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Abstract 22 

Soil salinity is one of the major environmental stresses affecting crop production worldwide, 23 

costing over $27Bln per year in lost opportunities to agricultural sector and making improved 24 

salinity tolerance of crops a critical step for sustainable food production. Salicylic acid (SA) 25 

is a signalling molecule known to participate in defence responses against variety of 26 

environmental stresses including salinity. However, the specific knowledge on how SA 27 

signalling propagates and promotes salt tolerance in plants remains largely unknown. This 28 

review focuses on the role of SA in regulation of ion transport processes during salt stress. In 29 

doing this, we briefly summarise a current knowledge on SA biosynthesis and metabolism, 30 

and then discuss molecular and physiological mechanisms mediating SA intracellular and 31 

long distance transport. We then discuss mechanisms of SA sensing and interaction with 32 

other plant hormones and signalling molecules such as ROS, and how this signalling affects 33 

activity of sodium and potassium transporters during salt stress. We argue that NPR1-34 

mediated SA signalling is pivotal for (i) controlling Na+ entry into roots and the subsequent 35 

long-distance transport into shoots, (ii) enhancing H+-ATPase activity in roots, (iii) 36 

preventing stress-induced K+ leakage from roots via depolarisation-activated potassium 37 

outward-rectifying channel (KOR) and ROS-activated non-selective cation channels (NSCC), 38 

and (iv) increasing K+ concentration in shoots during salt stress. Future work should focus on 39 

how SA can regulate Na+ exclusion and sequestration mechanisms in plants. 40 
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Abbreviations used:  45 

ABA - abscisic acid; aba3-1 - ABA biosynthesis mutant3-1; acd - accelerated cell death;  46 

agd2 - aberrant growth and death2; AHG2 -encoding poly (A)-specific ribonuclease; BA2H-47 

benzoic-acid-2-hydroxylase; cpr - constitutive expresser of PR; dnd - defence no death; eds - 48 

enhanced disease susceptibility 5; GLR - glutamate receptor channels; GORK - Guard cells 49 

Outward-Rectifying depolarisation-activated K+ channel; HKT - high-affinity K+ transporter; 50 

ICS- isochorismate synthase; IPL- isochorismate pyruvate lyase; isd1 - lesions simulating 51 

disease1; MeSAG- methyl salicylic acid O-β-glucose; MeSA-methyl salicylate; NahG -52 

naphthalene hydroxylase G; NPR1-non-expresser of PR proteins 1; NSCC - non-selective 53 

cation channels; nudt7 - nudix hydrolase7; PAL- ammonia-lyase; SABP2-SA-binding protein 54 
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2; SAG- salicylic acid O-β-glucoside; SAGT-SA glycosyltransferase; SAR-systemic acquired 55 

resistance; SA-salicylic acid; SGE-salicyloyl glucose ester; sid2 -SA-induction-deficient; siz1 56 

- small ubiquitin-like modifier E3 ligase1; snc1 - suppressor of npr1-1 consitutive1; SOS1 -57 

Salt overly sensitive1; SUMO -small ubiquitin-related modifier 58 

 59 

1. Introduction 60 

Agricultural crop production around the world is severely limited by a variety of abiotic (e.g. 61 

drought, salinity, acidity, flooding, temperature extremes) and biotic (pathogens) stresses. 62 

Salinity is one of the major abiotic stresses, affecting 7% of the world’s total land area 63 

(Munns 2005) and imposing over $27Bln penalties to agricultural sector every year (Qadir et 64 

al 2014). Salinisation of agricultural land is a continuing natural process, which is further 65 

exacerbated by secondary salinisation, resulting from poor irrigation and/or drainage 66 

practices. It is estimated that every day between 2000 and 4000 ha (Shabala 2013; Qadir et al 67 

2014) of irrigated land in arid and semiarid areas across the globe are degraded by salinity 68 

and become unsuitable for crop production. This questions our ability to increase agricultural 69 

food production by 70% by 2050 to match the projected population growth to 9.3 billion 70 

(Tester and Langridge 2010; Shabala 2013). At the same time, remediation of salt-affected 71 

arable lands is very expensive and time consuming process that is hard to implement on a 72 

large scale. Thus, introducing salinity-tolerant cultivars through molecular and plant breeding 73 

is the most attractive and viable option to meet the ever-growing food demand (Ondrasek et 74 

al. 2011), that can be fulfilled if specific signalling events and/or mechanisms mediating salt 75 

tolerance are identified in plants. 76 

Plants respond to any stress by initiating a broad range of signal transduction pathways. 77 

Among the signalling molecules, salicylic acid (SA; o-hydroxybenzoic acid; Fig. 1) has 78 

received a particular attention because of its capacity to regulate various aspects of plant 79 

responses to biotic and abiotic stresses through extensive signalling cross-talk with other 80 

growth substances (Horváth et al. 2007; Asensi-Fabado and Munné-Bosch 2011).  81 

Apart from involvement in biotic stres responses (Vlot et al. 2009), SA has been shown to 82 

play a key role in defence responses against different abiotic stresses, including salinity and 83 

osmotic stress (Borsani et al. 2001). Impressive volume of studies have demonstrated that 84 

exogenous addition of SA can ameliorate toxicity symptoms induced by salinity stress in 85 
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many plant species (reviewed in Horváth et al. 2007; Ashraf et al. 2010; Hayat et al. 2010). 86 

Moreover, various Arabidopsis mutants with altered SA synthesis and accumulation have 87 

been shown to have altered salt tolerance (Borsani et al. 2001; Cao et al. 2009; Asensi-88 

Fabado and Munné-Bosch 2011; Miura et al. 2011; Hao et al. 2012). However, the exact 89 

signalling cascade and downstream mechanisms by which SA protects plants during salinity 90 

stress remain obscure.  To shed light on this issue, the existing literature pertinent to SA 91 

biosynthesis, metabolism, transport, receptors and physiological roles in plants is reviewed in 92 

the following sections. 93 

2. SA biosynthesis 94 

SA is synthesised via two distinct pathways (Fig. 2): phenylalanine ammonia-lyase pathway 95 

and isochorismate pathway. The phenylalanine pathway occurs in the cytoplasm. In this 96 

pathway, SA is synthesised from phenylalanine (Fig. 1) after a series of reactions. In the first 97 

step, trans-cinnamic acid (Fig. 1) is produced from phenylalanine by the action of 98 

phenylalanine ammonia-lyase (PAL). Trans-cinnamic acid is subsequently converted to 99 

benzoic acid (Fig. 1)  (Horváth et al. 2007; Mustafa et al. 2009). The enzyme benzoic-acid-2-100 

hydroxylase (BA2H) catalyses the final step that is the conversion of benzoic acid to SA. In 101 

rice seedlings, salinity increases endogenous SA levels by increasing BA2H activity, 102 

suggesting phenylalanine pathway is mediating endogenous SA elevation during salinity 103 

stress (Sawada et al. 2006). 104 

The isochorismate pathway takes place in chloroplasts. In this pathway, SA is produced from 105 

chorismate (Fig. 1) via isochorismate (Fig. 1) as an intermediate product in a two-step 106 

process involving isochorismate synthase (ICS) and isochorismate pyruvate lyase (IPL) 107 

(Verberne et al. 2000; Strawn et al. 2007). The Arabidopsis genome encodes two ICS 108 

enzymes, namely, ICS1 (also known as SA-INDUCTION DEFICIENT2) and ICS2 109 

(At1g18870). The mutants lacking functional ICS1 are severely compromised in SA 110 

accumulation. However, detection of residual SA in an ics1/ics2 double mutant confirms that 111 

ICS pathway is not the only source of SA production in Arabidopsis (Garcion et al. 2008) and 112 

suggests that the phenylalanine ammonia-lyase pathway may be  responsible for the residual 113 

SA in these mutants (Dempsey et al. 2011). 114 

The bulk of pathogen-induced SA is synthesised by ICS1 in Arabidopsis, Nicotiana 115 

benthamiana and tomato (Wildermuth et al. 2001; Vlot et al. 2009), inducing local and 116 
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systemic acquired resistance (SAR) in these plants (Wildermuth et al. 2001). Moreover, two 117 

Arabidopsis mutants, SA-induction-deficient (sid)2-1(Nawrath and Metraux 1999) and 118 

enhanced disease susceptibility (eds)16-1/sid2-2 (Dewdney et al. 2001) are defective in SA 119 

biosynthesis and SAR, exhibiting enhanced susceptibility to disease. Subsequent analyses 120 

showed that ICS1 enzymes are affected in these mutants (Wildermuth et al. 2001). 121 

Interestingly, sid2-1 is also sensitive to UV light, ozone and salinity (Ogawa et al. 2005; 122 

Dempsey et al. 2011), implying SA biosynthesis through isochorismate pathway is crucial for 123 

abiotic stress tolerance in plants. 124 

2.1. Transcriptional and post-transcriptional regulation of SA biosynthesis 125 

The SA biosynthesis is controlled at both transcriptional and post-transcriptional levels. At 126 

transcriptional level, MYBs ( MY ELO BLAST; MYB 96 and MYB30), WRKYs (WRKY28 127 

and WRKY 46) and WIPK(Wound-Induced Mitogen-Activated Protein Kinase)-activated 128 

transcription factors  has been shown to positively regulate ICS gene encoding isochorismate 129 

synthase pathway thereby increasing SA production in plants (Vidhyasekaran 2015). At post-130 

trancriptional level, the RNA-binding proteins (RBP) has been shown to participate in 131 

multiple post-transcriptional processes. In particular, an RBP from A. thaliana, AtRBP-132 

defense related 1 (AtRBP-DR1) has been shown control ICS1-mediated SA biosynthesis, 133 

because (1) loss-of-function AtRBP-DR1 mutant plants accumulated less SA and 134 

overexpression lines showed higher SA than wildtype; and (2) mRNA levels of SID2 were 135 

higher in AtRBP-DR1  overexpressor lines (Qi et al . 2010). 136 

3. Metabolism of SA 137 

Most SA synthesised in plants is either glycosylated and/or methylated in the cells (Fig. 2). 138 

The SA O-β-glucoside (SAG; Fig. 1) is the dominant glucosylated conjugate of  SA, formed 139 

by glucose conjugation at the hydroxyl group of SA, whereas glucose conjugation at the SA 140 

carboxyl group produces salicyloyl glucose ester (SGE; Fig. 1) (Dean and Delaney 2008). 141 

These glucose conjugation reactions are catalysed by SA glycosyltransferase (SAGT) that is 142 

induced by exogenous application of SA or pathogen attack (Lee and Raskin 1998; Song 143 

2006). SAGT has moderately high affinity for SA (Km = 200 µM) (Dempsey et al. 2011). 144 

Arabidopsis encodes two SAGT enzymes: one favourably converts SA into SAG, whereas 145 

the other enzyme may catalyse the formation of SGE from SA  (Dean and Delaney 2008). 146 

The SAGT appears to be located in the cytosol of tobacco plants (Dean et al. 2005). Further, 147 
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SAG in Arabidopsis is thought to be produced in the cytosol and then actively transported 148 

into the vacuole for storage. Several studies suggest that SAG is inactive and must be 149 

converted to SA to induce defence responses (Dempsey et al. 2011). Indeed, SAG injection 150 

into tobacco leaves induced expression of SA marker gene PR-1, however such expression is 151 

preceded by the conversion of SAG into SA by the action of extracellular glycosidases 152 

(Hennig et al. 1993). Moreover, a non-hydrolysable chemical analogue of SAG was unable to 153 

induce PR-1 expression (Dempsey et al. 2011).  154 

SA is metabolised into methyl salicylate (MeSA; Fig. 1) by the activity of salicylic acid 155 

carboxyl methyltransferase (SAMT1, Km = 16 µM) at relatively low SA concentrations  in 156 

vivo (Dempsey et al. 2011). Like SAG, MeSA is biologically inactive, and acts as a mobile 157 

endogenous signal carrier that triggers induction of SAR upon converting back into SA 158 

(Shulaev et al. 1997; Park et al. 2007; Vlot et al. 2008; Vlot et al. 2009; Manosalva et al. 159 

2010). The MeSA can be further glucosylated into methyl salicylic acid O-β-glucose 160 

(MeSAG) (Song et al. 2008) (Fig. 2). Unlike SAG, the vacuole is not the predominant 161 

organelle for the storage of MeSAG, because MeSAG predominantly accumulates inside the 162 

cytosol (Fig. 2) (Dean et al. 2003; Dean et al. 2005).  163 

The biological role of MeSAG remains unknown. One possible function is to serve as a non-164 

volatile storage form of MeSA (Dean et al. 2003; Dean et al. 2005) that can be released as 165 

MeSA during defence responses. Alternatively, formation of MeSAG may protect plant cells 166 

from toxicity caused by high concentration of intracellular MeSA formed during a defence 167 

response (Fig. 2).  168 

A bacterial (Pseudomonas putida) salicylate hydroxylase enzyme, NahG (naphthalene 169 

hydroxylase G) has been shown to degrade SA into catechol in plants (Gaffney et al. 1993). 170 

Indeed, transgenic NahG Arabidopsis, tobacco and rice plants (expressing Pseudomonas 171 

putida salicylate hydroxylase) have been used widely to demonstrate the crucial role of SA in 172 

plant responses to biotic and abiotic stresses (Yang et al. 2004; Kazemi et al. 2010). During 173 

salt stress, the germination of Arabidopsis NahG transgenic seeds was shown to be delayed 174 

(Rajjou et al. 2006), slightly accelerated (Lee et al. 2010) or completely unaffected by the 175 

salinity stress (Borsani et al. 2001). Moreover, NahG plants showed enhanced tolerance to 176 

salt and oxidative stresses (Borsani et al. 2001; Lee et al. 2010). The decreased NaCl-induced 177 

oxidative damage (Borsani et al. 2001; Cao et al. 2009) and antioxidant properties of catechol 178 

(Lee et al. 2010) have been suggested as the reasons for enhanced salt tolerance. However, a 179 
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recent study reported that shoot growth of Arabidopsis NahG is sensitive to salt stress (Miura 180 

et al. 2011). Moreover, expression of NahG in Arabidopsis mutants with high endogenous SA 181 

decreased SA concentration, but the resulting phenotypes showed either a salt-sensitive 182 

(Miura et al. 2011) or a salt-tolerant response (Hao et al. 2012). Hence, a role of NahG in 183 

plants is unclear. 184 

4. SA transport in plants 185 

4.1. Long-distance transport 186 

SA induces systemic acquired resistance (SAR) in plants and must be transported to other 187 

part of plant.  This transport occurs in the phloem (Yalpani et al. 1991; Molders et al. 1996) 188 

and can be detected  within minutes after SA application/induction (Ohashi et al. 2004). 189 

Among the various forms of SA, only the methylated form (MeSA) has been shown to travel 190 

in plant tissue locally as well as systemically after pathogen infections (Seskar et al. 1998). 191 

Thus, MeSA was considered to be the long-distance signalling molecule that moves from 192 

infected to uninfected leaves via phloem. Interestingly, MeSA also functions as airborne 193 

signal, with MeSA released from Pseudomonas syringae-infected Arabidopsis expressing 194 

OsSAMT (gene from rice), and tobacco mosaic virus-infected tobacco inducing defence genes 195 

in neighbouring plants (Shulaev et al. 1997). In addition, MeSA is the only form of SA that 196 

could pass through the tough cuticular layer by diffusion independently of cuticular pH 197 

(Niederl et al. 1998).  Since MeSA is biologically inactive, MeSA does not activate any 198 

systemic defence response while being transported. 199 

4.2. Intracellular transport 200 

After biosynthesis, SA can be freely transported in and out of the cells, tissues and organs 201 

(Kawano et al. 2004). A radio-tracer study in tobacco cell suspension culture found de novo 202 

stimulation of free SA secretion across the plasma membrane (Chen 1999; Chen et al. 2001). 203 

This secretion was mediated by ROS- and Ca2+-dependent (at 200 µM SA) and ROS- and 204 

Ca2+-independent (at 20 µM SA) transporters (Chen 1999; Chen et al. 2001).  However, the 205 

molecular identity of above transporters remains unknown. A volatile form of SA (MeSA) 206 

was shown to move between cells by diffusion (Shulaev et al. 1997).  207 

In soybean, SAG transport into the vacuole (Fig. 2) was mediated by a tonoplast ABC 208 

transporter-like protein (Dean and Mills 2004), whereas tonoplast H+-antiporter was involved 209 
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in tobacco suspension culture cells (Dean et al. 2005). Transporters mediating movements of 210 

SA or SA conjugates between other cell organelles remain unknown (Fig. 2). 211 

5. SA receptors in plants 212 

To induce defence signalling, SA should bind to some specific receptors (Ross et al. 1999; 213 

Forouhar et al. 2005). The search for SA receptors has resulted in identification of few SA-214 

binding proteins. Two enzymes controlling the balance between SA and MeSA were 215 

suggested to act as SA receptors (Fig. 2): (i) SA methyl transferase 1 (SAMT1) that generates 216 

MeSA from SA (Ross et al. 1999), and (ii) SA-binding protein 2 (SABP2) that is essential for 217 

both local and systemic acquired resistance (SAR) following tobacco mosaic virus infection 218 

(Kumar and Klessig 2003). This can be explained by the fact that SABP2 displays SA-219 

inhibiting methyl salicylate esterase activity to convert biologically inactive MeSA into 220 

active SA (Forouhar et al. 2005). Subsequent studies reported that the activity of SAPB2 and 221 

SAMT1 was essential for SAR signal perception in distal tissues (Park et al. 2009). 222 

Interestingly, a transcriptomic-profiling study comparing wild halophytic tomato and a salt-223 

sensitive tomato cultivar revealed that SABP2 was induced by salinity only in wild tomato, 224 

suggesting involvement of SABP2 in the salt tolerance mechanisms (Sun et al. 2010). 225 

However, exact SABP2-mediated signalling during salt stress remains unknown. 226 

Another SA receptor, NPR1 (non-expresser of PR proteins 1) emerged as a master regulatory 227 

protein of SA-dependent defence responses by being a transcriptional co-activator of PR-228 

gene expression (Vlot et al. 2009; Wu et al. 2012). Other studies reported that SA also binds 229 

to NPR1 prologues NPR3 and NPR4 (Attaran and He 2012; Fu et al. 2012). At least two 230 

forms of NPR1 exist in cells. An oligomeric NPR1 is the oxidised form localised in the 231 

cytoplasm when the SA concentration is low (i.e., no infection/stress), but SA accumulation 232 

following stress leads to an altered cellular redox status that in turn activates NPR1 by 233 

reducing biologically-inactive NPR1 oligomers to active monomers (Dong 2004). SA binding 234 

to NPR3 and NPR4 triggered reduction of oligomeric into monomeric NPR1 (Fu et al. 2012). 235 

The resulting biologically-active NPR1 monomers are transported into the nucleus, where 236 

they interact with specific transcription factors that activate SA-responsive PR genes (Dong 237 

2004; Fu et al. 2012). In fact, more than 90 percent of PR genes were NPR1-dependent 238 

(Blanco et al. 2009). In addition to regulating defence genes downstream of SA, the presence 239 

of NPR1 in the nucleus is essential to prevent SA accumulation by inhibiting ICS1 240 

(Wildermuth et al. 2001; Zhang et al. 2010). This is a crucial step in the SA signalling 241 
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termination following successful induction of a defence response (Fig. 2). If SA accumulation 242 

is not controlled that would lead to a hypersensitive response to stresses. Indeed, an 243 

Arabidopsis npr1 mutant accumulated excess SA (Zhang et al. 2010) and was defective in all 244 

major SA-dependent defence responses (Cao et al. 1994; Delaney et al. 1995).   245 

The role of NPR1 during salt stress is controversial because (1) Arabidopsis npr1 mutant 246 

showed enhanced growth during salt stress (Hao et al. 2012), and (2) NPR1-247 

hyperaccumulating Arabidopsis double mutant (npr3npr4) failed to undergo programmed cell 248 

death (Attaran and He 2012; Fu et al. 2012), suggesting NPR1-mediated prevention of 249 

programmed cell death may be beneficial during salt stress. The above observations suggest 250 

that salt tolerance in plants can be controlled by both NPR1-independent and NPR1-251 

dependent mechanisms (Jayakannan et al. 2014). 252 

6. Physiological processes controlled by SA during salt stress 253 

6.1 Seed germination 254 

Germination of Arabidopsis sid2 mutant defective in ICS1-mediated SA biosynthesis was 255 

hypersensitive to salt stress (Lee et al. 2010). Reversal of salt-induced germination inhibition 256 

was noted when the expression level of ICS1 was increased (Alonso-Ramirez et al. 2009).  257 

The above results suggest SA synthesis and accumulation are vital for seed germination, 258 

especially during salt stress. On the other hand, SA alone inhibited seed germination in 259 

Arabidopsis (Nishimura et al. 2005; Lee et al. 2010), maize (Guan and Scandalios 1995)  and 260 

barley (Xie et al. 2007) in a dose-dependent manner. The above discrepancies seem to be 261 

attributed to SA concentrations used in the above studies. For example, an inhibitory effect of 262 

salt stress on germination of sid2 mutant was decreased when less than 50 µM SA was 263 

supplied exogenously, but inhibition was exaggerated when SA concentration exceeded 100 264 

µM (Lee et al. 2010). Interestingly, a proteomic study involving SA-deficient NahG 265 

transgenic plants showed that germination of SA-deficient NahG plants was severely delayed 266 

under high salinity, but exogenous application of SA reversed this delayed germination of 267 

NahG (Rajjou et al. 2006). However, other studies reported that germination of NahG was 268 

not affected during salt stress (Borsani et al. 2001; Lee et al. 2010).  269 

Regulation of ROS balance by SA has been suggested as a mechanism by which SA 270 

modulates germination during salt stress (Lee et al. 2010). This may be true because SA and 271 

H2O2 form a “self-amplifying feedback loop” in response to various abiotic and biotic 272 
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stresses; H2O2 induces accumulation of SA, and SA enhances H2O2 concentration (Shirasu et 273 

al. 1997; Rao and Davis 1999). 274 

6.2 Plant growth 275 

Effect of exogenous SA on growth is dependent on concentration and plant species. Usually, 276 

SA at relatively low concentrations (less than 100 µM) enhanced, and at relatively high 277 

concentrations (more than 1 mM) decreased, growth in diverse plant species (Rivas-San 278 

Vicente and Plasencia 2011). An alteration in the status of other hormones (Shakirova 2003) 279 

and/or photosynthesis, transpiration and stomatal conductance (Stevens et al. 2006) was 280 

suggested as a reason for the above effects.  281 

Characterisation of Arabidopsis mutants with altered SA accumulation has provided direct 282 

evidence for the involvement of SA in plant growth. The SA-deficient plants [sid2, enhanced 283 

disease susceptibility 5 (eds5/sid1) and NahG] had higher biomass than wild type, whereas 284 

SA-hyperaccumulating mutants such as cpr1/5/6 (constitutive expresser of PR1/5/6), 285 

acd1/5/6/11 (accelerated cell death1/5/6/11), dnd1/2 (defence no death1/2), isd1 (lesions 286 

simulating disease1), nudt7 (nudix hydrolase7), agd2 (aberrant growth and death), snc1 287 

(suppressor of npr1-1 consitutive1) and siz1 [SUMO (small ubiquitin-related modifier) E3 288 

ligase1] showed dwarfism (reviewed in Miura et al. 2011; Rivas-San Vicente and Plasencia 289 

2011). Negative regulation of cell division and cell enlargement by SA has been suggested as 290 

a reason for the above growth differences (Xia et al. 2009; Hao et al. 2012).  291 

The growth of mutants with altered SA concentrations did not show any clear pattern during 292 

salt stress. Some studies have found that SA-deficient Arabidopsis NahG exhibited higher 293 

growth compared with the wild type and SA-hyperaccumulating (snc1) mutant during salinity 294 

stress (Borsani et al. 2001; Cao et al. 2009; Hao et al. 2012). However, in other studies SA-295 

hyperaccumulating mutants, namely siz1 (small ubiquitin-like modifier E3 ligase1) showed 296 

enhanced growth (Miura et al. 2011) and aba3-1 (ABA biosynthesis mutant3-1) showed no 297 

change in growth (Asensi-Fabado and Munné-Bosch 2011), whereas severe growth reduction 298 

was observed in SA-deficient plants (NahG, sid2 and eds5) during salt stress (Asensi-Fabado 299 

and Munné-Bosch 2011; Miura et al. 2011). Moreover, growth of NahG siz1 double mutant 300 

was retarded (Miura et al. 2011), whereas NahG snc1 had enhanced growth (Hao et al. 2012) 301 

during salt stress. Thus, more research is needed to decipher the exact role of SA in plant 302 

growth during salt stress. 303 
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6.3 Photosynthesis and transpiration 304 

An effect of exogenous SA on photosynthesis is concentration-dependent (Ashraf et al. 305 

2010). At low concentrations (less than 10 µM), SA alleviated a salt-induced decrease in 306 

photosynthesis by increasing photosynthetic rate (Stevens et al. 2006; Nazar et al. 2011), 307 

carbon fixation, transpiration, stomatal conductance (Stevens et al. 2006; Poór et al. 2011a) 308 

and antioxidant activity (Szepesi et al. 2008) in many plant species. The opposite effects were 309 

noted at high (1-5 mM) SA concentrations (Nazar et al. 2011). Indeed, millimolar 310 

concentrations of SA decreased net photosynthetic rate (Nemeth et al. 2002), hampered 311 

synthesis of Rubisco (Pancheva and Popova 1997), decreased chlorophyll concentration 312 

(Moharekar et al. 2003), and resulted in an increase in chloroplast volume, swelling of 313 

thylakoid grana, and coagulation of stroma (Uzunova and Popova 2000). However, 314 

characterisation of Arabidopsis plants with altered endogenous SA concentration did not 315 

reveal any clear pattern. In one study, SA-deficient NahG showed higher chlorophyll 316 

concentration and variable-to-maximum fluorescence ratio (FV/Fm; indicator of damage to the 317 

PSII) in comparison with SA-hyperaccumulating snc1 (Hao et al. 2012). In another study, 318 

there was no significant difference between SA-deficient (sid2 and eds5) and 319 

hyperaccumulating (aba3) Arabidopsis mutants in chlorophyll concentration and Fv/Fm ratio 320 

(Asensi-Fabado and Munné-Bosch 2011) during salt stress. Thus, more studies are needed to 321 

decipher the exact role of SA in influencing photosynthetic parameters during salt stress. 322 

Stomata play a major role in processes involved in maintenance of photosynthetic capacity. 323 

In particular, stomatal closure and opening affect the transpiration and photosynthetic 324 

capacity, and thus plant adaptation to different stresses. Abscisic acid (ABA) is a 325 

phytohormone known to play an important role in stomatal closure and resistance to 326 

drought/water deficit. ABA affects stomatal closure through production of ROS species by 327 

NADPH oxidase (Acharya and Assmann 2009). SA antagonised the ABA-induced stomatal 328 

closure (Rai et al. 1986). However, 0.4 mM SA induced stomatal closure in Arabidopsis 329 

within 2 h, decreasing stomatal gas exchange by 4-fold (Mateo et al. 2004; Rivas-San Vicente 330 

and Plasencia 2011). Specifically, the Arabidopsis wrky54wrky70 mutant, known to  331 

accumulate high levels of endogenous SA, exhibited tolerance to PEG-induced osmotic 332 

stress, which was correlated with improved water retention and enhanced stomatal closure (Li 333 

et al. 2013). Moreover, bacteria-induced stomatal closure was not observed in SA-deficient 334 

NahG transgenic plants and SA-biosynthesis mutant eds16-2, indicating the essential role of 335 
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SA in stomatal closure (Melotto et al. 2006; Melotto et al. 2008). The SA-induced stomatal 336 

closure is also mediated by ROS that are generated in a reaction catalysed by peroxidase 337 

instead of NADPH oxidase (Miura et al. 2013; Miura and Tada 2014). Interestingly, 338 

Arabidopsis mutant with high endogenous SA concentration (siz1) showed decreased 339 

stomatal aperture (Miura et al. 2013) and increased salt tolerance (Miura et al. 2011), 340 

implying that SA-mediated stomatal closure may be beneficial during salt stress. 341 

6.4 Nutrient acquisition  342 

Exogenous application of SA is well known to ameliorate the effect of salinity. Some studies 343 

suggested maintenance of optimum K+/Na+ ratio under saline conditions as a reason for 344 

enhanced salt tolerance in plants (reviewed in Horváth et al. 2007; Ashraf et al. 2010; Hayat 345 

et al. 2010). Usually, exogenous SA minimises Na+ uptake while increasing tissue 346 

concentrations of K+, Ca2+, Mg2+ (Gunes et al. 2005; Yildirim et al. 2008), Fe2+, Mn2+, Cu2+ 347 

(El-Tayeb 2005; Gunes et al. 2005; Yildirim et al. 2008), P (El-Tayeb 2005; Gunes et al. 348 

2005; Yildirim et al. 2008), N (Gunes et al. 2007; Yildirim et al. 2008; Nazar et al. 2011) and 349 

S (Nazar et al. 2011) in many plant species. However, there are some contrary results as well. 350 

The exogenous application of SA decreased concentrations of K+ and P in shoot and root 351 

tissues of maize (Gunes et al. 2007) and in barley shoots (El-Tayeb 2005) under salinity 352 

stress. Surprisingly, Na+ and Cl- concentrations in salinised spinach roots and shoots were not 353 

affected by SA (Eraslan et al. 2008). Further, application of SA to tomato plants inhibited K+ 354 

uptake and increased Na+ uptake (Szepesi et al. 2009). Hence, a role of SA in maintenance of 355 

ionic homeostasis under salinity stress is poorly understood.  356 

Most of the results mentioned above are based on prolonged salt exposure (days to months). 357 

Hence, the reported effects are likely to be indirect and strongly dependent on doses of SA 358 

used, plant species studied, intensity and duration of salt stress (reviewed in Horváth et al. 359 

2007).  Moreover, the critical role of SA in modulation of specific ion transporters in roots 360 

during salt stress has been overlooked. Hence, relevant information regarding membrane 361 

transporters controlling K+ homeostasis, Na+ uptake and Na+ redistribution during salt stress 362 

is reviewed in the following sections. 363 

7. SA signalling networks 364 
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7. 1 Cross-talks with other plant hormones 365 

SA exerts its role in a variety of plant developmental processes via cross-talk with 366 

gibberellins, abscisic acid, jasmonic acid and ethylene (Yasuda et al. 2008; Alonso-Ramirez 367 

et al. 2009; Khan et al. 2014). Interestingly, exogenous application of gibberellins (50 µM) 368 

under NaCl (150 mM) stress slightly improved germination of SA-deficient sid2 mutant 369 

(Alonso-Ramirez et al. 2009), implying gibberellins can offset SA deficiency. In general, SA 370 

is antagonistic to ABA during development of systemic acquired resistance (SAR); 371 

exogenous application of ABA hampered the induction of SAR, whereas activation of SAR 372 

by SA suppressed ABA signalling (Yasuda et al. 2008). In addition, AHG2 (encoding poly 373 

(A)-specific ribonuclease) controlled ABA sensitivity and promoted expression of SA-374 

inducible genes (Nishimura et al. 2005). On the other hand, SA and ABA play a similar role 375 

in stomatal closure, albeit through a different pool of ROS (see above), suggesting the 376 

interaction between SA and ABA may be either positive or negative depending on conditions. 377 

Recently, the Arabidopsis siz1 mutant defective in SUMO (small ubiquitin-related modifier) 378 

E3 ligase showed ABA sensitivity, high SA accumulation and expression of SA-regulated 379 

genes (Lee et al. 2006; Miura et al. 2009). Moreover, high endogenous concentrations of SA 380 

in two ABA-sensitive mutants (aba3 and siz1) improved salt tolerance (Asensi-Fabado and 381 

Munné-Bosch 2011; Miura et al. 2011), implying that suppression of ABA signalling by SA 382 

is critical for salt tolerance. 383 

7.2 Cross-talks with Reactive Oxygen Species 384 

Redox homeostasis in plants is maintained by the appropriate balance between ROS 385 

generation and scavenging (Apel and Hirt 2004). In general, low concentrations of SA 386 

facilitate tolerance to abiotic stresses, whereas high concentrations induce oxidative stress 387 

due to exacerbated generation of ROS species, leading to cell death (Shirasu et al. 1997; Lee 388 

et al. 2010; Poór et al. 2011b; Miura and Tada 2014). Similar to SA, H2O2 (a ROS species) at 389 

low concentrations acts as a signalling molecule, inducing tolerance to several biotic and 390 

abiotic stresses, but at high concentrations triggers apoptosis-like and autophagic cell death 391 

(Love et al. 2008; Quan et al. 2008). A “self-amplifying feedback loop” concept (Fig. 3) has 392 

been proposed to explain the interaction between SA and H2O2 during various abiotic and 393 

biotic stresses; H2O2 induces accumulation of SA, and SA increases H2O2 concentration 394 

(Shirasu et al. 1997; Harfouche et al. 2008). A H2O2-mediated increase in endogenous SA 395 

concentration can be explained by the catalytic activity  of H2O2 on BA2H enzyme involved 396 
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in the conversion of benzoic acid to SA (Dempsey and Klessig 1995). An increase in H2O2 397 

concentration by SA is mediated via inhibition of catalase and ascorbate peroxidase enzymes 398 

through SA binding (Durner and Klessig 1995; Durner and Klessig 1996; Horváth et al. 399 

2002).  400 

All biotic and abiotic stresses are causally associated with increased ROS concentrations. Salt 401 

stress increases production of various forms of ROS, namely superoxide (O2̇
−), singlet 402 

oxygen (1O2), hydrogen peroxide (H2O2) and hydroxyl radical (˙OH) in plants (reviewed in 403 

Parida and Das 2005). The ROS are scavenged by enzymatic and/or non-enzymatic 404 

antioxidants to protect plants from prolonged salt stress (Bose et al. 2014). Indeed, salt stress 405 

tolerance in diverse plant species was positively correlated with increased efficiency of the 406 

antioxidative system (Horváth et al. 2007; Munns and Tester 2008; Ashraf et al. 2010). 407 

Exogenous SA application at physiologically relevant concentrations caused moderate stress 408 

by generating H2O2, which induced the anti-oxidative defence system including enzymatic 409 

(superoxide dismutase, catalase, ascorbate peroxidase and glutathione peroxidase) and non-410 

enzymatic antioxidants (glutathione, ascorbic acid, carotenoids and tocopherols) during 411 

acclimation to salt stress (Durner and Klessig 1995; Durner and Klessig 1996; Gill and Tuteja 412 

2010).  413 

Interestingly, SA may generate ROS species in the photosynthetic tissues, thereby enhancing 414 

oxidative damage under salt stress. Indeed, salt-treated wild type plants showed necrotic 415 

lesions in shoot tissues, but these lesions were not observed in salt-treated SA-deficient NahG 416 

transgenic plants (Borsani et al. 2001; Hao et al. 2012). High ratios of glutathione to oxidised 417 

glutathione (GSH/GSSG) and ascorbic acid to dehydroascorbate (ASA/DHA) in NahG plants 418 

enhanced their antioxidant capacity to mitigate salt-induced oxidative stress (Borsani et al. 419 

2001; Cao et al. 2009; Hao et al. 2012). However, high ratio of GSH/GSSG in rice NahG 420 

lines did not result in oxidative stress tolerance (Yang et al. 2004; Kusumi et al. 2006), 421 

questioning the above notion. Moreover, SA-hyperaccumulating mutants, namely siz1 (small 422 

ubiquitin-like modifier E3 ligase1) and aba3-1 (ABA biosynthesis mutant3-1) showed 423 

enhanced salt tolerance (Asensi-Fabado and Munné-Bosch 2011; Miura et al. 2011), 424 

implying high SA may be essential in preventing salt-induced oxidative stress. A subsequent 425 

comparison of two SA hyper accumulating Arabidopsis mutants namely nudt7 (contains the 426 

constitutively expressed SA-mediated NPR1-independent and NPR1-dependent defence 427 

genes) and npr1-5 (formerly known as sai1, salicylic acid-insensitive1; without the SA-428 
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mediated NPR1-dependent defence response) under salt and oxidative stress revealed that 429 

presence of NPR1-mediated SA signalling pathway is essential for salt-induced in vivo H2O2 430 

production as well as salt and oxidative stress tolerance (Jayakannan et al. 2014). 431 

8. SA-mediated control of Na+ uptake and sequestration 432 

8.1 Sodium transport across the plasma membrane 433 

Several transporters contribute to Na+ uptake during salt stress. High-affinity potassium 434 

transporters (HKT) have been reported in many plant species (Rubio et al. 1995; Gassmann et 435 

al. 1996; Garciadeblas et al. 2003; Horie et al. 2006; Munns et al. 2012) and involved in both 436 

high-affinity Na+ uptake (Haro et al 2010) and Na+ redistribution within the plant (Munns et 437 

al 2012). Interestingly, SA pre-treatment in the Arabidopsis wild type (Jayakannan et al. 438 

2013) and high endogenous-SA mutant nudt7 decreased the shoot Na+ concentration during 439 

prolonged salt stress (Jayakannan et al. 2014). Considering that another mutant with high SA 440 

content (npr1-5) accumulated higher Na+ in shoot than the wild type and showed 441 

hypersensitivity to salt stress, it is clear that the NPR1-dependent SA signalling is critical for 442 

salt tolerance by restricting Na+ into the shoots (Fig. 4) (Jayakannan et al. 2014). However, it 443 

remains unclear whether prevention of  Na+ loading into the shoots or enhanced Na+ removal 444 

from xylem responsible for lower Na+ in shoots. 445 

Exogenous SA pre-treatment for 1 h did not cause any significant difference in Na+ influx 446 

during the acute salt stress in Arabidopsis roots (Jayakannan et al. 2013). Among the 447 

constitutively high endogenous SA Arabidopsis mutants, nudt7 recorded lowest Na+ influx 448 

and the NPR1-signalling blockage mutant npr1-5 recorded the highest Na+ influx 449 

(Jayakannan et al. 2014). The above observations suggest that the exogenous SA require 450 

longer than 1 h to act on Na+ transporters, and the SA action occurs at post-transcriptional 451 

level because absence of NPR1 (a transcriptional co-activator of SA genes) has resulted in 452 

highest Na+ influx and salt hypersensitivity (Jayakannan et al. 2014). As aforementioned 453 

studies have measured net Na+ fluxes, it is hard to pinpoint whether SA inhibited Na+ entry 454 

pathways and/or enhanced the activity of Na+/H+ exchangers (Fig. 4). Additional experiments 455 

are needed to address this issue.     456 

Weakly voltage-dependent non-selective cation channels (NSCC) are considered to be the 457 

main pathway for Na+ entry into roots exposed to high NaCl concentrations (Tyerman et al. 458 

1997; Amtmann and Sanders 1999; Tyerman and Skerrett 1999; Davenport and Tester 2000; 459 
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Horie et al. 2001; Tyerman 2002; Tester and Davenport 2003; Horie and Schroeder 2004; 460 

Horie et al. 2006). There are two sub groups within the NSCC channels that can mediate Na+ 461 

uptake in plants: cyclic-nucleotide-gated channels and glutamate receptor-like channels 462 

(GLRs). The latter may be suggested as possible downstream targets of SA. Indeed, salt 463 

stress increased the glutamate synthase activity in tomato leaves (Berteli et al. 1995), and 464 

exogenous SA modulated glutamate dehydrogenase activity in maize roots (Jain and 465 

Srivastava 1981). Thus, it is plausible to suggest that SA can modulate GLRs involved in Na+ 466 

entry and redistribution in plants. 467 

A low cytosolic Na+ concentration is maintained by the Na+/H+ antiporter (SOS1 -SALT 468 

OVERLY SENSITIVE1) that extrudes excess Na+ from the cytosol (Hasegawa et al. 2000; 469 

Sanders 2000; Shi et al. 2000; Zhu 2002, 2003) (Fig. 4). SOS1 promoter activity has been 470 

identified in virtually all tissues, but the greatest activity is found in root epidermal cells, 471 

particularly at root tips and in the cells bordering the vascular tissue. SOS1 plays three major 472 

roles: (i) mediates Na+ efflux from cytosol to the rhizosphere, (ii) increases the time available 473 

for Na+ storage in the vacuole by slowing down Na+ accumulation in the cytoplasm, and (iii) 474 

controls long-distance Na+ transport between roots and shoots through Na+ retrieval (Zhu 475 

2003). The inherent stability of SOS1 mRNA was poor, with the half-life of only 10 minutes 476 

(Chung et al. 2008). In a SOS1-overexpresser line this stability was increased by H2O2 in a 477 

rapid (within 30 min) concentration-dependent manner, but not by SA. This is surprising 478 

because SA controls H2O2 balance via a “self-amplifying feedback loop” in plants (see 479 

above; Fig. 3). Hence, more research is needed to decipher role of SA in SOS1 expression 480 

and functioning in plants, if any (Fig. 4). 481 

A stress-inducible plasma membrane localised PMP3 (PLASMA MEMBRANE PROTEIN 3) 482 

has been shown to participate in Na+ efflux dependent on a Na+/H+ exchanger (Fig. 4) or Na+-483 

ATPase during salt stress (Inada et al. 2005; Mitsuya et al. 2005). The PMP3 homologues 484 

have been identified in a few halophyte monocotyledons, rice and Arabidopsis (Inada et al. 485 

2005; Mitsuya et al. 2005; Chang-Qing et al. 2008). In situ hybridisation study in a halophyte 486 

sheep grass (Aneurolepidium chinense) has revealed that AcPMP3 is localised in root cap and 487 

root epidermis (Inada et al. 2005). Interestingly, AcPMP3 expression was up-regulated within 488 

15 min of H2O2 and 30 min of SA treatments (Inada et al. 2005), implying SA may control 489 

AcPMP3 operation during salt stress. 490 
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8.2 Sodium transport across the tonoplast  491 

Vacuolar Na+ sequestration is important for the maintenance of low cytosolic Na+ 492 

concentrations and is considered as a key attribute of salinity tolerance mechanism employed 493 

by salt tolerant species, including halophytes (Shabala 2013). This sequestration is mediated 494 

by tonoplast Na+/H+ exchangers (NHX) (Apse et al. 1999; Gaxiola et al. 1999) that belong to 495 

the CPA family of cation/proton antiporters (Apse and Blumwald 2007; Rodríguez-Rosales et 496 

al. 2008). At least six NHX isoforms have been found in Arabidopsis; with their expression 497 

pattern, both tissue- and stress-specific (Rodríguez-Rosales et al. 2009). NHX exchangers are 498 

constititively expressed in halophytes and and inducible in salt-tolerant glycophyte species 499 

(Shabala and Mackay 2011). Overexpression of NHX1 increased salinity tolerance of 500 

Arabidopsis (Apse et al. 1999), Brassica napus (Zhang et al. 2001),  tomato (Zhang and 501 

Blumwald 2001) and maize (Zörb et al. 2005). These results confirm that increased capacity 502 

for vacuolar Na+ sequestration is important for salinity tolerance. Interestingly, AtNHX1 and 503 

AtNHX2 can mediate K+ transport along with Na+/H+ exchange (Zhang and Blumwald 2001; 504 

Apse et al. 2003; Bassil et al. 2011; Barragán et al. 2012). While there is no direct proof of 505 

SA regulating NHXs, the NHX1 expression was upregulated by ABA and/or SA treatments 506 

in diverse plant species (Wu et al. 2004; Guan et al. 2011). Further, SA interacts with ABA 507 

during abiotic stresses (see below). Hence, it may be possible that SA may regulate Na+ and 508 

K+ vacuolar sequestration through NHXs. 509 

9. Membrane transporters controlling K+ homeostasis during salt stress 510 

Salinity stress operates through ionic, hyperosmotic and oxidative components that severely 511 

hamper cell metabolism. All these components affect ion transport processes, particularly K+ 512 

uptake and retention. Under salt conditions, entry of Na+ ions causes K+ leakage, thereby 513 

depleting the cytosolic K+ pool available for metabolic functions, which eventually leads to 514 

cell death (Shabala and Cuin 2008; Shabala 2009). Thus, maintenance of K+ homeostasis has 515 

emerged as a fundamental component of salt tolerance mechanism (Maathuis and Amtmann 516 

1999; Shabala and Cuin 2008; Demidchik et al. 2010). Indeed, several studies reported a 517 

strong positive correlation between the capacity of roots to retain K+ and salt tolerance in 518 

barley (Chen et al. 2005; Chen et al. 2007a; Chen et al. 2007b), wheat (Cuin et al. 2008), 519 

lucerne (Smethurst et al. 2008) and Arabidopsis (Shabala et al. 2005; Shabala et al. 2006; 520 

Jayakannan et al. 2011; Bose et al. 2013; Jayakannan et al. 2013). Moreover, divalent cations 521 

(Shabala et al. 2003; Shabala et al. 2006), polyamines (Pandolfi et al. 2010) and compatible 522 
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solutes (Cuin and Shabala 2005; Cuin and Shabala 2007) were able to prevent NaCl-induced 523 

K+ loss and improve salt tolerance. In several plant species, SA ameliorated detrimental 524 

effects of salinity ( Horváth et al. 2007; Ashraf et al. 2010; Hayat et al. 2010) and increased 525 

K+ concentration in roots ( He and Zhu 2008), but it remained unclear whether enhanced K+ 526 

uptake or prevention of K+ loss played a major role in this ameliorative effect. Recent work 527 

in our laboratory have proved that prevention of salt-induced K+ loss through K+-outward 528 

rectifying channel (Fig. 4) plays a major role in SA mediated salt tolerance in plants 529 

(Jayakannan et al. 2013). 530 

In many species, NaCl-induced K+ efflux from mesophyll is mediated by depolarisation-531 

activated outward-rectifying K+ channels (GORK in Arabodopsis)(Shabala and Cuin 2008; 532 

Anshutz et al 2014). Interestingly, pre-treating Arabidopsis roots with physiologically 533 

relevant concentration of SA (<0.5 mM) has decreased K+ leak through GORK channel (Fig. 534 

4) suggesting prevention of K loss through GORK is the main mode of action for SA during 535 

salt stress (Jayakannan et al. 2013). Further, decreased K+ leak through GORK channel is 536 

NPR1 mediated because npr1-5 mutant unable to decrease K+ loss through depolarisation-537 

activated KOR channel (Jayakannan et al. 2014).  538 

Being a voltage-gated channel, GORK operation is strongly affected by the plasma 539 

membrane H+-ATPase that plays a crucial role in regulating membrane potential (Palmgren 540 

and Nissen 2010). The activation of proton pumps by salt stress (Kerkeb et al. 2001) is 541 

positively correlated with salinity tolerance, and this effect is stronger in salt-tolerant than 542 

salt-sensitive species (Chen et al. 2007b; Sahu and Shaw 2009; Bose et al. 2013; Jayakannan 543 

et al. 2013). Such an increase in H+ pumping could act in two parallel pathways. First, 544 

enhanced activity of H+-ATPase would down-regulate depolarisation-activated outward-545 

rectifying K+ channels, thus preventing K+ leakage via KOR channels (Chen et al. 2007b). 546 

Indeed, the SA pre-treatment under salinity conditions enhanced the H+-ATPase activity in a 547 

dose- and time-dependent manner (Fig. 4), helping plants to maintain membrane potential at 548 

more negative values thereby decreasing NaCl-induced K+ leakage via depolarization-549 

activated KOR channels in Arabidopsis (Jayakannan et al. 2013). Interestingly, the above SA 550 

effects were absent in npr1-5 mutant but present in nudt7 mutant, implying SA up-regulates 551 

H+-ATPAse activity through NPR1 (Jayakannan et al. 2014). Secondly, H+ pumping would 552 

provide a driving force for the plasma membrane Na+/H+ exchanger (SOS1) to remove Na+ 553 

from the cytoplasm to the apoplast (Shi et al. 2000; Apse and Blumwald 2007), thus 554 
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decreasing Na+/K+ ratio in the cytoplasm. The SA pre-treatment increased the activity of the 555 

plasma membrane H+-ATPase in grape and peas during temperature stress (Liu et al. 2008; 556 

Liu et al. 2009); hence, each of the two pathways mentioned above may potentially be 557 

affected by SA. Overall, it appears that beneficial effects of SA during salt stress may be 558 

related to up-regulation of the plasma membrane H+-ATPase activity and the consequent 559 

effects on intracellular ionic homeostasis of Na+ and K+.  560 

Another major pathway of K+ leak from the cytosol under saline condition is via ROS-561 

activated K+ permeable channels (Shabala and Pottosin 2014; Anschutz et al 2014). Various 562 

ROS species are produced during salt stress in various cellular compartments including 563 

apoplast, chloroplasts (in leaves) and mitochondria (reviewed in  Miller et al. 2009). Some of 564 

these ROS species (˙OH and H2O2) can activate either GORK or NSCC channels  to induce 565 

K+ loss and trigger programmed cell death during salt stress (e.g Shabala et al. 2007; 566 

Demidchik et al. 2010; Poór et al. 2011b). Hence, prevention of K+ loss through ROS-567 

activated NSCC during salt stress is critical for salt tolerance in plants. Given the reported 568 

cross-talks between SA and ROS signalling pathways (see below), SA can control K+ loss 569 

though ROS-activated NSCC (Fig. 4). Indeed, the results from two Arabidopsis mutants with 570 

high endogenous SA concentration and altered SA signalling (nudt7 and npr1-5) 571 

demonstrated that SA decreased the oxidative damage and hypersensitivity to oxidative stress 572 

only if NPR1 was present (Jayakannan et al. 2014). The above conclusion is proposed based 573 

on the fact that npr1-5 mutant showed higher K+ efflux and higher sensitivity during ROS 574 

stress than nudt7 mutant (Jayakannan et al. 2014). 575 

 576 

10. Conclusions and future work 577 

Exogenous application of SA is widely used as a possible remedy to ameliorate toxicity 578 

symptoms induced by salinity stress in many plant species (Horváth et al. 2007; Ashraf et al. 579 

2010). Also popular is an idea of overexpressing SA biosynthesis through isochorismate 580 

synthase (ICS) pathway and NPR1 in glycophytes. Yet, neither of these methods has fully 581 

negated detrimental effects of salinity on plant performance. Several reasons may contribute 582 

to this. 583 

First, similar to other signalling molecules (such as cytosolic free Ca2+, H2O2, or NO) 584 

salicylic acid signalling is highly dynamic and should be considered in a strict temporal 585 

context. This condition is often not met. In this context, a constitutive overexpression of SA 586 
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biosynthesis may interfere with other signal transduction pathways negating all the beneficial 587 

effects gained. Can we talk about stress-specific SA “signatures”, in a manner similar to those 588 

reported for cytosolic free Ca2+ (Dodd et al 2010) or H2O2 (Bose et al 2014a)? This aspect 589 

warrants proper investigation in a future. 590 

The NPR1 mediated SA signalling not only improve salt tolerance but also offer tolerance to 591 

many biotic and abiotic stresses and, thus, may be considered as an important part of the 592 

cross-tolerance mechanism. However, as shown above NPR1-dependent SA signalling may 593 

control numerous physiological traits by (i) minimising Na+ entry into roots and the 594 

subsequent long-distance transport into shoots, (ii) enhancing H+-ATPase activity in roots, 595 

(iii) preventing stress-induced K+ leakage from roots via depolarisation-activated KOR and 596 

ROS-activated non-selective cation channels (NSCC), and (iv) increasing K+ concentration in 597 

shoots under salt and oxidative stresses. Each of these traits, however, should be considered 598 

in a context of the tissue specificity. Salinity stress tolerance is a physiologically multi-599 

faceted trait, and the latter are not always mutually compatible. Say, reduced Na+ entry into 600 

roots and lesser Na+ accumulation in the shoot (Jayakannan et al 2013) will jeopardise the 601 

plant’s ability to adjust to hyperosmotic conditions imposed by salinity. Thus SA-mediated 602 

Na+ reduction from uptake should be complemented by plant’s ability to achieve osmotic 603 

adjustment by increase de novo synthesis of compatible solutes.  604 

The energy cost of some of above enhanced traits should be also not neglected. It was 605 

reported before that both halophytes (Bose et al 2014b) and salt-tolerant glycophytes cultivars 606 

(Chen et al 2007b) have intrinsically higher rate of H+ pumping and thus are able to maintain 607 

more negative membrane potential, preventing NaCl-induced K+ loss via GORK channels. 608 

However, this comes with the yield penalties. Thus, a constitutive enhancement of SA 609 

production and associated increase in root H+-pumping (Jayakannan et al 2013) may result in 610 

reduced plant yield under control conditions. Thus, enhanced SA biosynthesis through either 611 

isochorismate synthase (ICS) and NPR1 pathways should be achieved only by using stress-612 

inducible promoters, to avoid associated yield penalties resulting from (otherwise futile) H+ 613 

pumping to maintain highly negative membrane potential. 614 
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Figure 1: Chemical structure of phenolic compounds that participates in salicylic acid 1085 

(o-hydroxybenzoic acid) biosynthesis and metabolism. 1086 
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Figure 1: SA biosynthesis, metabolism, homeostasis, transport and signalling during biotic 1107 

and abiotic stresses. Enzymes involved in SA production and metabolism are shown in red 1108 

fonts. BA2H= benzoic-acid-2-hydroxylase; ICS1= isochorismate synthase 1; IPL= 1109 

isochorismate pyruvate-lyase; PAL= phenylalanine ammonia-lyase; SABP2= SA-binding 1110 

protein 2; SAGT= SA glycosyltransferase; SAMT1= SA carboxyl methyltransferase. 1111 

Concentrations shown are Km values of SAMT1 (15 µM) and SAGT (20 µM). Dashed lines 1112 

with arrows indicate transport across the membranes. Blue text denotes mode of transport. 1113 

Question marks denote unidentified mechanisms. ABC denotes ATP-binding cassette 1114 

transport protein. SA surrounded by pink colour indicates free SA. SA conjugated forms are 1115 

MeSA= methyl salicylate; MeSAG= methyl SA O-ß-glucose; SAG= SA O-ß-glucoside; 1116 

SGE= salicyloyl glucose ester. SA-binding receptors are depicted in boxes. NPR1/2/3= non-1117 

expresser of PR (pathogenesis-related) proteins 1/2/3. ‘Oligomeric’ means the oxidised form 1118 

of NPR1, whereas ‘monomeric’ denotes reduced form of NPR1. Dotted line connecting 1119 

NPR1 in the nucleus and ICS1 depicts the inhibition of ICS1 following activation of defence 1120 

response. 1121 
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Figure 3. Thematic diagram of “self-amplifying feedback loop” between salicylic acid 1127 

(SA) and hydrogen peroxide (H2O2).  1128 
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Figure 4: Generalised model explaining SA-mediated NPR1-depandent salt tolerance 1147 

mechanisms in plants. HKT-High affinity K+ transporter; NSCC, non-selective cation 1148 

channels; ROS, reactive oxygen species; GORK, guard cell outward-rectifying K+ channel; 1149 

NPR1, non-expresser of pathogenous-related gene 1. A question mark denotes pending 1150 

pharmacological experiments to confirm the role. 1151 


