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Abstract

Saliency in Context (SALICON) is an ongoing effort that

aims at understanding and predicting visual attention. This

paper presents a new method to collect large-scale human

data during natural explorations on images. While current

datasets present a rich set of images and task-specific an-

notations such as category labels and object segments, this

work focuses on recording and logging how humans shift

their attention during visual exploration. The goal is to of-

fer new possibilities to (1) complement task-specific annota-

tions to advance the ultimate goal in visual understanding,

and (2) understand visual attention and learn saliency mod-

els, all with human attentional data at a much larger scale.

We designed a mouse-contingent multi-resolutional

paradigm based on neurophysiological and psychophysical

studies of peripheral vision, to simulate the natural viewing

behavior of humans. The new paradigm allowed using a

general-purpose mouse instead of an eye tracker to record

viewing behaviors, thus enabling large-scale data collec-

tion. The paradigm was validated with controlled labora-

tory as well as large-scale online data. We report in this

paper a proof-of-concept SALICON dataset of human “free-

viewing” data on 10,000 images from the Microsoft COCO

(MS COCO) dataset with rich contextual information. We

evaluated the use of the collected data in the context of

saliency prediction, and demonstrated them a good source

as ground truth for the evaluation of saliency algorithms.

1. Introduction

Motivation One of the ultimate goals in computer vision

is to describe the contents of an image. Humans are known

to perform better than their machine counterparts in telling

a story from an image, and we aim to leverage human in-

telligence and computer vision algorithms to bridge the gap
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Figure 1. Contextual information is crucial in image understand-

ing (image examples from MS COCO). We propose a new method

to collect large-scale attentional data (SALICON, 1st row) for in

visual understanding. With the annotated object segments, our

attentional data naturally highlights key components in an image

(ranked object segments in the 2nd row, with key objects outlined

in yellow) to (a) rank object categories, (b) suggest new categories

important to characterize a scene (text in this example), (c-e) con-

vey social cues, and (f) direct to places designed for attention in

advertisement.

between humans and computers in visual understanding.

In the recent years, several datasets have been con-

structed with unprecedented numbers of images and annota-

tions [32, 6, 34, 19], enabling breakthroughs in visual scene

understanding, especially goal-specific tasks like object

classification and segmentation. In the recently published

MS COCO dataset [19], non-iconic images and objects in

context are emphasized to understand natural scenes. On

top of annotations for the conventional computer vision



tasks, it also includes sentences to describe an image, a big

step toward the Turing test in the visual domain.

Complementary to all the existing big datasets, in this

work we focus on how people direct their gaze when in-

specting a visual scene. Humans and other primates shift

their gaze to allocate processing resources to the most im-

portant subset of the visual input. Understanding and em-

ulating the way that human observers free-view a natural

scene to respond rapidly and adaptively has both scientific

and economic impact. The logging of human viewing data

during the assumption-free exploration also provides in-

sights to other vision tasks and complement them to better

understand and describe image contents (see Figure 1). For

example, it naturally ranks labeled object categories, and

suggests new categories for current classification datasets.

By highlighting important objects by humans, it leverages

human intelligence in visual understanding.

To collect large-scale human behavioral data in scene ex-

ploration, we first propose a novel psychophysical paradigm

to record mouse-movement data that mimic the ways hu-

mans view a scene [31]. The designed stimuli encode the

visual acuity drop-off as a function of retinal eccentricity.

The mouse-contingent paradigm motivates mouse move-

ments, to reveal interesting objects in the periphery with

high resolution, similarly as humans shift their gazes to

bring objects-of-interest to the fovea. Rather than record-

ing the task-specific end outcomes by human annotators,

we record the natural viewing patterns during the explo-

ration. Therefore, our method is general and task-free. We

then propose a crowdsoucing mechanism to collect large-

scale mouse-tracking data through Amazon Mechanic Turk

(AMT).

Challenges To record where humans look, eye-tracking

experiments are commonly conducted, where subjects sit

still in front of a screen with their eye movements recorded

by a camera. Normally an infrared illuminator is necessary

to help acquire high-quality data. There are several chal-

lenges particular to data collecting and usage.

First, large-scale data collection is prohibitive. An

eye tracker used in laboratories generally costs between

$30,000 - $80,000. Despite recent advances in gaze and eye

modeling and detection (e.g., [10]), accurate eye-tracking

experiments are still difficult without customized eye-

tracking hardware. Data collection with general-purpose

webcams is not yet possible, especially in uncontrolled set-

tings such as through the AMT platform. This greatly lim-

its the data collection process. As a result, the sizes of the

current eye-tracking datasets are at the order of hundreds

images and tens subjects, much smaller than those for ob-

ject detection, object classification, scene categorization, or

segmentation.

Second, eye-tracking data are not sufficiently general.

Datasets collected from different labs are quite different in

nature due to various image selection criteria, experimental

setup, and instructions. Thus datasets cannot be directly

combined, nor models learned from one dataset directly

generalize to another [38].

Objectives This paper focuses on two major objectives:

1. We propose a novel psychophysical paradigm as an

alternative to eye tracking, to provide approximation of

human gaze in natural exploration. We design a gaze-

contingent multi-resolutional mechanism where subjects

can move the mouse to direct the high-resolutional fovea to

where they find interesting in the image stimuli. The mouse

trajectories from multiple subjects are aggregated to indi-

cate where people look most in the images.

2. We propose a crowdsourcing platform to collect large-

scale mouse-tracking data. We first sample 10,000 images

from the MS COCO dataset with rich contextual informa-

tion, and collect mouse-movement data using AMT. The

“free-viewing” dataset is by far the largest one in both scale

and context variability. We would like to point out that, with

the crowdsourcing platform, it allows us to easily collect

and compare various data with different top-down instruc-

tions, for example, to investigate the attention shifts during

story-telling vs. category labeling.

2. Related work

Eye-tracking datasets There is a growing interest in the

cognitive science and computer science disciplines to un-

derstand how humans and other animals shift their gazes

to interact with the complex visual scenes. Several eye-

tracking datasets have been recently constructed and shared

in the community to understand visual attention and to build

computational saliency models.

An eye-tracking dataset includes natural images as the

visual stimuli and eye movement data recorded using eye-

tracking devices. A typical dataset contains hundreds or a

thousand images, viewed by tens of subjects while the lo-

cations of their eyes in image coordinates are tracked over

time. Even if POET, the largest dataset we know by far, con-

tains 6,270 images and is only viewed by 5 subjects [21].

While instructions are known to affect eye movement pat-

terns, most common in eye-tracking dataset is the use of a

so-called “free-viewing” task [5, 18, 4, 27] due to its task-

free nature.

Most datasets have their own distinguishing features in

image selection. For example, most images in the FIFA

dataset [5] contain faces, and the NUSEF dataset [27] fo-

cuses on semantically affective objects/scenes. Compared

with FIFA and NUSEF, the widely used Toronto dataset

has less noticeably salient objects in the scenes. The MIT

dataset [18] is more general due to its relatively large size,

i.e., 1003 images, and the generality of the image source.

Quite a few images in these datasets are with dominant ob-

jects in the center. To facilitate object and semantic saliency,



the OSIE dataset [35] features in multiple dominant ob-

jects in an image. Besides general purpose images, there

are also recent datasets in focused domains like the MIT

Low Resolution dataset [17] for saliency in low resolution,

EyeCrowd [16] for saliency in crowd, and FiWI [28] for

web page saliency. Human labeling such as object bounding

boxes [16], contours [27, 35], and social attributes [35, 16]

are available in certain datasets as ground truth data for

learning and analysis of problems of interest.

The scale of the current datasets is inherently limited by

the experimental requirements. We envision that the collec-

tion of a larger-scale eye-tracking dataset would not only

improve saliency prediction with big ground truth data, but

driving new research directions in visual attention studies

as well as complementing current efforts in computer vi-

sion datasets and annotations for more ambitious tasks in

visual understanding.

Crowdsourcing Manual labeling to obtain ground truth

human data is important for computer vision applications.

Human knowledge and experience in this way is leveraged

to train better computer models. Services like Amazon

Mechanical Turk (AMT) has been extensively used to dis-

tribute the labeling task to many people, allowing the col-

lection of large-scale labeling data. Recent works [32, 6, 33,

34, 7, 19] mainly focused on crowdsourcing image classi-

fication, object detection, and segmentation using this mar-

ketplace. Some of the most successful datasets along the

line include Tiny Images [32], ImageNet [6] SUN [34], and

MS COCO [19]. These datasets include hundreds thou-

sands to millions of images containing hundreds or thou-

sands of categories of interest, aiming at capturing general

objects, scenes, or context in the visual world.

Current crowdsourcing tasks focus on the end output

from humans (e.g., a category label, an object segment),

while our method records the procedure during which hu-

mans explore the scene in a real-time manner. We expect

that the viewing patterns reveal cognitive process and can be

leveraged for intelligent visual understanding. Our current

experiments use task-free scenarios, and it could work with

any other task-specific annotation procedure to log how hu-

mans explore the scene to complete a certain task.

Mouse tracking Mouse tracking and eye-mouse coordi-

nation have been studied in the human-computer interac-

tion literature. For example, one of the most popular ap-

plication of mouse-tracking is web page analysis [13, 20].

Huang et al. [13] studied mouse behaviors in web searching

tasks, suggesting the plausibility of using mouse positions

to predict user behavior and gaze positions. Navalpakkam

et al. [20] integrated the mouse position on web pages with

task relevance, and developed computational models to pre-

dict eye movement from mouse activity. Web pages contain

domain-specific contents that motivate users to move their

mouse to click links and to navigate. In natural images,
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Figure 2. The resolution map and transfer functions.

however, to motivate users to move their mouse as one shifts

attention requires specific design of the visual stimuli.

3. Mouse-contingent free-viewing paradigm

To verify the feasibility of replacing eye-tracking data

collection with mouse tracking, and to investigate the cor-

relations between the two modalities, we designed a novel

mouse-contingent paradigm with multi-resolutional images

generated in real-time. We compared mouse-tracking data

with eye-tracking data on the OSIE dataset that contains

700 images with the resolution of 800 × 600. The mouse-

tracking data were collected in a controlled laboratory envi-

ronment, with similar hardware and software configurations

as reported in [35].

3.1. Stimuli

To simulate the free-viewing patterns of human visual

attention with mouse tracking, we created an interactive

paradigm by producing multi-resolutional images in real-

time, based on the simulation method proposed by Perry

and Geisler [24]. Gaze-contingent and mouse-contingent

stimuli have been used in a variety of psychophysical stud-

ies, such as reading [1] and visual search [26]. The pro-

duction of multi-resolutional images is based on neurophys-

iological and psychophysical studies of peripheral vision.

Human visual system shows a well-defined contrast sensi-

tivity by retinal eccentricity relationship. Specifically, con-

trast sensitivity to higher spatial frequencies drops off as a

function of retinal eccentricity (e.g., [22, 25]). Therefore,

we first generated a resolution map to simulate the sensitiv-

ity drop-off in peripheral vision [14] (see Figure 2). It is

defined as a function R : Θ → [0, 1], where Θ is the set of

viewing angles θ with respect to the retinal eccentricity, and

[0, 1] represents the set of relative spatial frequency. The

resolution map approximates a normal adult’s vision with

the exclusion of the blind spot. A higher R(θ) indicates a

higher resolution at the visual eccentricity θ. Specifically,

the resolution map is formulated as

R(x, y) =
α

α+ θ(x, y)
, (1)



Figure 3. An example of the mouse-contingent stimuli. The red

circles indicate the movement of mouse cursor from one object to

another.

where α = 2.5◦ is the half-height angle, which means that

when θ(x, y) = α the image will become only half the res-

olution of the center of attention (θ(x, y) = 0). In our ex-

periments, we set α = 2.5 to approximate the actual acuity

of human retina. The image coordinates were mapped to

the visual angles by the following function:

θ(x, y) =
1

p

√

(x− xc)2 + (y − yc)2, (2)

where θ is the visual angle, x and y are pixel coordinates,

and (xc, yc) is the center of attention. The parameter p rep-

resents the number of pixels a person can see in a degree

of visual angle, which can be changed to simulate different

viewing distances. Generally, the closer the distance is, the

less can be seen in the high-resolutional fovea. We found

that p = 7.5 led to a more comfortable and natural expe-

rience, according to the subjects’ performances and feed-

backs in pilot experiments. An example of the produced

multi-resolutional image is shown in Figure 3. To compute

the multi-resolutional image in real-time, we applied a fast

approximation with a 6-level Gaussian pyramid from A1 to

A6. A1 was the original image and Ai was down-sampled

to Ai+1 with a factor of 2 in both dimensions. The standard

deviation of the Gaussian distribution was set to σ = 0.248
pixel. After that, all the down-sampled images (A2 to A6)

were then interpolated to the original image size. We then

computed six matrices of blending coefficients, M1 · · ·M6.

We used transfer function T (f) (see Function 3 and Fig-

ure 2) and blending function B(x, y) (see Equation 1 in

[24]) to calculate these blending coefficients. The trans-

fer function maps relative spatial frequency f = R(x, y)
to relative amplitude T (f) in the Gaussian pyramid:

Ti(f) =

{

e1/2×(−2i−3f/σ)2 , i = 1, · · · , 5

0, i = 6,
(3)

The blending function B(x, y) calculates the blending co-

efficients of each pixel (x, y):

B(x, y) =
0.5− Ti(x, y)

Ti−1(x, y)− Ti(x, y)
, (4)

where i is the layer number of (x, y). To calculate the layer

number, we first determined six bandwidths wi, i = 1 · · · 6
such that Ti(wi) = 0.5, i = 1 · · · 5 and w6 = 0. Then

we normalized all wi to [0, 1]. The layer number of pixel

(x, y) is i such that wi−1 ≥ R(x, y) ≥ wi. Next we calcu-

lated entries of M1 · · ·M6. For each pair of indices (x, y),
we considered it as a pair of coordinates of a pixel and we

calculated its layer number i0, then

Mi(x, y) =











B(x, y), i = i0 − 1

1−B(x, y), i = i0

0, otherwise

(5)

for i = 1 · · · 6. Finally, the multi-resolutional stimulus was

a linear combination of Mi and Ai for i = 1 · · · 6.

3.2. Subjects and procedure

Sixteen subjects (10 male and 6 female) aged between 19
and 28 participated in the mouse-tracking experiment. All

participants had normal or corrected-to-normal vision, and

normal color vision as assessed by Ishihara plates. All sub-

jects had not participated in any eye-tracking experiment or

seen the OSIE images before. The images were presented to

the subjects in 700 trials at random order. Each trial consists

of a 5-second image presentation followed by a 2-second

waiting interval. The mouse cursor was displayed as a red

circle with a radius of 2 degrees of visual field that is suf-

ficiently large not to block the high-resolutional region of

focus, and automatically moved to the image center when

the image onset. The subjects were instructed to explore

the image freely by moving the mouse cursor to anywhere

they wanted to look. No further instructions were given

on how to move the mouse or where they should look in

the images. Whenever they moved the mouse, the mouse-

contingent stimuli was updated by shifting the center of the

resolution map to the mouse position. In the meantime, the

mouse position and the timestamp were recorded. Each

block contains 50 trials, and the subject can take a short

break between blocks.

Presentation of stimuli and recording of mouse position

were implemented in Matlab (Version 8.1.0, Mathworks,

MA) using the Psychophysics Toolbox [2, 23]. The experi-

ment PC was a Dell T5610 (2.5GHz, 32GB RAM, Ubuntu

14.04) with a Quadro K600 graphics card. The mouse speed

and acceleration were adjusted to the maximum in the sys-

tem settings. There was a practice session for the subjects

to get familiar with the mouse-contingent paradigm and the

mouse configuration, which consists of 10 other images

from the Internet with the same resolution as the OSIE im-

ages. The practice trials were identical to the formal trials

in terms of all parameters.
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Figure 4. The procedure of an AMT task.

4. Large-scale attentional data collection by

AMT deployment

The motivation for the mouse-tracking paradigm is for

large-scale data collection. In this section, we report imple-

mentation and design issues to deploy the mouse-tracking

experiments on the paid AMT crowdsourcing marketplace.

We employed the same paradigm and parameter configura-

tions as described in Section 3, while making a few minor

adjustments to the procedure to accommodate the more un-

controlled online situations. Figure 4 illustrates the online

experiment procedure on AMT.

Our task required real-time rendering of the mouse-

contingent stimuli, i.e., the image rendering was triggered

by the mouse events in the browser. Therefore it was impor-

tant to perform a system check to ensure a smooth rendering

during visual exploration. The system check was conducted

at the practice stage of an AMT task, which detected fail-

ures due to a variety of reasons such as unsupported browser

features, unfriendly browser plug-ins, and low memory ca-

pacity. To ensure that our paradigm was shown smoothly

without noticeable lag at the browser side, we evaluated the

synchronization quality of the display and the mouse activ-

ity, by measuring the distances between the mouse positions

and the rendered centers of attention. Only workers who

passed the system check could continue the task.

We deployed the experiment on AMT using 10,000

MS COCO training images with 640×480 pixels and 700

OSIE images (scaled to 640×480 pixels). The OSIE im-

ages were added as “gold standard”, where the eye-tracking

data in OSIE can be used as a baseline to evaluate the perfor-

mance of workers. Currently in each task, a worker viewed

40 images, including 36 images from the MS COCO dataset

and 4 images from the OSIE dataset. With the large-scale

data collection, we created a Saliency in Context (SALI-

CON) dataset, with 10,000 MS COCO images viewed by

60 observers each. Details of the mouse-tracking results

and statistics of the experiments are reported in Section 5.

5. Statistics and results

In this section, we report the mouse-tracking statistics

of the two datasets – OSIE and SALICON. For OSIE im-

ages, we compare three sets of data: eye tracking, mouse

tracking in lab, and mouse tracking with AMT. For SAL-

ICON, we report the mouse-tracking statistics in terms of

the MS COCO object categories.

5.1. Data preprocessing

Due to the differences in hardware and software settings,

the mouse-tracking data have a large variety of sample rates.

In the lab experiments, the mean sample rate was 285.61
Hz, across all subjects. While in the AMT data, due to

the event system of the browser environments, the sampling

was not triggered until the mouse moved. Therefore, the

mean sample rate was 69.42 Hz. We discarded the data

with sample rate lower than 12 Hz, and resampled the data

with a shape-preserving piecewise cubic interpolation that

matched the data in position, velocity and acceleration. This

was to equalize the number of samples across all observers.

The normalized mouse samples had a uniform sample rate

at 100 Hz. We added a simple pre-processing step by ex-

cluding half samples with high mouse-moving velocity (i.e.

saccades) for each observer, while keeping the fixations. All

pre-processed mouse samples for the same image were then

aggregated and blurred with a Gaussian filter to generate a

saliency map, same as the common practice to generate the

fixation maps from eye-tracking data [35].

5.2. Center bias

In almost all eye-tracking datasets, there exists a spatial

prior that pixels near the image center attract more fixations,

known as the center bias [30]. The main reasons of the cen-

ter bias include photographer bias, experimental configura-

tion, and viewing strategy. Similarly, our mouse-tracking

data are also biased towards the image center. The cumu-

lative distribution of the mean distance from sample points

to the image center is shown in Figure 5. We normalized

the distance to center by the image width, and did not ob-

serve significant differences in the average distance to cen-

ter between the AMT and controlled mouse-tracking data or

between mouse-tracking and eye-tracking data.

5.3. Evaluating mouse maps with eye fixations

We evaluated the similarities of the mouse maps and the

eye fixation maps, using the most commonly used evalua-

tion metric – the shuffled AUC (sAUC) [37]. The sAUC

computes the area under the receiver operating characteris-

tic (ROC) curve, taking positive samples from the fixations
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of a test image, and negative samples from all fixations in

other images. This way it discounts the global center bias

in the dataset. We compared the performances of the mouse

maps with the inter-observer performance of eye tracking

(computed by aggregating fixations from other subjects than

each tested subject, used as a baseline). We also included

the highly referred and the state-of-the-art saliency algo-

rithms in the comparison [15, 11, 37, 3, 9, 12, 36]. All

saliency maps were blurred by a Gaussian kernel with σ

from 0 (no blurring) to 3 degrees of visual angle (DVA; 24

pixels according to the eye-tracking configuration), and the

optimal blur width was chosen for each model.
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Figure 6. Eye fixation prediction performance with mouse track-

ing and the highly referred/state-of-the-art computational saliency

models: eye tracking (EYE), mouse map in lab (MOUSE), mouse

map on AMT (MOUSE-AMT) the Itti & Koch model (ITTI) [15],

the information maximization model (AIM) [3], the graph-

based saliency (GBVS) [11], the saliency using natural statis-

tics (SUN) [37], the image signature (SIG) [12], the adap-

tive whitening saliency (AWS) [9], and the boolean map

saliency (BMS) [36].

As shown in Figure 6, the lab and AMT mouse models

scored closely in sAUC (∼ 0.86). They are much closer to

EYE MOUSE

sAUC=0.964

MOUSE−AMT

sAUC=0.965

sAUC=0.942 sAUC=0.948

sAUC=0.940 sAUC=0.948

sAUC=0.699 sAUC=0.655

Figure 7. Image examples with high and low eye-mouse similari-

ties evaluated with sAUC. Eye fixation maps and mouse maps are

overlaid.

the human performance (∼ 0.89) in eye tracking than the

computational models. Figure 7 presents the images with

high and low sAUC scores in mouse tracking (with AMT).

While the mouse-eye agreement is high in simple images,

it is generally lower in more complex scenes, where inter-

observer consistency in the eye-tracking data is also lower

(Pearson’s correlation on sAUC r=0.76, p<0.001). Further,

mouse tends to miss far and indistinguishable text, not only

because mouse is slower than eye [29], but also due to the

the relatively low peripheral resolution of text [17]. This

may be caused by the relatively small visual angle we use

(7.5 pixels per degree) in the mouse-contingent paradigm.

As described in Section 3, the free parameter p corresponds

to the visual angle to the scene, ecologically valid in natu-

ral vision. While the conventional eye-tracking experiments

mostly fix this parameter, the proposed paradigm allows the

change of this parameter to mimic scenarios with varying

distances to the stimuli.

5.4. Categorical analysis

For the SALICON dataset, we sampled 10,000 images

from the currently released MS COCO training set, which

contains 80 of the 91 categories. The subset was se-

lected from a total of 17,797 images with the resolution of

640×480. The selection was based on the number of cate-

gories in each image. Figure 8 reports the statistics of the

dataset in comparison with the MS COCO training images.

Our selected images have more instances and categories per
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image, and are in general richer in contextual information.

The rich context is helpful to compare the relative impor-

tance of each category in visual exploration. The instance

sizes in the SALICON is not significantly different from the

full MS COCO training set.

With the mouse maps from the aggregated AMT data, we

computed the “maximum object saliency” as the maximum

of the map values inside each object’s outline, as it does not

scale with the object size [8]. This way we rank the objects

in the same image by these values to decide their relative

importance.

To quantify the importance of categories with the atten-

tional data, for each category of instances, we computed the

mean instance size, the average number of total instances in

the scene which has instances of the particular category, and

average saliency value. Figure 9 shows the average saliency

values for all the 80 object categories in our dataset. As ob-

served, the importance of a category correlates with its av-

erage size and number of instances in the same scene. For

the most salient categories, objects appear relatively large

in images and are with fewer distracters. Examples include

animals, food and train. In comparison, furniture like bed,

dining table and refrigerator are relatively less salient, al-

though large in size. Small objects are mostly less salient,

except categories that are interactive with humans such as

surfboard, baseball bat, and tennis racket.

We further explored the collected attentional data as a

natural way to suggest new categories for object annotations

and segmentation. The MS COCO has selected 91 cate-

gories leveraging domain references, children experiences,

and mutual agreement from co-authors. Human attentional

data provide yet another complementary source that iden-

tify objects that humans look at frequently and rapidly dur-

ing natural exploration. Figure 10 illustrates examples of

typical scenarios where fixations land on unlabeled objects,

and suggests several categories be added to the MS COCO

dataset to improve its contextual richness. For example,

faces attract attention consistently and strongly. Since it

is not defined as a category but subregion of ‘person’, we

observe that (1) most fixations land on faces though the en-

tire persons are annotated, and (2) some faces are missed if

the objects do not belong to the existing category (e.g., toy

face, animal face in the first row in Figure 10). Text and

pictures also attract attention consistently, but not explicitly

defined category in MS COCO (second and third rows). As

illustrated in the fourth row, food is frequently missed as
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Figure 10. Examples of salient but missed object categories, in-

cluding face, text, picture, food, door and window, etc. Segmented

object instances are masked with colors indicating the categories.

only certain types of food are defined (e.g., broccoli, sand-

wich). Doors and windows attract considerable gaze (fifth

row) mostly due to their contextual importance. Detecting

these objects would help to understand the context of the

scene. These examples demonstrate a potential application

of the proposed work in complementing other annotations

for visual understanding.

5.5. Mouse tracking as an evaluation benchmark

Since the mouse-tracking and eye-tracking data were

qualitatively and quantitatively similar, we further exploited

the mouse tracking as a benchmark to evaluate computa-

tional saliency algorithms. We tested the state-of-the-art

saliency algorithms on the OSIE dataset and randomly se-

lected 2,000 images from the SALICON dataset. We used

the pre-processed mouse samples as positive samples in

the sAUC computation. For the AMT mouse-tracking data

(OSIE and SALICON), in order to reduce the computational

cost in the evaluation, we filtered the mouse samples by

only keeping the pixels viewed by at least two observers.

The comparative results are shown in Figure 11. From the

comparison we observe that on OSIE, the sAUC scores for

both mouse-tracking data (laboratory and AMT) are close

to the eye-tracking ones (see Figure 6), and their ranks are

basically preserved. The results show that mouse tracking

is a good replacement of eye tracking in model evaluation.

Comparing the saliency algorithm performance on SALI-

CON vs. on OSIE, similar patterns are observed too. The

difference in score reflects dataset difference in image prop-

erties.
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Figure 11. Evaluation of saliency algorithms against mouse-

tracking data.

6. Conclusion

This paper presents a new paradigm to collect human at-

tentional data. Our paradigm enables large-scale data col-

lection by using a general-purpose mouse instead of an

expensive eye tracker to record viewing behaviors. With

the proposed method, a large mouse-tracking dataset for

saliency in context (SALICON) was created on 10,000 im-

ages from MS COCO. SALICON is by far the largest at-

tention dataset in both scale and context variability, and

data collection on more images is ongoing with the same

protocol. With the visual attentional data collected from

mouse tracking, the SALICON dataset complements exist-

ing task-specific annotations with natural behavior of visual

exploration in task-free situations. The paradigm can also

be easily generalized to various types of tasks with top-

down instructions. We also envision SALICON to be a good

source for learning and benchmarking saliency algorithms

with more data.
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