s

profits. In general, however, the problem facing the

firm is complex; we begin with simpler special cases

to build intuition.

4.1. Zero Lead Time

When the replenishment lead time is zero, i.e., L � 0,

the first-best solution is easy to obtain. Suppose we are
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at the beginning of period t, and it has been decided

that the selling effort for the period is going to be et.

Thus Dt � nt � et. Consider the replenishment deci-

sion. If IP(t) � y, the expected holding and back-order

costs in period t are equal to E[h(y � n t � et)
�

� b(y

� nt � et)
�], a convex function of y minimized at y �

y0 � et, where y0 is a minimum point of g(y) �

E[h(y�nt)
�

� b(y � nt)
�]. Suppose IP(t) � y0 � et,

the myopic base-stock level minimizing the one-period

costs. At the end of period t, the inventory position is

y0 � et � Dt � y0. Thus we can place an order to ensure

IP(t � 1) � y0 � et�1, the myopic base-stock level for

the next period, and so on. In other words, the mini-

mum expected holding and back-order costs per pe-

riod, i.e., g(y0), can be achieved regardless of the effort

strategy. Now let e be the total selling effort in a year.

The firm’s annual profits can be written as a constant

plus (p � c)e � U�1(U0 � V(e)), a concave function of

e. (Because V(•) is convex, it is optimal for the firm to

keep selling effort constant for every year.) Let this

function be maximized at e � e*.

Theorem 4. If L � 0, then the optimal replenishment

strategy is to order up to y0 � et in period t, where et is the

selling effort in the period, and the optimal effort strategy is

to have the total selling effort in every year equal to e*. It is

not important how the effort is allocated across time periods.

4.2. Linear Disutility of Effort

Now suppose the replenishment lead time is positive.

In this case, the first-best solution becomes very com-

plex. This is because the optimal effort decisions must

take into account the entire vector of incoming orders

so as to better match supply with demand.7 To sim-

plify, we assume that V(x) � ax for some positive con-

stant a.

When the effort and replenishment decisions are in-

tegrated, it becomes apparent that the sales force has

the so-called demand-smoothing function. Consider a

simple example. Suppose L � 1 and the random shock

7To minimize underage and overage costs, it is desirable to have a

high level of effort in a period with high expected supply and to

have a low level of effort when shortage is likely. Therefore, it is not

true that the firm prefers higher effort every period. This is in con-

trast with a typical marketing model where more selling effort al-

ways increases the firm’s profits (before compensating the sales

force).

nt has a finite support [0, 5]. Let the effort strategy be

et � 5 � nt�1. What will the minimum long-run av-

erage holding and back-order costs be? Take any pe-

riod t. Note that

D[t, t � L] � D � D � n � e � n � et t�1 t t t�1 t�1

� e � 5 � n .t t�1

Thus the myopic policy for period t, i.e., one that min-

imizes the expected holding and back-order costs one

lead time later (in period t � 1), is to order up to y0 �

et � 5, and the resulting minimum one-period cost is

g(y0). (Recall that y0 is a minimum point of g(y)� E[h(y

� nt)
�

� b(y � nt)
�].) Assume IP(t) � y0 � et � 5.

Thus the inventory position at the end of period t is

IP(t) � Dt � y0 � 5 � nt � y0 � et�1 � 5, the myopic

base-stock level for period t � 1. This indicates that

the myopic base-stock level can be reached in every

period, and the minimum long-run average holding

and back-order costs are g(y0) per period. Note that this

is also the minimum holding and back-order costs

when L � 0. With no selling effort, the variance of the

lead-time demand would be 2Var[nt]; the above effort

strategy reduces the variance to Var[nt]. Therefore,

sales effort, when properly exerted, can smooth the de-

mand process, reducing holding and back-order costs.

Interestingly, the form of the above effort strategy is

myopically optimal (among all feasible policies). Sup-

pose we are at the beginning of period t, having ob-

served IP(t) � y. The expected holding and back-order

costs incurred one lead time later are

def
�G(y) � E[h(y � D[t, t � L])

�
� b(y � D[t, t � L]) ]

y

� (h � b) Pr(D[t, t � L] � x)dx�
0

� by � bED[t, t � L]. (9)

Suppose we want to minimize G(y) through exerting

sales effort in periods t, t � 1, • • • , t � L. Without loss

of generality, we restrict to strategies that exert all the

effort (in periods t, t � 1, • • • , t � L) in the last period

of the interval. (This is the postponement idea used in

§ 3.1.) Let h be the effort level in period t � L, which

may be a function of Dt, Dt�1, • • • , Dt�L�1 but not nt�L
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since the selling effort in period t � Lmust be decided

before observing nt�L. (Note that Ds, s � t, • • •, t � L

� 1, may be different from ns because of earlier effort

decisions.) Thus

D[t, t � L] � D � D � • • •�Dt t�1 t�L�1

� n � h(D , D , • • • ,D ).t�L t t�1 t�L�1

Clearly, we can restrict h to be a function of

Ds only. As a result,
def t�L�1D̂ � �s�t

ˆ ˆD[t, t � L] � D � h(D) � n . (10)t�L

If h(•) minimizes G(y) for all y while keeping E(h(D̂))

constant, then it is called a myopic effort strategy.8 The

following theorem establishes the form of such a

strategy.

Theorem 5. Let X be a nonnegative random variable.

For any function h(•) � 0 and any nonnegative real number

B with E(B � X)� � Eh(X),

(i) z � z� Pr(X � (B � X) � x)dx � � Pr(X �0 0

, ∀ z � 0, andh(X) � x)dx

(ii) Var[X � (B � X)�] � Var[X � h(X)] with the

former nonincreasing in B.

Recall that a myopic effort strategy h(•) minimizes

G(y) for all y while keeping E(h(D̂)) constant. That is,

from Equations (9) and (10), h(•) minimizes Pr(D[t,y�0
t � L] � x)dx for all y. From Equation (10) and the fact

that D̂ is independent of nt�L,

y y x

Pr(D[t, t � L] � x)dx �� � �
0 x�0 z�0

ˆ ˆPr(D � h(D) � x � z)dF(z)dx

y y

ˆ ˆ� dF(z) Pr(D � h(D) � x � z)dx� �
z�0 x�z

y y�z

ˆ ˆ� dF(z) Pr(D � h(D) � x�)dx�.� �
z�0 x��0

Therefore, it suffices for h(•) to minimize Pr(D̂ �
y�z�x��0

h(D̂) � x�)dx� for all y and z � y. From Theorem 5(i),

8If the expected effort remains constant in every period, the firm’s

long-run average revenues and variable costs are fixed. Moreover,

because the expected annual effort is also constant, the sales agent’s

salary remains fixed because the disutility of effort is linear as as-

sumed earlier. We can, therefore, focus on the holding and back-

order costs.

this is achieved with h(x) � (B � x)� for some non-

negative real number B. From Theorem 5(ii), this my-

opic effort strategy also minimizes the variance of the

lead-time demand D[t, t � L] while keeping its mean

constant.

Based on the above analysis, we suggest the follow-

ing heuristic first-best solution. Let the sales effort in

period t be

�e � (B � D � • • •� D ) (11)t t�1 t�L

for some nonnegative constant B. On the other hand,

replenishment follows a base-stock policy with order-

up-to level Y � et, where Y is a constant. As in the zero

lead-time case, one can show that

IP(t) � Y � e , ∀t. (12)t

The heuristic solution is parameterized by B and Y. In

general, the above effort/replenishment strategy leads

to a complex demand/supply process. We use simu-

lation for evaluating the firm’s long-run average prof-

its and search for the optimal B and Y.

4.3. Convex Disutility of Effort

When V(•) is strictly convex, it is desirable to reduce

the uncertainty in the annual sales effort. We thus

change the effort strategy to

�e � A � (B � D � • • •� D ) (13)t t�1 t�L

for some nonnegative constants A and B. If B � 0, the

sales effort stays constant from period to period and

thus from year to year. The replenishment strategy re-

mains the same as in Equation (12). Now there are

three strategy parameters (A, B, Y) whose optimal val-

ues can again be obtained via a search using

simulation.

5. The Moving-Time-Window Plan
We now return to the original scenario where the firm

cannot directly observe the selling effort and thusmust

rely on the realized demands for rewarding the sales

agent. The annual-quota system considered earlier

does not take into account the impact of selling effort

on the firm’s production and inventory system,

whereas the first-best solution suggests that sales ef-

fort, when properly allocated over time, can smooth

the demand process and reduce operational costs. This
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section provides a plan that induces this demand-

smoothing behavior.

Consider the following reward system. At the end

of each period, t, the firm determines the total demand

in the past L � 1 periods, wt, i.e.,

w � D � D � • • •� D .t t t�1 t�L

The sales agent earns a fixed bonus c in period t only

if wt is greater than or equal to m, a predetermined

quota. In addition to the bonuses (if any), the firm pays

the agent an annual salary, which is again denoted by

�. This compensation package will be referred to as the

moving-time-window system. The firm chooses the

contract parameters (�, m, c) to maximize its long-run

average profits.

We now develop a plausible response by the sales

agent to the above reward system. Suppose the agent

is now at the beginning of period t, trying to determine

et. Although this decision affects her bonuses in pe-

riods t, t � 1, • • • , t � L, the only reason for the agent

to choose a positive effort level, i.e., et � 0, is to earn a

bonus in period t. (Sales effort can always be post-

poned if the objective is to make a bonus in a future

period.) Let ut be the total demand in the past L pe-

riods, i.e., ut � Dt�1 � Dt�2 � • • •� Dt�L. Thus

w � u � e � n .t t t t

If et � 0, it should be just large enough to provide a

sufficient probability for a bonus in period t, i.e., in-

creasing Pr(ut � et � nt � m) to a threshold level. On

the other hand, the agent may choose et � 0. This arises

either because the random shock nt and the past de-

mands ut already provide a sufficient probability for a

bonus in period t, or because ut is so low that the effort

required to earn a bonus in period t is too great. The

above discussion suggests the following effort strat-

egy: et � 0 if and only if u � ut � ū, in which case et
� ū � ut, where u and ū are policy parameters chosen

by the agent to maximize her expected utility.

Remark. If the sales agent is risk neutral and the

disutility function is linear, i.e., U(w) � w and V(x) �

ax for some positive constant a, then the above effort

strategy is myopically optimal under rather mild con-

ditions. To see this, note that the expected bonus in

period t is cPr(nt � m � e � u). Because the disutility

of effort is ae, the expected utility for the period is

cPr(n � m � e � u) � aet

� c(1 � F(m � e � u)) � ae.

Maximizing the above expected utility is equivalent to

def

min z(y) � cF(m � y) � ay
y�u

where y � u � e. It is easy to see that the above (u, ū)

policy solves this optimization problem if, e.g., either

z(•) or �z(•) is unimodal in (0, m). The necessary con-

ditions are much more general than these unimodality

conditions.

We assume that the production manager knows the

agent’s effort strategy and, based on that, determines

a replenishment policy to minimize the firm’s holding

and back-order costs. (Note, again, that the firm’s rev-

enue, variable cost, and payment to the sales agent are

not affected by the PM’s decisions.) As in the first-best

solution, we assume that the PM follows a base-stock

policy with order-up-to level Y � et in period t for

some constant Y.

Finally, anticipating the responses of the sales agent

and the production manager, the firm chooses the con-

tract parameters (�, m, c) to maximize its long-run av-

erage profits, subject to the participation constraint.

We again rely on simulation for finding the optimal

contract parameters.

6. Numerical Examples
In this section, we use numerical examples to compare

the following three scenarios: the annual-quota system

(AQ), the first-best scenario (FB), and themoving-time-

window system (MW). AQ represents the status quo,

MW is an alternative, and FB is the ultimate, albeit

unrealistic, goal.

We first specify the numerical examples. There are

12 periods (months) in a year, i.e., K � 12. The random

shocks have a binomial distribution with parameters

10 and 0.5, i.e.,

10 10f(x) � 0.5 , x � 0, 1, • • • , 10.� �x

The sales agent’s utility function is H(w, e) � 5 �w�
0.1e2. The selling price is p � 15 per unit. The variable

cost is c � 12 per unit. The back-order penalty cost is
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Table 1 Numerical Examples.

No. 1 2 3 4 5 6 7 8

U0 5 5 5 5 10 10 10 10

h 0.5 0.5 1 1 0.5 0.5 1 1

L 1 4 1 4 1 4 1 4

b � 10 per unit per period. We vary the remaining

parameters to yield eight examples; see Table 1. For

each example, we solved the principal-agent problems

associated with AQ and MW and the centralized

decision-making problem under FB.

Figure 1 depicts the firm’s profits under the three

scenarios. Of course, the FB profits are always the high-

est. MW is better than AQ only when the lead time is

long (the even-numbered examples). This is intuitive

because when the lead time increases, the benefit of

demand smoothing becomes greater. This benefit is

shown in Figure 2: MW is able to lower the holding

and back-order costs from the status quo, but not as

much as FB can. Thus the unobservability of selling

effort hinders the firm’s ability to induce the sales

agent to smooth demand. Figure 3 shows the amount

of selling effort exerted by the sales agent under the

three scenarios. The agent works harder under FB than

she does under the other two scenarios. It is interesting

to note that whenever MW outperforms AQ (in the

even-numbered examples), the sales agent expends

more effort in MW than in AQ. So, does MW improve

on AQ by extracting more surplus from the agent or

by demand smoothing? Figure 4 answers this question,

where net benefit from sales force (NBFS) is the firm’s

gross revenue from selling effort, i.e., (p � c) * e, where

e is the expected annual effort minus the expected an-

nual compensation received by the sales agent. Figure

4 shows the change in NBFS and the decrease in in-

ventory costs, as the firm switches from AQ to MW.

Interestingly, MW often leads to lower NBFS and al-

ways leads to lower inventory costs. Whenever the lat-

ter outweighs the former, MW is better than AQ. This

suggests that MW improves upon AQ via demand

smoothing, not by extracting more surplus from the

sales force. Finally, Figure 5 shows that to reach FB,

the firm must improve in both dimensions: NBFS as

well as demand smoothing. Exactly how this can be

done remains an open question.

7. Conclusion
The thesis of this article is that in designing a compen-

sation package for its sales force, the firm ought to con-

sider the impact of the sales-force behavior on its

product-delivery system. Generally speaking, a sales

pattern that exhibits large swings causes difficulties in

production and distribution planning. It is therefore

beneficial to induce the sales force to exert selling effort

in a way that smoothes the demand process. To

achieve this, the compensation package should have

the following features. 1) Incentive earnings (commis-

sions and/or bonuses) should be based on the sales

performance in a time window whose length is deter-

mined by the replenishment lead time. For example, if

it takes two months to replenish the finished-goods in-

ventory, then incentive earnings should be based on

quarterly sales. 2) After taking into account the admin-

istrative costs and the psychological impact on the

sales force, performance evaluation should be con-

ducted as frequently as possible on a moving-time-

window basis. For example, the sales force is evaluated

every month based on its performance in the most re-

cent quarter.9 This strategy can be beneficial to firms

with long lead times and significant costs associated

with supply-demand mismatch.

The sales-force incentive problem naturally lies in

the marketing-operations interface, and it should be

studied as such. It is our hope that future research will

continue to investigate the different facets of this

problem.

Appendix: Omitted Proofs

Proof of Lemma 1. Take any values of and nK. For any d � 0,n̂K

since � nK � e � d � q)� � � nK � e � q)� � d and U(•)ˆ ˆ(n (nK K

is increasing, we have

9An executive from Hewlett-Packard Company once suggested that

salespeople should receive incentive earnings on their birthdays

based on the performance in the most recent year. This is an inter-

esting way to achieve demand smoothing with a multiperson sales

force. The author thanks Warren Hausman for this information.
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Figure 1 Firm Profits and Incentive Scenarios

Figure 2 Inventory Costs and Incentive Scenarios
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Figure 3 Selling Effort and Incentive Scenarios

Figure 4 From AQ to MW: Sources of Improvement
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Figure 5 From AQ to FB: Sources of Improvement

�ˆU(� � b(n � n � e � d � q) )K K

�ˆ
� U(� � b(n � n � e � q) � bd).K K

Therefore,

�ˆU(� � b(n � n � e � d � q) )K K

�ˆ� U(� � b(n � n � e � q) )K K

�ˆ
� U(� � b(n � n � e � q) � bd)K K

�ˆ� U(� � b(n � n � e � q) )K K

ˆ
� U(� � b(n � n � e � d � q))K K

ˆ� U(� � b(n � n � e � q)),K K

where the second inequality follows since U(•) is concave and �ˆ(nK
nK � e � q) � � nK � e � q)�. Therefore, �EnKU (� � �ˆ ˆ(n b(nK K

nK � e � q)�)/�e � �EnKU (� � � nK � e � q))/�e. The lemmaˆb(nK
follows. ▫

Proof of Lemma 2. Define a � q � Thus the agent’s objectiven̂ .K
function can be written as

�� a�e

U(� � b(x � e � a))f(x)dx � U(�)f(x)dx � V(e).� �
a�e ��

Taking derivative of the objective function with respect to e and set-

ting it to zero, we have the first-order condition:

��

b U�(� � b(x � e � a))f(x)dx � V�(e) � 0. (14)�
a�e

Suppose e is a local maximum. Then, the second-order derivative is

less than or equal to zero, i.e.,

��
2b U�(� � b(x � e � a))f(x)dx�

a�e

� bU�(�)f(a � e) � V�(e) � 0. (15)

Differentiating the left-hand side of Equation (14) with respect to �

and rearranging terms, we have

���e 2[b U�(� � b(x � e � a))f(x)dx�
a�e��

� bU�(�)f(a � e) � V�(e)]

��

� �b U�(� � b(x � e � a))f(x)dx�
a�e

� 0,

where the inequality follows since U(•) is strictly concave. The

lemma follows by applying Equation (15). ▫

Proof of Theorem 2. Suppose L � 0. Let y0 be a minimum point

of E[h(y � nt)
�

� b(y � nt)
�], a convex function of y. From Equation

(1), yo(s) � y0 for all s � (k, z) � S with k � K, and yo(s) � y0 � e(z)

for all s � (K, z) � S. It suffices to show that under the myopic base-

stock policy, IP(t) � yo(s) for any t with St � s. Take any period t
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with St � (K, z) for some z � 0. Suppose IP(t)� y0 � e(z), themyopic

base-stock level for period t. Since Dt � nt � e(z), the inventory

position at the beginning of period t � 1 before ordering is y0 � e(z)

� Dt � y0. Thus IP(t � 1) � y0 under the myopic base-stock policy.

It is then clear that IP(t � 2) � • • • � IP(t � K � 1) � y0, which

implies that IP(t � K) � y0 � e(z�) if St�K � (K, z�). ▫

Proof of Lemma 3. The lemma holds for k � K; see Equation (2).

Now suppose it holds for k � 1. Take any z with (k, z) � S. Since (k

� 1, z � nk) � S for any value of nk, the inductive assumption implies

that EHk�1 (y � nk, z � nk) is convex in y. Recall that G(y|(k, z)) is

convex in y. From Equation (3), the lemma holds for k. ▫

Proof of Theorem 3. Suppose K � 2. Thus S � {(1, 0), (2, z), z

� 0}. Clearly, Equation (5) holds for state (1, 0). Now take any state

(2, z) � S. Note that yd(2, z) � yo(2, z) and (D[2, K]|(2, z)) � e(z).

Thus Equation (5) holds for state (2, z) if yo(2, z) � e(z) � yd(1, 0).

Given St � (2, z), D[t, t � L] is equal to e(z) plus a random com-

ponent, denoted by D2. That is, D[t, t � L] � e(z) � D2. Define g(y)

� E[h(y � D2)� � b(y � D2)�], a convex function minimized at,

say, y2. Note that G(y|(2, z)) � g(y � e(z)) and thus yo(2, z) � y2 �

e(z). Now it only remains to show y2 � yd(1, 0). Recall that

dy (1, 0) � argmin [G(y|(1, 0)) � EH (y � n , n )] (16)y 2 1 1

and that

oH (w, z) � G(max{w, y (2, z)}|(2, z))2

o
� g(max{w, y (2, z)} � e(z))

2
� g(max{w � e(z), y }).

Thus H2(y � n1, n1) � g(max {y � n1 � e(n1), y
2}), which, as a func-

tion of y, is flat for y � n1 � e(n1) � y2 and is thus flat for y � y2.

Consequently, EH2(y � n1, n1) is flat for y � y2. From Equation (16),

to have y2 � yd(1, 0), it suffices to have

2 oy � y (1, 0), (17)

which we now verify. Let D1 be D[t, t � L] given St � (1, 0). Thus

G(y|(1, 0)) � E[h(y � D1)� � b(y � D1)�]. If D1 is stochastically

larger than D2, then Equation (17) holds. The exact relationship be-

tweenD1 andD2 depends onwhether L is an even or an odd number.

If, say, L � 1, then

1 2D � n � n � e(n ) and D � n � n .1 2 1 2 3

The former is stochastically larger. On the other hand, if, say, L �

2, then

1 2D � n � n � e(n ) � n and D � n � n � n � e(n ),1 2 1 3 2 3 4 3

which are stochastically the same. ▫

Proof of Theorem 5. Let w(•) andW(•) be, respectively, the p.d.f.

and c.d.f. of X. Let be the c.d.f. of X � h(X).W̃(•)

Theorem 5(i): Because X � (B � X)� � B, Pr(X � (B � X)� �

x) � 0 for any x � B. Thus Theorem 5 (i) is true for z � B. Now

suppose z � B. Because for any x � B, Pr(X � (B � X)� � x) �

W(x), it suffices to show

z z
˜W(x)dx � W(x)dx. (18)� �

B 0

Because X � h(X) is stochastically larger than X, � W(x) for allW̃(x)

x. Thus

� �

˜[1 � W(x)]dx � [1 � W(x)]dx. (19)� �
z z

Because Eh(X) � E(B � X)� � W(x) dx, E[X � h(X)] � E[X �
B�x�0

(B � X)�] can be written as

� � B
˜[1 � W(x)]dx � [1 � W(x)]dx � W(x)dx.� � �

0 0 0

The right side of the above equation can also be written as

� z B

[1 � W(x)]dx � [1 � W(x)]dx � W(x)dx� � �
z 0 0

� z

� [1 � W(x)]dx � z � W(x)dx.� �
z B

Therefore,

� � z
˜[1 � W(x)]dx � [1 � W(x)]dx � z � W(x)dx, (20)� � �

0 z B

which implies

z � �

˜ ˜ ˜[1 � W(x)]dx � [1 � W(x)]dx � [1 � W(x)]dx� � �
0 0 z

(20) � z �

˜� [1 � W(x)]dx � z � W(x)dx � [1 � W(x)]dx� � �
z B z

(19) z

� z � W(x),�
B

which implies Equation (18).

Theorem 5(ii): Because E[X � h(X)] � E[X � (B � X)�], it suf-

fices to show E[X � h(X)]2 � E[X � (B � X)�]2. Note that

� �
2 2 2E[X � h(X)] � (x � h(x)) w(x)dx � x w(x)dx� �

0 0

� �
2

� 2xh(x)w(x)dx � h (x)w(x)dx� �
0 0

and that

B �
� 2 2 2E[X � (B � X) ] � B w(x)dx � x w(x)dx� �

0 B

�
2 2

� B W(B) � x w(x)dx.�
B

Therefore, it suffices to show

B � �
2 2 2x w(x)dx � 2xh(x)w(x)dx � h (x)w(x)dx � B W(B). (21)� � �

0 0 0

Because E[X � (B � X)�] � BW(B) � xw(x)dx and E[X � h(X)]��B
� (x � h(x))w(x)dx, we have from E[X � h(X)] � E[X � (B �

��0
X)�]
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B �

BW(B) � xw(x)dx � h(x)w(x)dx. (22)� �
0 0

Note that

� B

h(x)w(x)dx � 2 (x � h(x))w(x)dx� �
B 0

B � �

� 2 xw(x)dx � 2 h(x)w(x)dx � h(x)w(x)dx� � �
0 0 B

(22) �

� 2BW(B) � h(x)w(x)dx � 2BW(B) � 2xW(B)�
B

for all x � B. Therefore,

�

2x � h(x)�
B �

� B

h(x)w(x)dx � 2 (x � h(x))w(x)dx� �
B 0

� h(x)w(x)dx � 0
W(B) 	

because the integrand is nonnegative. After some algebra, the above

inequality implies

B � �
2 2(x � h(x)) w(x)dx � 2xh(x)w(x)dx � h (x)w(x)dx� � �

0 B B

2B �1
� x � h(x) � h(x)w(x)dx w(x)dx. (23)� � � �

0 BW(B)

Note that the right side of Equation (23) is

2B �1 w(x)
� W(B) (x � h(x) � h(x)w(x)dx) dx�� � �

0 BW(B) W(B)

B B1 1
� W(B) xw(x)dx � h(x)w(x)dx� � �

0 0W(B) W(B)

2�1
� h(x)w(x)dx� �

BW(B)

2B �1
� xw(x)dx � h(x)w(x)dx�� � �

0 0W(B)

(22) 1 2 2
� (BW(B)) � B W(B),

W(B)

where the first inequality follows since w2 is convex in w. The first

part of Theorem 5(ii) follows by noting that the left side of Equation

(23) is equal to the left side of Equation (21).

The second part of Theorem 5(ii) follows since

� � 2 � 2Var[X � (B � X) ] � E[X � (B � X) ] � (E[X � (B � X) ])
� �

2 2 2
� B W(B) � x w(x)dx � (BW(B) � xw(x)dx)� �

B B

and

�dVar
� 2W(B) B � (BW(B) � xw(x)dx)� � �

BdB

�
� 2W(B) [B � E[X � (B � X) ]]

� 0. ▫
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