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The phytohormone salicylic acid (SA) is a small phenolic compound that regulates diverse

physiological processes, in particular plant resistance against pathogens. Understanding

SA-mediated signaling has been a major focus of plant research. Pathogen-induced

SA is mainly synthesized via the isochorismate pathway in chloroplasts, with ICS1

(ISOCHORISMATE SYNTHASE 1) being a critical enzyme. Calcium signaling regulates

activities of a subset of transcription factors thereby activating nuclear ICS1 expression.

The produced SA triggers extensive transcriptional reprogramming in which NPR1 (NON-

EXPRESSOR of PATHOGENESIS-RELATED GENES 1) functions as the central coactivator

of TGA transcription factors. Recently, two alternative but not exclusive models for SA

perception mechanisms were proposed. The first model is that NPR1 homologs, NPR3

and NPR4, perceive SA thereby regulating NPR1 protein accumulation. The second model

describes that NPR1 itself perceives SA, triggering an NPR1 conformational change

thereby activating SA-mediated transcription. Besides the direct SA binding, NPR1 is also

regulated by SA-mediated redox changes and phosphorylation. Emerging evidence show

that pathogen virulence effectors target SA signaling, further strengthening the importance

of SA-mediated immunity.
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INTRODUCTION

The phytohormone salicylic acid (SA) is a small phenolic com-

pound that functions as an important signaling molecule during

plant immunity (Vlot et al., 2009; Robert-Seilaniantz et al., 2011;

Pieterse et al., 2012). Since constitutive SA accumulation is often

associated with stunted plant growth, resulting in reduction of

plant fitness (Ishihara et al., 2008; Pajerowska-Mukhtar et al.,

2012; Chandran et al., 2014), SA biosynthesis and SA-mediated

signaling are tightly controlled.

The plant immune system comprises multiple layers, such as

pattern-triggered immunity (PTI) and effector-triggered immu-

nity (ETI; Jones and Dangl, 2006; Tsuda and Katagiri, 2010). PTI

is triggered by recognition of common microbial components

(MAMPs, microbe-associated molecular patterns), such as bac-

terial flagellin or the fungal cell wall component chitin (Boller

and Felix, 2009; Macho and Zipfel, 2014). MAMP recognition

stimulates generation of reactive oxygen species, intracellular

calcium influx, transient activation of mitogen-activated protein

kinases (MAPKs), and the production of SA (Tsuda et al., 2008a,b;

Tsuda and Katagiri, 2010). Virulent pathogens, for example, the

bacterial pathogen Pseudomonas syringae pv. tomato DC3000 (Pto

DC3000), however, can suppress PTI in Arabidopsis and tomato

by effectors, injected via bacterial secretion systems into the plant

cell (Lohou et al., 2013; Xin and He, 2013). Recent studies identi-

fied various effectors that interfere with SA signaling (Uppalapati

et al., 2007; Djamei et al., 2011; Caillaud et al., 2013; Jiang et al.,

2013; Rabe et al., 2013; Gimenez-Ibanez et al., 2014; Liu et al.,

2014), highlighting the importance of SA signaling for plant

immunity. To regain resistance, plants have acquired intracellular

receptors [resistance (R) proteins], which induce the second layer

of defense after effector recognition, termed ETI (Eitas and Dangl,

2010; Bonardi and Dangl, 2012; Jacob et al., 2013). Activation of

ETI also induces SA accumulation and MAPK activation, which

are also important for resistance against pathogens during ETI

(Tsuda et al., 2013). Additionally, SA has vital roles in establishing

systemic acquired resistance (SAR), a form of long-term and

broad-spectrum resistance throughout the entire plant after local

pathogen infection (Wang et al., 2006; Fu and Dong, 2013).

In this review, we summarize SA signal transduction from

regulation of biosynthesis, perception, to transcriptional repro-

gramming during plant immunity. We also discuss compensation

mechanisms that would provide robust immunity once SA signal-

ing is compromised, for example, by pathogen effector attack. SA

signaling pathway is highly interconnected with other phytohor-

mone signaling such as mediated by jasmonates (JA), ethylene,

and abscisic acid (Robert-Seilaniantz et al., 2011; Pieterse et al.,

2012; Derksen et al., 2013). For example, JA and ethylene signaling

negatively regulate SA biosynthesis at the transcriptional level

(Chen et al., 2009; Zheng et al., 2012). However, discussions on

these are beyond the scope of this review.
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THE BIOSYNTHESIS OF SA IN PLANTS

BIOSYNTHETIC PATHWAYS

Two major SA biosynthetic pathways in plants were identified:

the isochorismate (IC) and the phenylalanine ammonia-lyase

(PAL) pathways. Both pathways commonly utilize chorismate, the

end product of the shikimate pathway, to produce SA (Dempsey

et al., 2011). IC synthase (ICS) and PAL are critical enzymes for

these pathways, respectively. Homologs of ICS and PAL genes

are present throughout the plant kingdom, including Arabidopsis,

tobacco, tomato, populus, sunflower, and pepper (Wildermuth

et al., 2001; Cochrane et al., 2004; Uppalapati et al., 2007; Catinot

et al., 2008; Yuan et al., 2009; Sadeghi et al., 2013; Kim and

Hwang, 2014), suggesting the importance of these SA biosynthesis

pathways to survive during the course of evolution. In Arabidopsis,

mutations in ICS1 lead to an almost complete loss of pathogen-

induced SA accumulation (Wildermuth et al., 2001). However,

Arabidopsis quadruple PAL mutants, in which PAL activity is

reduced to 10%, also show lower SA accumulation (50%) com-

pared to the wild type upon pathogen infection (Huang et al.,

2010). Thus, while contribution of the PAL pathway is evident,

the IC pathway is the major route for SA biosynthesis during plant

immunity.

In chloroplasts, ICS catalyzes the conversion of chorismate

into IC (Wildermuth et al., 2001; Strawn et al., 2007; Garcion

et al., 2008), which is further converted to SA (Dempsey et al.,

2011). In some bacteria, conversion of IC to SA is catalyzed by

IC pyruvate lyases (IPLs; Dempsey et al., 2011). However, plant

genomes encode no homologous genes to bacterial IPLs. Expres-

sion of bacterial enzymes catalyzing this conversion together with

ICS in chloroplasts leads to constitutive accumulation of SA

(Verberne et al., 2000; Mauch et al., 2001). Thus, it is conceiv-

able that plants have yet-determined gene(s) whose product(s)

possess IPL activity in chloroplasts. However, metabolic enzymes

such as the acyl acid amido synthetase GH3.12 [also known

as PBS3/WIN3/GDG1 (AVRPPHB SUSCEPTIBLE 3/HOPW1-

INTERACTING 3/GH3-LIKE DEFENSE GENE 1); Nobuta et al.,

2007; Zhang et al., 2007; Okrent et al., 2009; Westfall et al.,

2010, 2012] and the acyltransferase EPS1 (ENHANCED PSEU-

DOMONAS SUSCEPTIBILITY 1; Zheng et al., 2009) are involved

in SA accumulation, perhaps by providing SA precursors or

regulatory molecules for SA biosynthesis. Thus, SA biosynthesis

may be more complex in plants compared to bacteria. SA export

from chloroplasts is mediated by the MATE-transporter EDS5

(ENHANCED DISEASE SUSCEPTIBILITY 5; Serrano et al.,

2013). This export seems important for SA accumulation and

distribution in the cell since SA accumulation is compromised in

eds5 mutants (Nawrath et al., 2002; Ishihara et al., 2008).

REGULATION OF SA BIOSYNTHESIS

Salicylic acid biosynthesis is tightly regulated since constitutive SA

accumulation has negative impacts on plant fitness (Ishihara et al.,

2008; Pajerowska-Mukhtar et al., 2012; Chandran et al., 2014).

Accumulating evidence show that transcriptional control of ICS1

by calcium signaling is key for the initiation of SA biosynthesis

(Figure 1). The concentration of calcium ions (Ca2+) in the

cytosol transiently increases upon immune receptor activation

through Ca2+ channels. Elevation of intracellular Ca2+, called

Ca2+ signature, is decoded by Ca2+ sensor proteins, such as

calmodulin (CaM) and Ca2+-dependent protein kinases (CDPKs;

Dodd et al., 2010; Boudsocq and Sheen, 2013; Poovaiah et al.,

2013; Schulz et al., 2013). Binding of CaM regulates target pro-

tein activities thereby relaying Ca2+ signatures to downstream

responses. During Arabidopsis immunity, the CaM-binding tran-

scription factor CBP60g (CALMODULIN BINDING PROTEIN

60g) and its homolog SARD1 (SYSTEMIC ACQUIRED RESIS-

TANCE DEFICIENT 1) control ICS1 transcription (Wang et al.,

2009, 2011; Zhang et al., 2010; Wan et al., 2012). CaM-binding is

required for CBP60g function, whereas SARD1 does not appear

to be a CaM-binding protein (Wang et al., 2009). Despite this

difference, CBP60g and SARD1 are partially redundant for ICS1

expression and SA accumulation during immunity. However, dual

regulation of ICS1 transcription by CBP60g and SARD1 seems

important for temporal dynamics of SA biosynthesis: CBP60g

mainly contributes to SA biosynthesis at early stages after P.

syringae infection while SARD1 does at late stages (Wang et al.,

2011). Another close homolog of CBP60g, CBP60a, negatively

regulates ICS1 expression upon CaM-binding (Truman et al.,

2013). Conceivably, upon pathogen attack, CBP60g and SARD1

bind to the ICS1 promoter and activate its expression, at least

partly by removing the negative regulator CBP60a from the ICS1

promoter.

Unlike CaM, CDPKs have both intrinsic Ca2+ sensing and

responding sites thereby allowing individual CDPK proteins to

relay Ca2+ signatures to downstream components via phospho-

rylation events. Recently, the CDPKs, CPK4, 5, 6, and 11, were

shown to re-localize to the nucleus, and to interact with and

phosphorylate the WRKY transcription factors, WRKY8, 28, and

48, during ETI mediated by the plasma membrane-associated

immune receptors RPS2 (RESISTANCE TO P.SYRINGAE 2) or

RPM1 (RESISTANCE TO P.SYRINGAE PV MACULICULA 1;

Gao et al., 2013). Mutants in WRKY8 or WRKY48 are com-

promised in pathogen-induced ICS1 expression. Furthermore,

WRKY28 directly interacts with the ICS1 promoter (van Verk

et al., 2011), which might be regulated through phosphorylation

by CPK4, 5, 6, or 11. Collectively, these results suggest that

during ETI, these CDPKs relay Ca2+ signatures to activate ICS1

transcription via WRKY transcription factors.

Besides ICS1 regulation, calcium signaling also affects the

maintenance of SA accumulation through transcriptional reg-

ulation of EDS1 (ENHANCED DISEASE SUSCEPTIBILITY 1;

Du et al., 2009), encoding a central regulator of the posi-

tive feedback loop of SA accumulation (Feys et al., 2001). A

CaM-binding transcription factor, CAMTA3/SR1 (CALMOD-

ULIN BINDING TRANSCRIPTION ACTIVATOR 3/SIGNAL-

RESPONSIVE GENE 1), binds to the EDS1 promoter to repress

its transcription, and mutants of CAMTA3/SR1 show elevated

SA levels and enhanced immunity against P. syringae and the

fungal pathogen Botrytis cinerea. Combinatorial mutant analy-

sis indicates that CAMTA3/SR1 and its homologs CAMTA1/2

also suppress expression of CBP60g, SARD1, and ICS1 (Kim

et al., 2013). Thus, the three CAMTA homologs coordi-

nately suppress SA accumulation, but it remains unknown

if the CAMTA transcription factors directly target the pro-

moters of CBP60g, SARD1, and ICS1. It was recently shown
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FIGURE 1 | Regulation of SA accumulation by calcium signaling. MAMP

or effector recognition increases intracellular Ca2+ concentrations thereby

regulating calcium sensor proteins, such as CaM and CDPKs. The

CaM-binding transcription factors CBP60g and CBP60a are positive and

negative regulators of ICS1 transcription, respectively. A homolog of

CBP60a/g, SARD1, is not a CaM-binding protein but functions redundantly

with CBP60g for ICS1 transcription. WRKY28, whose DNA-binding activity is

regulated by the CDPKs CPK5 and CPK11, also contributes to ICS1

expression. ICS1 mediates SA production in chloroplasts, by conversion of

chorismate into the SA-precursor isochorismate. SA may be transported

through the MATE-transporter EDS5 into the cytosol. The EDS1/PAD4

complex contributes to the positive feedback loop of SA accumulation.

Repression of EDS1 transcription by the Ca2+/CaM-binding transcription

factor CAMTA3 represents a fine-tuning mechanism for SA accumulation.

that a CAMTA3/SR1-interacting protein links CAMTA3/SR1 to

ubiquitin-mediated protein degradation thereby enhancing EDS1

expression and immunity against P. syringae (Zhang et al.,

2014).

In summary, these results clearly indicate the importance of

Ca2+ signaling in regulation of SA accumulation during immunity

through transcriptional regulation of genes involved in SA biosyn-

thesis and maintenance. However, how plants spatiotemporally

coordinate positive and negative regulators of SA biosynthesis and

accumulation remains to be investigated.

SA PERCEPTION

Identification of SA receptor(s) has been one of the major research

interests for the last two decades. Considering its diverse func-

tions in environmental stress response, plants may have multiple

SA receptors. Indeed, biochemical approaches identified a num-
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ber of SA-interacting proteins, and activities of these proteins

were affected by SA-binding (Chen and Klessig, 1991; Chen

et al., 1993; Durner and Klessig, 1995; Du and Klessig, 1997;

Slaymaker et al., 2002; Kumar and Klessig, 2003; Forouhar et al.,

2005; Park et al., 2009; Tripathi et al., 2010; Tian et al., 2012;

Moreau et al., 2013). However, these SA-binding proteins do not

fully explain SA response including SA-mediated transcriptional

reprogramming. Recently, the three NPR (NON-EXPRESSOR

of PATHOGENESIS-RELATED GENES) family members, NPR1,

NPR3, and NPR4, were identified as bona fide SA receptors in

Arabidopsis (Fu et al., 2012; Wu et al., 2012). In this section, we

discuss how these NPR proteins function as SA receptors.

NPR1 is a master regulator of SA-mediated transcriptional

reprogramming and immunity, functioning as a transcriptional

coactivator (Pajerowska-Mukhtar et al., 2013). NPR1 comprises a

BTB/POZ (broad-complex, tramtrack, and bric-à-brac/poxvirus

and zinc-finger) domain, an ankyrin repeat domain, and a nuclear

localization sequence. Mutations in NPR1 lead to an almost

complete loss of SA-mediated transcriptional reprogramming and

great susceptibility to (hemi)-biotrophic pathogens (Shah et al.,

1997; Volko et al., 1998; Dong, 2004). Therefore, it was not

surprising but sensational that Wu et al. (2012) found NPR1

to be a bona fide SA receptor (Figure 2A). Using an equi-

librium method, they showed that Arabidopsis NPR1 directly

binds SA (Kd = 140 nM), but not inactive structural analogs,

through Cys521/529 via the transition metal copper. Consistently,

Cys521/529 were previously identified as key amino acid residues

for Arabidopsis NPR1 function (Rochon et al., 2006). Biochemical

approaches indicate that SA-binding triggers a conformational

change in NPR1. Further protein deletion analyses suggest that

the C-terminal transactivation domain of NPR1 is intramolec-

ularly inhibited by the N-terminal BTB/POZ domain and that

SA-binding releases the transactivation domain from BTB/POZ

suppression. Thus, the study established a model with NPR1 as

an SA receptor that also functions as a master signal transducer

of SA signaling. However, Cys521/529 are not conserved among

FIGURE 2 | Models for SA perception. (A) Direct SA binding to NPR1

modulates its activity. In unstressed conditions, the C-terminal

transactivation domain of NPR1 is repressed by the N-terminal BTB/POZ

domain, keeping NPR1 in an inactive state (green). NPR1 perceives SA

through Cys521/529 via the transition metal copper, which triggers a

conformation change of NPR1, resulting in de-repression of the

transactivation domain and activation of NPR1 (yellow). (B) NPR1

accumulation is regulated by SA through the SA receptors NPR3 and NPR4.

Pathogen infection triggers SA accumulation. In the case of low SA, the

SA-receptor NPR4 triggers NPR1 degradation through the 26S proteasome.

When SA levels are intermediate, NPR1 protein accumulates. High

SA-concentrations trigger the SA receptor NPR3-mediated NPR1

degradation. Thus, only intermediate levels of SA achieve NPR1

accumulation thereby activating SA-mediated transcriptional reprogramming.
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plant species, raising an issue of the evolutionary significance of

the SA perception mechanism via NPR1. In addition, another

study showed that NPR1 does not bind SA in a conventional non-

equilibrium 3H-SA binding assay (Yan and Dong, 2014). Instead,

Fu et al. (2012) identified two homologs of NPR1, NPR3 and

NPR4, as SA receptors (Figure 2B; Fu et al., 2012). NPR1 is subject

to degradation via the 26S proteasome pathway in the absence of

SA (Spoel et al., 2009). Once SA increases upon pathogen infec-

tion, NPR1 is stabilized. However, full induction of SA-responsive

genes also requires NPR1 turnover. Thus, regulation of NPR1

protein level is critical for SA response. Fu et al. (2012) found

that NPR3 and NPR4 interact with NPR1 and are required for

NPR1 degradation (Fu et al., 2012). NPR4 has a high SA affinity

(Kd = 46 nM) whereas NPR3 shows a low affinity (Kd = 981 nM),

suggesting differential regulations of NPR1 by NPR3 and NPR4.

Interestingly, SA disrupts NPR1–NPR4 interaction, but facilitates

NPR1-NPR3 interaction. These observations support a model in

which NPR3 and NPR4 create an NPR1 protein concentration

gradient in order to regulate NPR1–mediated transcription: in

the absence of SA, NPR4-mediated NPR1 degradation prevents

NPR1 accumulation whereas high SA levels also prevent NPR1

accumulation due to NPR3. Thus, NPR1-mediated signaling is

active only at intermediate SA levels. This model is consistent

with the observation that NPR1 protein highly accumulates at

sites surrounding the infection site in a leaf. These regions are

supposed to contain intermediate SA levels, while the infection

site may have too high SA levels. Although this model is attractive,

further validation is required.

Collectively, two alternative but not exclusive SA perception

mechanisms in plant cells were identified, but further research is

still required to address fundamental questions. For example, the

subcellular location(s) of SA perception have not been addressed

yet. The nuclear NPR1 pool is necessary for SA-mediated tran-

scription (Mou et al., 2003). Consistently, NPR3 and NPR4 are

nuclear proteins, and therefore SA is likely perceived by them

in the nucleus to regulate nuclear NPR1 amount. On the other

hand, the cytosolic NPR1 pool may regulate cross-talk between

SA- and JA-mediated transcriptional reprogramming (Spoel et al.,

2003), suggesting that SA is also perceived in the cytosol. Since

SA perception by nuclear NPR3 and NPR4 does not explain this

observation, cytosolic NPR1 activity may be regulated by the

direct SA binding.

SA-MEDIATED TRANSCRIPTIONAL REPROGRAMMING

NPR1 controls expression of more than 95% of the responsive

genes to the SA-analog benzothiadiazole (BTH; Wang et al.,

2006). Functional regulation of NPR1 is not only mediated by

the direct SA binding, but also by SA-triggered redox changes

(Mou et al., 2003). In the absence of SA, NPR1 is present as

an oligomer formed through intermolecular disulfide bonds. SA

triggers changes in the cellular redox potential, thereby reducing

cysteine residues in NPR1 through the thioredoxins TRXh3 and

TRXh5, resulting in monomerization of NPR1 (Tada et al., 2008).

Mutations in the cysteine residues (Cys82 or Cys216) lead to

constitutive monomerization and nuclear accumulation of NPR1,

resulting in activation of PR1 expression (Mou et al., 2003).

Nuclear accumulation of NPR1 triggered by SA can be explained

by stabilization of nuclear NPR1 or translocation of the NPR1

monomer from the cytosol to the nucleus. Thus, SA-triggered

NPR1 monomerization and nuclear accumulation are important

steps for NPR1-mediated transcription. However, forced nuclear

localization of NPR1 is not sufficient for transcriptional repro-

gramming, as the presence of SA is additionally required for full

PR1 induction (Kinkema et al., 2000; Spoel et al., 2003). This

can be explained by the observation that SA-binding triggers the

NPR1 conformational change thereby allowing NPR1 to regulate

gene expression (Wu et al., 2012). Additional regulation of NPR1

involves phosphorylation (Spoel et al., 2009). SA triggers phos-

phorylation of NPR1 at the N-terminus (Ser11/15) in the nucleus

via yet-determined kinase(s). NPR1 phosphorylation contributes

to its recruitment to a ubiquitin ligase, resulting in proteasome-

mediated NPR1 degradation. This degradation is required for

the proper transcriptional control by NPR1, perhaps by allowing

fresh NPR1 to reinitiate the next cycle of transcription.

NPR1 regulates transcription of SA-responsive genes through

interactions with specific transcription factors (Figure 3). Iden-

tified major transcription factors belong to a subclass of the

basic leucine zipper transcription factor family, TGA (Gatz, 2013).

The Arabidopsis genome encodes 10 TGA transcription factors,

which are structurally divided into five subgroups and all bind

the consensus DNA sequence TGACG. Yeast-two-hybrid analyses

with NPR1 and TGA transcription factors show interaction speci-

ficity for clade II TGAs (TGA2/TGA5/TGA6) and TGA3 (clade

III; Zhou et al., 2000; Hepworth et al., 2005). Genetic analysis

reveal that TGA2, TGA5, and TGA6 repress PR1 transcription

in the absence of SA, but on the other hand are required for

FIGURE 3 | SA-mediated transcriptional regulation of PR1 through

NPR1. In the absence of SA, repression of PR1 expression can be achieved

by repressor complexes (blue), such as the TGA2-NPR1-NIMIN complex

through the co-repressor TOPLESS or the CBNAC-SNI1 complex. SA

triggers a conformational change of NPR1 and dissociation of NIMIN1,

resulting in forming activator complexes (pink) including TGA transcription

factors and SSN2. The DNA repair proteins BRCA2 and RAD51 are also

involved in SA-mediated transcription.
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PR1 induction in the presence of SA (Zhang et al., 2003). In

the absence of SA, TGA2 binds to the PR1 promoter thereby

repressing its transcription (Rochon et al., 2006; Boyle et al.,

2009). An NPR1-interacting protein, NIMIN1 (NPR1/NIM1-

INTERACTING PROTEIN 1), can form a ternary complex with

TGA2 through NPR1 at least in yeast (Weigel et al., 2005). Tran-

scriptional repression by TGA2 may be achieved through NIMIN1

interacting with a transcriptional co-repressor, TOPLESS (Braun

et al., 2011). Conceivably, SA allows NPR1 to form a different

complex with TGA2 and other TGA factors, such as TGA3 thereby

activating PR1 transcription (Johnson et al., 2003). The NIMIN1–

NPR1–TGA2 complex is dissociated in the presence of SA in

yeast (Hermann et al., 2013). Thus, NIMIN1 dissociation from

the NPR1–TGA transcriptional complex by SA may contribute

to activation of the NPR1–TGA transcriptional complex. This

transcriptional activation may be relayed through specific media-

tor subunits, such as the Mediator subunit MED15, since med15

mutants are insensitive to SA (Canet et al., 2012).

A suppressor screen of npr1 identified SNI1 (SUPPRESSOR

OF NPR1 INDUCIBLE 1) as another repressor of SA-responsive

genes (e.g., PR1) in unstressed conditions (Li et al., 1999;

Mosher et al., 2006). SNI1-mediated transcriptional repression

may be achieved through the CaM-binding NAC (NAM, ATAF1,2,

CUC2) transcription repressor CBNAC, since SNI1 directly inter-

acts with CBNAC and enhances CBNAC-binding activity to the

PR1 promoter (Kim et al., 2012). Upon SA treatment, SNI1 is dis-

sociated from the PR1 promoter and replaced by the DNA repair

protein SSN2 (Song et al., 2011). Although SSN2 contains a DNA-

binding domain, its binding to the PR1 promoter requires NPR1

and the transcription factor TGA7. These results suggest that

SA triggers NPR1 activation through nuclear accumulation and

conformational change, resulting in the formation of a TGA7–

NPR1–SSN2 complex that activates PR1 transcription. Additional

DNA repair proteins, such as BRCA2A (BREAST CANCER 2A)

and RAD51D, are also functionally associated with SA-mediated

transcription (Durrant et al., 2007; Wang et al., 2010; Song et al.,

2011). Interestingly, SA and Pseudomonas infection cause DNA

damage, such as DNA double strand breaks, suggesting that

DNA damage response is an intrinsic component of SA-mediated

transcription during plant immunity (Yan et al., 2013; Song and

Bent, 2014).

Besides functional regulation of transcription factors by NPR1

through complex formation, NPR1 also controls expression of

transcription factors, such as WRKY transcription factors, which

are required for SA-mediated transcriptional reprogramming

(Wang et al., 2006; Pajerowska-Mukhtar et al., 2012). The Ara-

bidopsis genome encodes 74 WRKY factors which bind the specific

DNA sequence (C/TTGACT/C), termed the W-box (Rushton

et al., 2010). WRKY factors form a complex interconnected regu-

latory network, containing recurring regulatory patterns, such as

both positive and negative feedback and feedforward loops. This

WRKY network ensures rapid and efficient signal amplification

and allows tight control to limit the plant immune response.

Furthermore, the presence of multiple W-boxes in the NPR1

promoter suggests regulation of NPR1 expression by WRKY fac-

tors, which is indeed supported by NPR1 promoter analysis (Yu

et al., 2001). Thus, WRKY transcriptional regulatory networks

downstream of NPR1 amplify and fine-tune SA-mediated tran-

scriptional reprogramming.

COMPENSATION OF SA SIGNALING

The importance of SA signaling during immunity is reflected by

the that pathogen effectors target it for virulence, either by

preventing SA accumulation (Djamei et al., 2011; Rabe et al.,

2013; Liu et al., 2014) or by dampen SA signaling and transcrip-

tional regulation, using the antagonistic interaction between SA

and JA signaling (Uppalapati et al., 2007; Caillaud et al., 2013;

Jiang et al., 2013; Gimenez-Ibanez et al., 2014). It is reasonable to

assume that plants have evolved compensatory mechanism(s) to

circumvent weakened SA signaling upon effector attack, thereby

ensuring robust immune response (Tsuda and Katagiri, 2010).

For example, although it is believed that SA and JA signaling

antagonize each other, a recent study suggests the compensation

of SA accumulation by JA (Kim et al., 2014). The MAMP flg22

induces SA accumulation in an ICS1-dependent manner (Tsuda

et al., 2008b). Additionally, a component of the SA amplification

loop, PAD4, is required for full induction of SA (Zhou et al.,

1998; Tsuda et al., 2008b). In agreement with the antagonistic

relationship between JA and SA, single mutation in the JA biosyn-

thesis gene DDE2 leads to higher SA accumulation upon flg22

treatment. However, combined mutation in DDE2 and PAD4

diminishes SA accumulation comparable to that in sid2, suggest-

ing that although JA suppresses SA accumulation through PAD4,

it also supports SA accumulation once PAD4 is compromised.

Thus, JA signaling represents a compensation mechanism for SA

accumulation during PTI.

In addition to JA, MAPK signaling also compensates SA sig-

naling to secure transcriptional regulation of SA-responsive genes

in ETI (Tsuda et al., 2013). Activation of the Arabidopsis MAPKs

MPK3 and MPK6 is transient during PTI, but sustained during

RPS2- and RPM1-mediated ETI (Tsuda et al., 2013), or upon B.

cinerea infection (Han et al., 2010). While transient activation of

MPK3 and MPK6 is not sufficient to overcome SA-dependency of

a subset of SA-responsive genes such as PR1, prolonged activation

of MPK3 and MPK6 facilitates their transcriptional regulation

independent of SA. Furthermore, this compensation mechanism

does not require NPR1 since NPR1 mutation does not affect PR1

induction mediated by prolonged MAPK activation. It can be

assumed that prolonged MAPK activation bypasses the require-

ment of NPR1 to regulate transcription factor(s) involved in SA

response. Although transcription factors shared by SA and the

MAPK cascade are not known, large-scale protein target identi-

fications of MPK3 and MPK6 would help to identify candidates

(Popescu et al., 2009; Hoehenwarter et al., 2013). Among them,

TGA transcription factors are reasonable candidates (Wang and

Fobert, 2013). However, how this quantitative MAPK activation

leads to qualitatively different transcriptional outputs still remains

to be determined. One possible answer lays in temporal regula-

tion of transcription factor(s). Hereby, the MAPKs first activate

expression of transcription factor(s), and later on phosphorylate

the accumulated transcription factor(s), representing a feedfor-

ward loop for activation of the transcription factor(s). In this

case, only prolonged MAPK activation ensures activation of the

transcription factor(s). Indeed, the MAPKs regulate expression of
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a diverse transcription factor set (Mao et al., 2011; Li et al., 2012;

Meng et al., 2013; Tsuda et al., 2013; Frei dit Frey et al., 2014), but

whether the MAPKs also phosphorylate them is a future issue.

CONCLUSIONS AND PERSPECTIVES

Over the past decade a number of researches have shed light

into our understanding of SA-mediated signaling, through the

discoveries of calcium signaling as the major switch for SA biosyn-

thesis, NPR family members as SA receptors, and the mechanism

for NPR1-mediated transcriptional reprogramming. However,

many questions are still unanswered, starting with identification

of plant IPL gene(s) to further validate the IC pathway as the

major route for SA biosynthesis in plants. The controversy for

SA perception should also be solved in the future. In addition,

information for temporal and spatial dynamics of SA biosynthesis

and SA-mediated transcriptional reprogramming is missing. For

this, systems approaches using time-series genomics data sets

and tissue-specific analysis will help our conception (Mine et al.,

2014). Most studies are based on experiments using the model

plant Arabidopsis. Analysis of different plant species is necessary

to understand evolutionary conservation and diversification of

SA signal transduction. Finally, identification of the molecu-

lar components in MAPK-mediated SA/NPR1-independent gene

regulation of SA-responsive genes in ETI will shed light on the

molecular mechanism of SA compensation.
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