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Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt - Universität zu Berlin,

and Berlin Institute of Health, Berlin, Germany, 2Department of Psychology, Technische Universität Dresden,

Dresden, Germany, 3Berlin School of Mind and Brain and 4Department of Psychology, Humboldt-Universität

zu Berlin, Berlin, Germany, 5Department of Psychology, University of Miami, Coral Gables, FL, USA, 6The Mind

Research Network, Albuquerque, NM 87106, 7Department of Electrical and Computer Engineering, The

University of New Mexico, Albuquerque, NM 87131, USA, 8International Psychoanalytic University Berlin,

Berlin, Germany, 9Department of Psychology, FernUniversität, Hagen, Hagen, Germany, and 10Neuroscience

Program, University of Miami Miller School of Medicine, Miami, FL, USA

Henrik Walter and Lucina Q. Uddin authors contributed equally to this study.

Correspondence should be addressed to Lucina Uddin, Department of Psychology, University of Miami, P.O. Box 248185, Coral Gables, FL 33124, USA.

E-mail: l.uddin@miami.edu

Abstract

Self-control and the ability to resist temptation are critical for successful completion of long-term goals. Contemporary

models in cognitive neuroscience emphasize the primary role of prefrontal cognitive control networks in aligning behavior

with such goals. Here, we use gaze pattern analysis and dynamic functional connectivity fMRI data to explore how individ-

ual differences in the ability to resist temptation are related to intrinsic brain dynamics of the cognitive control and salience

networks. Behaviorally, individuals exhibit greater gaze distance from target location (e.g. higher distractibility) during pre-

sentation of tempting erotic images compared with neutral images. Individuals whose intrinsic dynamic functional connec-

tivity patterns gravitate toward configurations in which salience detection systems are less strongly coupled with visual

systems resist tempting distractors more effectively. The ability to resist tempting distractors was not significantly related

to intrinsic dynamics of the cognitive control network. These results suggest that susceptibility to temptation is governed in

part by individual differences in salience network dynamics and provide novel evidence for involvement of brain systems

outside canonical cognitive control networks in contributing to individual differences in self-control.
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Introduction

In our daily lives, we constantly encounter situations that evoke

conflicting response tendencies: on the one hand impulsive

reactions toward tempting stimuli and on the other hand

actions that serve the realization of previously set goals

(Hofmann et al., 2012). Self-control is correlated with well-being

(Hofmann et al., 2014), and self-control failure has been related

to addiction, obesity, post-traumatic stress disorder, depression

and attention-deficit hyperactivity disorder (Schweitzer and

Sulzer-Azaroff, 1995; Bechara, 2005; Konttinen et al., 2009;

Walter et al., 2010; Özdemir et al., 2014). It is of great scientific

interest to understand why some individuals are able to resist

when faced with temptation, while others fail.

Erotic and sensual images are powerful visual temptations.

The advertisement industry frequently makes use of erotic

images (Reichert and Carpenter, 2004) because they are very

salient and trigger us to involuntarily look toward them

(Sennwald et al., 2016). This might be the case because they

trigger evolutionarily meaningful attention allocation and

approach behaviors (Fromberger et al., 2012). Here, we investi-

gate the neural basis for individual differences in self-control in

the face of temptation using a combination of eyetracking and

dynamic functional connectivity fMRI.

The most prominent model of self-control is the dual-

systems approach, which assumes that a reflective system serv-

ing higher-level goal representations can exert control over an

impulsive system that reacts to stimuli in a direct automatic

manner (e.g. Metcalfe and Mischel, 1999; Strack and Deutsch,

2004; Hofmann et al., 2009). The reflective system has been

mainly associated with frontoparietal cognitive control net-

works (CCNs), while the impulsive system has been linked with

visceral and sensory regions (McClure and Bickel, 2014).

Prefrontal cortical regions have been associated with self-

control (Hare et al., 2009; Hayashi et al., 2013). Based on this

model, the CCN is a prime candidate for studying individual dif-

ferences in self-control.

Another potential candidate for explaining individual differ-

ences in self-control is the salience network (SN). The SN is

comprised of bilateral insula, dorsal anterior cingulate cortex

(dACC) and other subcortical and limbic structures (Seeley et al.,

2007) and is implicated in the direction of attention toward

important stimuli and integration of top-down appraisal and

bottom-up visceral and sensory information [see Uddin (2015),

for review]. This central role in integrating information is

reflected in its unique functional and structural connectivity

profile. For example, the different insular nodes within the SN

are associated with distinct functional connectivity profiles; the

dorsal anterior insular cortex coactivates with areas associated

with cognitive processing, the ventral anterior insular coacti-

vates with areas associated with affective processing and the

posterior insular coactivates with sensorimotor processing

areas (Chang et al., 2013; Uddin et al., 2014).

In the task presented here, attention allocation toward task

relevant information is in conflict with attention allocation

toward task irrelevant, yet intrinsically relevant, information

(e.g. erotic distractors). As the SN has been implicated in the

allocation of attention toward task relevant information by

interacting with other networks, and the coordination of neural

resources (Uddin, 2015), individual differences in SN functioning

might play an important role in explaining why some partici-

pants stay on task while others yield to the erotic distraction.

Most self-control research has focused on the downregula-

tion of impulses by CCNs when examining individual

differences in self-control, while studies of bottom-up processes

that influence self-control are underrepresented (but see

Ludwig et al., 2013; Steimke et al., 2016). Task-based fMRI studies

have indicated that self-control involves dorsolateral prefrontal

cortex modulation of a value signal in the ventromedial pre-

frontal cortex (Hare et al., 2009). Recently, spontaneous fluctua-

tions in resting-state brain activity have been shown to

demonstrate reproducible correlations across brain regions

organized into networks (Shehzad et al., 2009). Because resting-

state networks are thought to represent individual differences

in the brain’s functional organization, resting-state fMRI has

become a leading approach for understanding individual differ-

ences in behavior (Dubois and Adolphs, 2016).

Dynamic functional connectivity of resting-state fMRI data

is a new approach that accounts for the non-stationarity of

brain signals and enables the study of brain dynamics underly-

ing behavior. Whereas the static functional connectivity

approach assumes that the connectivity pattern of the brain

remains stable over time, the dynamic functional connectivity

approach accounts for moment-to-moment variability in con-

nectivity profiles. Within this framework, the brain engages in

reoccurring time-varying functional relations that can be

referred to as functional connectivity ‘states’ (Hutchison et al.,

2013; Calhoun et al., 2014). By taking time variation into account,

the dynamic approach can give a more nuanced understanding

of brain connectivity, which is vital for understanding the

source of individual differences. Our previous work examining

the dynamic functional connectivity profile of different insular

subregions found partially distinct and partially overlapping

dynamic state profiles of the anterior, ventral and posterior

insular subdivisions, highlighting aspects of SN dynamics that

have been previously overlooked (Nomi et al., 2016). Whole-

brain dynamic state characteristics are related to individual dif-

ferences in executive function (Jia et al., 2014; Yang et al., 2014;

Nomi et al., 2017) as well as mental illnesses including schizo-

phrenia and bipolar affective disorder (Damaraju et al., 2014;

Rashid et al., 2014). No previous studies have considered the

relationship between SN dynamics and self-control.

Here, we present results of a study examining the relation-

ship between brain network dynamics and self-control in the

face of temptation. Broadly, we expected that susceptibility to

interference from visual distraction would be reflected in brain

network dynamics. We predicted that individual differences in

self-control would be related to CCN dynamics, SN dynamics or

both. We explored these potential mechanisms underlying indi-

vidual differences in self-control in a relatively large sample of

94 adults.

Materials and methods

Participants

Ninety-four current or former university or college students

(Mean age¼ 25.93, s.d.¼ 3.84; 54 females) were included in

the analysis. These data were part of a larger dataset of 126

participants who also completed additional fMRI tasks, self-

control and cognitive control paradigms (Paschke et al., 2016;

Sekutowicz et al., 2016). Of all participants, 109 had valid behav-

ioral and eyetracking data (Steimke et al., 2016). Fifteen partici-

pants were excluded because either the fMRI registration

process was not successful or because the fMRI scans did not

cover the whole brain.
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Self-control task

In a task designed to assess self-control, participants were

instructed to attend to a cued target location (left or right side of

the screen) while facing the challenge to sustain attention

despite neutral and erotic pictures presented as distractors on

the other side of the screen [Figures 1 and 2; see Steimke et al.

(2016) for behavioral and eyetracking results of the task].

Eyetracking data were acquired using a video-based eyetracker

(sampling rate: 250Hz spatial resolution: 0.05�, Cambridge

Research Systems, UK). Participants were seated 36 cm from the

screen. To reduce movement, participants were instructed to

rest their chin and forehead on a chin rest. The distracting

images were presented for a variable duration and elicited par-

ticipants’ eye gaze to shift away from the cued target location,

resulting in poorer performance on the task, which was to iden-

tify by button press whether a white target letter was an ‘E’ or

an ‘F’. Variable distractor durations were introduced to prevent

participants from anticipating when the target letter would be

presented. Motivation of participants to perform accurately on

the task was enhanced by offering the chance of a 10 Euro

reward for accurate performance on one trial, which was ran-

domly selected after completion of the task. Target letters were

presented for 10ms against a dark gray background, and partici-

pants were instructed to respond as quickly and accurately as

possible. The distractors consisted of neutral pictures (e.g.

neutrally rated objects or scenes) and erotic pictures (pictures of

couples in erotic situations) displayed on the contralateral side

of the screen relative to the target location. Note that the task

also included other conditions. Specifically, it included a condi-

tion with disgusting pictures presented before target letter pre-

sentation in the same location as the target letter, an additional

condition with the same timing and location but involving neu-

tral pictures, and a condition where no distractors were pre-

sented. To ensure the absence of carryover effects, the order of

presentation was counterbalanced across conditions. Pictures

were selected on the basis of valence, arousal and attraction

ratings from 96 independent participants and erotic and

neutral pictures were matched for brightness and complexity.

Brightness and complexity (entropy in bits) was estimated using

the Matlab image processing toolbox. Eye gaze distance from

target location was used as a dependent variable. Specifically,

the gaze distance difference score between trials with erotic

and trials with neutral distraction was used. Gaze distance

was used, as it is the most direct measure distractibility.

Additionally, it was found that gaze distance, not reaction time,

was related to delay of gratification in this task: participants

who couldn’t resist to eat one sweet immediately instead of

waiting for two sweets after 45min also showed greater gaze

distance from target when erotic pictures were presented than

participants who chose to wait (Steimke et al., 2016). A short test

Fig. 1. Timing of behavioral experiment. A trial starts with a fixation cross. The fixation cross is followed by an arrow indicating the location of the next target letter ‘E’

or ‘F’ presented 5.9� of visual angle left or right from the center. After the arrow presentation, a cleared screen is presented for variable delay. Afterwards either a

neutral or an erotic distractor is presented for a variable duration immediately followed by the target letter. Drawings are placeholders for photographs from the inter-

national affective picture system (Lang et al., 2008) and the internet.

Fig. 2. Behavioral and eyetracking data. Mean reaction times, percent errors, gaze distance and standard deviation of the gaze distance (s.d.). Asterisks (*) indicate a

significant difference at P<0.05. Error bars represent the 95% confidence interval for within-subjects comparisons (Loftus and Masson, 1994).
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of fluid intelligence [Leistungsprüfsystem (LPS) Unterteil 3, Horn

(1983)] was performed to be able to control for individual differ-

ences in intelligence.

fMRI data acquisition and preprocessing

Each participant underwent resting-state fMRI scans during

which they kept their eyes open and fixated on a fixation cross.

Whole-brain fMRI data were collected with a 3 Tesla Siemens

Tim Trio magnetic resonance imaging (MRI) scanner (Siemens,

Erlangen, Germany) on a separate day from the behavioral test-

ing. Using a 12-channel head coil, 32 slices were acquired in

descending order with a T2*-sensitive one-shot gradient-echo

echo-planar sequence. To minimize motion, the head was fix-

ated with cushions. The following parameters were used repeti-

tion time of 2 s, echo time of 25ms, flip angle of 78, data

acquisition matrix of 64 � 64, field of view of 24 cm, voxel size of

3 � 3 � 3 mm and an interslice gap of 0.75mm, 180 volumes.

Preprocessing was performed with the Data Processing

Assistant for Resting-state fMRI (http://restfmri.net). To ensure

data were at signal equilibrium, the first 10 volumes were

removed. Slice time correction was performed, and the data

were realigned, normalized to an echo planar imaging (EPI)

template and smoothed with a 8mm Gaussian kernel.

Independent component analysis and static resting-

state connectivity analysis

The first step in the dynamic functional network connectivity

(dFNC) analysis was to parcellate the brain into regions of inter-

est using a high-model order group independent component

analysis (ICA) implemented with the group ICA of fMRI toolbox

(GIFT) toolbox (http://mialab.mrn.org/software/gift/) using the

infomax algorithm (Calhoun et al., 2001; Calhoun and Adali,

2012). A high-model order of 100 independent components (ICs)

was chosen based on previous work demonstrating that this

number of components sufficiently parcellates major brain net-

works [default mode network (DMN); CCN and SN] into individ-

ual brain areas that allows for more fine grained examination of

network node interactions (Kiviniemi et al., 2009; Damaraju

et al., 2014). Additional research demonstrates that model orders

of 100 and below have better reproducibility than model orders

higher than 100 (Abou-Elseoud et al., 2010). Stability of ICs was

ensured by repeating the infomax algorithm 10 times using

ICASSO and selecting the central run for further analysis.

Subject specific spatial maps and time courses were back-

reconstructed using the GICA1 method (Erhardt et al., 2011).

The ICA produced 100 ICs that were then subjected to visual

inspection to eliminate components containing white matter,

cerebral spinal fluid, movement or large amounts of high-

frequency information (Damoiseaux et al., 2006; Allen et al.,

2011). The SN and CCN nodes were selected on the basis of pre-

vious literature showing that bilateral insular regions and dor-

sal ACC are key regions for salience processing (Seeley et al.,

2007), and bilateral dorsolateral prefrontal cortex and lateral

parietal regions are key regions for a variety of cognitive tasks

(Niendam et al., 2012). Note that in the meta-analysis by

Niendam et al. (2012), the dorsal ACC is also implicated in cogni-

tive control. However, this mostly applies to inhibition tasks,

where a conflict between task demands and a competing salient

response is being resolved. Because of the involvement of sali-

ence processing in these kinds of tasks, we assigned this region

to the SN. For enabling easier interpretation of network struc-

ture within the correlation matrices, all remaining nodes were

sorted by visual inspection: visual network, components of the

temporal lobes, DMN, components of the cerebellum and a sub-

cortical network (Figure 3A). Traditional static functional con-

nectivity analysis was performed using the GIFT toolbox

(MANCOVA) adding gaze distance as a covariate of interest. The

correlation matrix representing overall strength of coupling

between these ICs can be seen in Figure 3B.

Independent component post-processing

Post-processing of non-noise ICs in GIFT consisted of despiking,

detrending (linear, cubic and quadratic), regression of the

Friston 24 motion parameters and a low pass filter (0.15Hz).

Despiking replaces outliers in IC time courses larger than the

absolute median deviation with a third-order spline fit to clean

portions of the data using AFNI’s 3dDespike algorithm.

Despiking decreases the temporal derivative (DVARS) (Power

et al., 2011) over IC time courses and eliminates artifacts in

dFNC analyses (Damaraju et al., 2014).

Sliding window analysis

Post-processed IC time courses were analyzed by using a sliding

window dFNC algorithm in GIFT using window sizes of 22 TRs

(44 s) slid in 1 repetition time (TR). A window size of 44 s was

chosen as previous dFNC work utilized window sizes of 44

(Yang et al., 2014) and 45 s (Damaraju et al., 2014). Furthermore,

previous dFNC research has demonstrated that window sizes of

30–60 s capture distinct dynamic functional connections not

found in larger window sizes (Hutchison et al., 2013; Damaraju

et al., 2014), methodological dFNC work has shown that such

window sizes represent real fluctuations in functional connec-

tivity (Sakoglu et al., 2010; Leonardi and Van De Ville, 2015).

Additional empirical research demonstrates that these window

sizes are able to capture cognitive states (Shirer et al., 2012;

Wilson et al., 2015).

A tapered window consisting of a rectangle convolved with a

Gaussian (r¼ 3) was utilized to account for the limited number

of time points in each sliding window. This produced a cova-

riance matrix with the dimensions of 946 (sliding windows) �

148 (paired connections) per subject. To further account for

noise that may arise from a limited number of time points, each

covariance matrix was regularized using the graphical LASSO

method (L1 norm) (Friedman et al., 2008) of the inverse cova-

riance matrix resulting in a correlation matrix (Damaraju et al.,

2014).

CCN and SN dynamic states

Windowed correlation matrices for components within the CCN

and SN were extracted and subjected to k-means clustering

independently. The SN consisted of the bilateral insular, the

dACC and the orbitofrontal cortex; the CCN consisted of bilat-

eral dorsolateral prefrontal and parietal regions (see Figure 3A

for SN and CCN nodes and Figure 3B for the extracted matrices).

To be able to perform k-means clustering, the sliding windows

of all participants were concatenated for the CCN and SN

separately. Using these concatenated SN and concatenated

CCNs, the number of optimal number of clusters was deter-

mined by using the elbow criterion applied to the cluster

validity index derived from k-means clustering using ‘city block’

distance function (Allen et al., 2014) performed for clustering

values between 2 and 20. This analysis revealed that five is

the optimal number of clusters for the SN as well as for the

R. Steimke et al. | 1931
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CCN, therefore the five cluster solutions for all results are

presented.

For each of the 5 cognitive network and the 5 SN states,

frequency and dwell time were calculated. Frequency was

calculated as the percent that a brain state prevailed through-

out the duration of the scan. Dwell time was calculated as the

average length, measured in number of sliding windows, that

a participant stayed in a given brain state. Pearson correla-

tions were calculated to relate frequency and dwell time of

cognitive network and SN states to distractibility by erotic

temptation.

Results

Behavioral task results and static connectivity

In Figure 2, the reaction times, error rates, gaze distance and

standard deviation of the gaze distance are presented. All of

these measures revealed a significant difference between

the erotic and the neutral condition at a threshold of P< 0.05

(Table 1). Note, that the error rates are low, potentially pointing

toward a ceiling effect. As expected, the error rate for the temp-

tation effect (error rates for the temptation condition minus

error rates for the neutral condition) is positively and

Fig. 3. Brain networks and static connectivity. (A) Display of the nodes identified by the ICA grouped into functional networks; each color represents a node within

the network. (B) Static whole-brain functional connectivity correlation matrix; CCN and SNs used in the dynamic resting-state analysis are highlighted by red boxes.

The color coding on top of the correlation matrix in Figure 3B corresponds to the colors of the brain areas of the different ICs in Figure 3A.

Table 1. Mean (M), s.d., paired sample t-test results (t-value and P-value) and effect size (g2) for proportion of errors (Errors), reaction time in

milliseconds (RT), mean gaze distance from target location (Mean Gaze) and the s.d. of the gaze distance from target location (s.d. Gaze) in

degrees of the visual angle for the behavioral task

Erotic M(s.d.) Neutral M(s.d.) t-value P-value g
2

Error 0.06(0.067) 0.05(0.05) 2.27 0.026 0.05

RT 594.62(64.39) 587.16(63.21) 3.30 0.001 0.10

Mean gaze 3.64(2.06) 3.43(1.8) 3.36 0.001 0.11

s.d. gaze 0.51(0.62) 0.39(0.42) 3.30 0.003 0.09
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significantly correlated with the gaze distance for the tempta-

tion effect (gaze distance from target location in the temptation

condition minus gaze distance from target location in the neu-

tral condition), r¼ 0.275, P¼ 0.007.

Correlations between frequency and dwell time demon-

strate a significant positive relationship between the two

measures (Supplementary Table S1). For a factor analysis,

combining frequency and dwell time to a single compound

score for each state see Supplementary Tables S1–S4.

Performing the traditional static functional connectivity anal-

ysis with gaze distance as a covariate revealed no significant

correlations at a P-value< 0.05 with false discovery rate (FDR)

correction for multiple comparisons.

Dynamic SN states

We identified five different SN states (Figure 4A). Note that the

states are sorted by the average percent of time participants

spent in each of the five states. On average, participants spent

39.53 percent of their time in state 1 (s.d.¼ 27.54), 16.55 percent

of their time in state 2 (s.d.¼ 16.59), 16.02 percent of their time

in state 3 (s.d.¼ 15.72), 15.53 of their time in state 4 (s.d.¼ 17.06)

and 12.37 percent of the time is state 5 (s.d.¼ 16.15). Repeating

of k-means clustering to a total of five estimates revealed stabil-

ity of the results (Table 2). Considering the frequency spent in

each state, there is a floor effect for some participants, meaning

they did not spend any time in that state at all. Five participants

did not enter into state 1, 21 participants did not enter into state

2, 22 participants did not enter into state 3, 19 did not enter into

state 4 and 33 did not enter into state 5. Not all participants

enter into each state because k-means clustering of the con-

catenated data matrix including all subjects allows for the pos-

sibility that individual subjects will not contribute to each state

(Damaraju et al., 2015; Nomi et al., 2016, 2017) The dwell time on

average was 22.56 (s.d.¼ 26.00) for state 1, 10.87 (s.d.¼ 8.97 for

state 2, 9.50 (s.d.¼ 8.25) for state 3, 9.70 (s.d.¼ 9.53) for state 4

and 9.98 (s.d.¼ 12.45) for state 5.

Dynamic CCN states

We identified five different CCN states (Figure 4B). The states

are sorted by the average percent of time participants spent in

each of the five states. On average, the participants spent 34.74

percent in state 1 (s.d.¼ 26.21), 17.98 percent of their time in

state 2 (s.d.¼ 17.52), 17.92 percent in state 3 (s.d.¼ 17.67), 17.14

percent in state 4 (s.d.¼ 17.97) and 12.22 percent of their time in

state 5 (s.d.¼ 13.84). Repeating of k-means clustering to a total

of five estimates revealed stability of the results (Table 3).

Concerning the frequency, 3 participants did not adopt state 1,

20 participants did not adopt state 2, 18 participants did not

adopt state 3, 18 did not adopt state 4 and 28 did not adopt state

5. The dwell time on average was 20.65 (s.d.¼ 26.37) for state 1,

10.96 (s.d.¼ 10.52) for state 2, 10.93 (s.d.¼ 8.35) for state 3, 11.90

(s.d.¼ 11.37) for state 4 and 10.76 (s.d.¼ 11.19) for state 5.

Correlations with eye gaze behavior

As reported in a published paper describing behavioral results

(Steimke et al., 2016), distracting images elicited participants’

eye gaze to shift away from the target location, resulting in

poorer performance on the task (Figure 2). Difficulty resisting

temptations as indicated by gaze distance difference between

erotic and neutral distractors was negatively correlated with the

time spent in SN state 4, r(92)¼�0.26, P¼ 0.012. This correlation

remains significant when using the robust Spearman’s Rank

correlation coefficient [rs(92) ¼�0.251, P¼ 0.015]. To identify

influential outliers, the Mahalanobis distance was calculated.

The analysis revealed two outliers (v2 ¼ 13, 95; v2 ¼ 16, 18) at a

threshold of P< 0.001. Excluding these two outliers reveals that

the correlation between salience state 4 and temptation gaze

effect remains significant (r¼�0.22, P¼ 0.034).

The Pearson’s correlation remained significant when exclud-

ing participants who did not spend any time in state 4,

r(73)¼�0.25, P¼ 0.031. Comparing participants who did not

adopt state 4 at all with those who did enter state 4, using

between group t-tests, revealed marginally significant higher

distraction by temptation for participants who adopted state 4,

t(91)¼ 1.98, P¼ 0.051. State 4 represents a dynamic functional

connectivity state wherein the SN was negatively correlated

with the visual network. All other states were not significantly

correlated with performance on the temptation task (Figure 5A).

Post hoc analysis revealed that time spent in state 4 was nega-

tively correlated with time spent in state 1 [r(92)¼�0.36,

P< 0.001]. Further post hoc testing revealed that the significant

negative correlation between time spent in state 4 and ability to

resist temptation remained significant when controlling for age,

gender and fluid intelligence as measured by LPS (r¼�0.276,

P¼ 0.008, df¼ 89). Correlating dwell time of the five SN states

with the ability to resist temptations revealed the same pattern

as for frequency: state 4 showed a significant negative correla-

tion, while the others did not (Figure 5B). The correlation was

also significant when using the robust Spearman’s Rank corre-

lation coefficient [rs(92) ¼�0.24, P ¼ 0.02].

There was no correlation between frequency or dwell time

of any of the five CCN states with self-control in the face of

temptation (Figure 6A and B).

Correlations with error rates

Difficulty resisting temptation as indicated by the error rate dif-

ference between erotic and neutral distractors was negatively

correlated with the time spent in cognitive network state 1

(r¼ 0.20, P¼ 0.048). However, as displayed in Supplementary

Figure S1, this might have been caused by a few influential

cases. To test the robustness of this finding, we therefore used a

non-parametric Spearman rank order correlation. The results

reveal that the correlation between the temptation error effect

and cognitive network state 1 is no longer significant (r¼�0.16,

P¼ 0.12).

Discussion

Self-control is critical for successful long-term goal attainment.

Here, we use gaze pattern analysis in a self-control task and

dFNC analysis of resting-state fMRI data to explore how individ-

ual differences in the ability to resist tempting distractors are

related to intrinsic brain dynamics. We show that participants

whose intrinsic connectivity patterns gravitate toward configu-

rations in which salience detection systems are less strongly

coupled with visual systems could resist tempting distractors

more effectively.

Our results suggest that individuals whose brains spend

more time in a state where SN and visual network are

decoupled were less distractible by erotic pictures. Most mod-

els of self-control posit a key role for prefrontal CCNs in regu-

latory processes involved in overcoming the impulse to

engage with salient distracting stimuli (Hare et al., 2009;

Hayashi et al., 2013). The current results, in contrast, demon-

strate for the first time that SN dynamic coupling tendencies

R. Steimke et al. | 1933
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may contribute to individual differences in the ability to resist

temptation.

The SN, with key nodes in insular and anterior cingulate cor-

tices, plays a central role in detection of behaviorally relevant

stimuli and the coordination of neural resources. In particular,

the dorsal anterior insular node of the SN is thought to causally

influence task-positive and DMNs (Uddin et al., 2011). SN dys-

function has been linked with host of psychiatric conditions,

Fig. 4. Dynamic connectivity matrices. Five dynamic SN (A) and CCN states (B). States are sorted by frequency from most frequent (state 1) to the least frequent (state

5). The frequency is indicated by percent time spent in each state.

1934 | Social Cognitive and Affective Neuroscience, 2017, Vol. 12, No. 12
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particular those involving self-regulation and executive func-

tion deficits (Uddin, 2015). For these reasons, we predicted that

individual differences in intrinsic SN dynamics may contribute

to the ability to focus and maintain attention when faced with

tempting distractors.

Examination of SN dynamics revealed the existence of five

distinct connectivity states of this network (Figure 4). State 1,

which was occupied nearly 40% of the time, was characterized

by a large amount of correlations centered around zero. This is

in line with previous studies (Damaraju et al., 2014; Nomi et al.,

2017) which consistently show that brain states with the high-

est frequency of occurrence show a greater amount of correla-

tions centered around zero compared with less frequently

occurring states. State 2 was characterized by positive correla-

tions of the SN with the sensory motor network. Both states 2

and 3 showed positive intercorrelations within the SN and neg-

ative correlation of the salience with the DMN. State 4 also

showed a negative correlation of SN with DMN and intercorrela-

tion within SN. The most pronounced characteristic by which

state 4 differed from the other states was the negative correla-

tion of the SN and the visual network. State 4 is further charac-

terized by medium-to-high correlations within the SN.

Interestingly, in salience state 4, one node of the SN is corre-

lated with a node from the temporal network. Specifically, the

posterior insula region (see Figure 3A SN region depicted in yel-

low) is correlated with a node located in the temporalparietal

junction (TPJ; see Figure 3A temporal network region depicted

in blue). The positive insula-TPJ correlation is also visible in the

whole-brain static functional connectivity correlation map

(Figure 3B) and in salience state 2 and salience state 5. Thus,

this connection is not unique to salience state 4. The finding of

a correlation between the insula and TPJ is consistent with pre-

vious investigations of TPJ connectivity showing that regions of

the TPJ are functionally connected to nodes in the insular cortex

(Mars et al., 2012) and other nodes in the SN (Kucyi et al., 2012).

The least frequent state 5 showed mixed positive and negative

correlation with regions in the sensorimotor networks, within

SN correlations centered around zero and correlation of SN with

DMN centered around zero.

Examination of CCN dynamics revealed five CCN states. The

most frequent CCN state (state 1) was occupied �35 percent of

the time and was characterized by a greater number of correla-

tions centered around zero, in contrast to the other four states.

This was the case for within CCN intercorrelations and correla-

tions of the CCN with the rest of the brain.

The only significant relationship between brain network

dynamics and individual differences in behavior was observed

for SN state 4. Both frequency and dwell time were significantly

correlated with distractibility by erotic images as measured by

gaze distance from target presentation.

In a recent whole-brain dynamic functional connectivity

study by Nomi et al. (2017), successful executive function was

Table 2. Percent of time spent in each SN state

State

1 (%)

State

2 (%)

State

3 (%)

State

4 (%)

State

5 (%)

1st analysis 39.53 16.55 16.02 15.53 12.37

2nd analysis 39.50 16.50 16.04 15.52 12.44

3nd analysis 39.53 16.54 16.03 15.53 12.36

4th analysis 39.53 16.54 16.01 15.53 12.38

5th analysis 39.53 16.55 16.02 15.53 12.37

Note: Repetition of k-means clustering reveals similar results, suggesting that

the clustering is stable in this dataset.

Table 3. Percent of time spent in each CCN state

State

1 (%)

State

2 (%)

State

3 (%)

State

4 (%)

State

5 (%)

1st analysis 34.74 17.98 17.92 17.14 12.22

2nd analysis 34.74 17.98 17.92 17.14 12.22

3nd analysis 34.55 17.97 18.21 17.13 12.15

4th analysis 34.61 17.75 18.07 17.10 12.46

5th analysis 34.74 17.98 17.92 17.14 12.22

Note: Repetition of k-means clustering reveals similar results, suggesting that

the clustering is stable in this dataset.

A

B

Fig. 5. Correlations between SN dynamics and behavior. (A) Frequency and (B) dwell time of the five SN states with the temptation gaze effect: the higher the tempta-

tion gaze effect, the more participants’ gaze drifted from the target location in the face of tempting distractors. The asterisk (*) indicates a significant difference at

P< 0.05.
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associated with spending more time in the most frequently

occuring state, whereas in our study self-control was not associ-

ated with time spent in the most frequently occurring dynamic

state. These results demonstrate for the first time how highly

salient distractors can interfere with top-down control proc-

esses to a greater extent in individuals who exhibit specific pat-

terns of intrinsic functional connectivity dynamics.

The current results provide more nuanced tests of the dual-

systems model, which pits cognitive control systems against

‘impulsive’ brain systems that react automatically to salient

stimuli. Our separate analyses of CCN dynamics and SN dynam-

ics indeed do not support the predictions of a traditional dual-

systems approach. Instead, our findings suggest that when

visual input has less access to salience detection systems,

tempting erotic distractors are easier to ignore.

It is important to note that the task used in this study is a

visual attention task (Steimke et al., 2016) involving inhibition of

a prepotent attention allocation mechanism. SN properties

might particularly explain individual differences in self-control

when visual attention allocation is involved. On the other hand,

individual differences in self-control tasks relying less heavily

on a prepotent attention allocation mechanism may be better

explained by dynamic brain states related to a reflective system

involving frontoparietal control networks. Future studies should

investigate individual differences in dynamic brain states sup-

porting reflective and impulsive systems in the context of self-

control tasks that involve cognitive operations other than visual

attention, such as working memory updating or task switching

(Miyake et al., 2000).

Taken together, our findings highlight the importance of

considering ‘neural context’ in studies of brain function; the

idea that the functional relevance of a brain system depends on

the status of other connected areas (McIntosh, 2004; Ciric et al.,

2017).

Limitations

k-means is a powerful algorithm to identify a predefined num-

ber of clusters in a dataset. However, it has also been criticized,

as the starting point of the algorithm can influence the cluster-

ing. If the number of clusters chosen does not match the data-

set, the clustering can become unstable and repetition of the

analysis can yield significantly different results. To address this

limitation, we repeated the analysis five times. In Tables 2 and

3, the percent time spent in each state for the five analyses is

presented. The divergence between analyses lies below 0.1 per-

cent, suggesting that the divergence between analyses is minor

and the k-means clustering yielded stable results in our dataset.

Recently, some critiques have attempted to identify possible

shortcomings of dynamic functional connectivity analysis

approaches in resting-state fMRI studies (Laumann et al., 2016).

The authors argue that dynamic variations during rest are

mainly explained by head motion, sampling variability and

states of arousal. Thus, current measures of dynamic brain

function may not actually be related to cognition. Although

head motion and sleep states are certainly of concern in any

fMRI study, other research demonstrates that employment of a

sliding window approach, when strictly accounting for head

motion through subsampling of low motion subjects (Allen

et al., 2014) or scrubbing of high motion volumes (Ciric et al.,

2017), and when accounting for possible states of arousal by

comparing the first and second half of a resting-state scan

(Allen et al., 2014; Damaraju et al., 2014), still produce results

consistent with the interpretation that the brain undergoes

dynamic shifts in functional connections.

With regards to statistical stationarity, recent work argues

that the presence of statistical stationarity over long periods of

time (e.g. averages over an entire resting-state scan) does not

rule out the presence of interesting changes in covariance over

shorter time periods (e.g. sliding windows) [see Miller et al.

(2017) for an extensive discussion of the critizism raised by

Laumann et al.]. All of these issues are also related to the use of

particular approaches used to show a lack of brain dynamics

due to statistically non-significant deviations from a particular

‘static’ null model. Null models used to demonstrate a lack of

brain dynamics are inherently difficult to create due to the fact

that brain scans are inherently dynamic, causing a considerable

gulf between a simulation proposing to capture a lack of

Frequency of Cogni�ve States

Dwell Time of Cogni�ve States

F
re

q
u

e
n

c
y

S
ta

te
 3

F
re

q
u

e
n

c
y

S
ta

te
 4

F
re

q
u

e
n

c
y

S
ta

te
 5

F
re

q
u

e
n

c
y

S
ta

te
 2

F
re

q
u

e
n

c
y

S
ta

te
 1

r = -.05, p=.61 r = .01, p =.92 r = -.10, p =.33 r = .03, p =.75 r = .17, p =.09 

D
w

e
ll

T
im

e
 S

ta
te

 1

D
w

e
ll

T
im

e
 S

ta
te

 2

D
w

e
ll

T
im

e
 S

ta
te

 3

D
w

e
ll

T
im

e
 S

ta
te

 4

D
w

e
ll

T
im

e
 S

ta
te

 5

r = -.08, p=.46 r = .01, p=.92 r = -.04, p=.70 r = .18, p=.08 r = .16, p=.13 

Temptation Gaze Effect Temptation Gaze Effect Temptation Gaze Effect Temptation Gaze Effect Temptation Gaze Effect

Temptation Gaze Effect Temptation Gaze Effect Temptation Gaze Effect Temptation Gaze Effect Temptation Gaze Effect

A

B

Fig. 6. Correlations between CCN dynamics and behavior. (A) Frequency and (B) dwell time of the five CCN states with the temptation gaze effect: the higher the temp-

tation gaze effect, the higher the distractibility by erotic images.
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dynamics and actual brain data (Miller et al., 2017). Additionally,

many parameters of any given null model can be tuned to either

show stationarity or non-stationarity, leading to difficulty in

agreement regarding a proper null model of dynamic brain

function. Thus, while there is still a large consensus that brain

function is dynamic (Sakoglu et al., 2010; Allen et al., 2014;

Damaraju et al., 2014; Jia et al., 2014; Rashid et al., 2014; Yang

et al., 2014; Wilson et al., 2015; Nomi et al., 2016), there is less

consensus regarding how to properly demonstrate these effects

(Laumann et al., 2016).

Another limitation of the study presented here is that the

behavioral task effect size is small, despite being highly signifi-

cant. Additionally, frequency and dwell time of dynamic sali-

ence state 4 correlated only with eye gaze distance from target

location, not with error rates. A possible explanation might be a

ceiling effect for error rates, with most participants making very

few errors. The eye gaze distance shows more variance and is

sensitive to subtle deviations from task instruction because of

temptation. Additionally, across all measures acquired during

the behavioral task, gaze distance showed the highest effect

size. These findings support the use of the eyetracking data as a

metric of interest.

With a P-value of 0.012, the results presented here do not

survive the conservative Bonferroni correction for multiple

comparisons. A corrected value would be marginally significant

(P¼ 0.06). Therefore, the results presented here should be

regarded with caution and should be replicated in future stud-

ies. With a sample size of 94, we have a relatively large sample

for a combined fMRI and eyetracking study. However, as was

noted by Schönbrodt and Perugini (2013) a sample size of higher

than 150–250 is even more reliable for examining correlations.

Future work with larger sample sizes is needed to further sup-

port the results presented here.

Finally, it should be noted that the analysis presented here is

not sensitive toward general differences in reaction to erotic

stimuli or general activation differences but only assesses

the connectivity profile of the SN and cognitive network.

Processing of erotic pictures has been associated with activity in

ventral striatum, occipital cortex, hippocampus, hypothalamus,

thalamus and the amygdala in univariate analyses (Stark et al.,

2005; Walter et al., 2008). These regions have not been separately

assessed in the study presented here.

Conclusions

Studying SN dynamics might deliver valuable insight into the

origin of individual differences in self-control ability. We show

that participants who spent more time in a brain network con-

figuration in which salience detection systems are decoupled

from visual systems could resist tempting distractors more

effectively. This suggests that individual differences in self-

control in the face of temptation might be driven in part by SN

functional connectivity context.

Supplementary data

Supplementary data are available at SCAN online.
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