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Abstract

We introduce an unsupervised, geodesic distance based,

salient video object segmentation method. Unlike tradi-

tional methods, our method incorporates saliency as pri-

or for object via the computation of robust geodesic mea-

surement. We consider two discriminative visual features:

spatial edges and temporal motion boundaries as indica-

tors of foreground object locations. We first generate frame-

wise spatiotemporal saliency maps using geodesic distance

from these indicators. Building on the observation that fore-

ground areas are surrounded by the regions with high s-

patiotemporal edge values, geodesic distance provides an

initial estimation for foreground and background. Then,

high-quality saliency results are produced via the geodesic

distances to background regions in the subsequent frames.

Through the resulting saliency maps, we build global ap-

pearance models for foreground and background. By im-

posing motion continuity, we establish a dynamic location

model for each frame. Finally, the spatiotemporal salien-

cy maps, appearance models and dynamic location models

are combined into an energy minimization framework to at-

tain both spatially and temporally coherent object segmen-

tation. Extensive quantitative and qualitative experiments

on benchmark video dataset demonstrate the superiority of

the proposed method over the state-of-the-art algorithms.

1. Introduction

Unsupervised video object segmentation methods aim at

automatically extracting the object from the whole video.
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Such segmentation has shown to benefit many specific vi-

sual tasks and applications, such as video summarization,

compression and human-computer interaction to name a

few. Appearance information and motion cues are usu-

ally employed by video segmentation approaches. Some

works in [6, 17, 12] analyzed point trajectories in order to

take advantage of motion information available in multiple

frames. Brox et al. [6] offered a framework for trajectory-

based video segmentation through building affinity matrix

between pairs of trajectories. Lezama et al. [17] grouped

pixels with coherent motion computed via long-range mo-

tion vectors from the past and future frames. Another ap-

proach by Fragkiadaki et al. [12] detected discontinuities

of embedding density between spatial-neighboring trajec-

tories. As the work [15] pointed out, these trajectory-based

techniques suffer from the challenges associated with track-

ing (drift, occlusion and initialization) and clustering (mod-

el selection and computational complexity) and lack of prior

information for a successful object segmentation. Some ef-

forts [5, 26, 30] presented efficient optimization frameworks

for bottom-up final segmentation employing both appear-

ance and motion cues.

Recently, several methods [15, 19, 32] explored the no-

tion of what a foreground object should look like in video

data. These approaches generate considerable object pro-

posals [11, 8] in every frame and transform the task of video

object segmentation into an object region selection prob-

lem. In this selection process, both motion and appearance

information are combined to measure the objectness of a

proposal. More specifically, a clustering process was intro-

duced for finding objects by Lee et al. [15], a constrained

maximum weight cliques technique to model the selection

process was proposed by Ma and Latecki [19], and a lay-

ered directed acyclic graph based framework was presented

by Zhang et al. [32]. However, these proposal based tech-

niques have high computational complexity, and their de-

pendency on the large number of proposals leads to much

difficulty and complexity of the selection process.

Our goal is to segment the foreground objects from the



Figure 1. Overview of saliency-aware geodesic video object segmentation.

background in all frames of a given video sequence with-

out any user annotation and semantic prior. Our method is

based on the proposed visual saliency detection technique

that incorporates several visual cues such as motion bound-

ary, edge and color. Object and background estimations

generated by our method provide consistent and reliable pri-

ors for higher level object segmentation tasks. This topic is

less explored, mainly due to only a few methods specifically

designed for video saliency till now. These saliency meth-

ods [14, 20, 28, 26, 13, 21], however, usually build their

system as a simple combination of existing image saliency

models with motion cues. Furthermore, the performance of

these methods is not good enough to guide the segmenta-

tion. Our method correctly estimates the locations of ob-

ject and background and gains uniform saliency maps. On

the other hand, our video object segmentation algorithm is

based on the geodesic distance, which has been proved to

be effective for interactive image and video segmentation

with user brushes [3, 25, 2, 10]. However, in many vision

applications, such as processing a large number of video da-

ta, it is usually tedious and impractical for users to handle

the video frames manually. In this paper, we try to intro-

duce geodesic distance into our totally automatic segmenta-

tion framework, which is different with previous approach-

es [3, 25, 2, 10] that require careful user assistance.

2. Our approach

Fig. 1 shows an overview of our approach. First, input

frames are oversegmented into superpixels. For each super-

pixel, two types of edges are extracted: spatial static edges

within the same frame and motion boundary edges estimat-

ed from neighboring frames. Geodesic distance, which is

defined as the shortest paths between two superpixels on the

image, is then adopted in a intra-frame graph for computing

the object probability of each superpixel. Based on the ob-

servation that the object areas are surrounded by the regions

with high spatiotemporal edge value, the object probability

is computed as the shortest geodesic distance to the frame

boundaries. A self-adaptive threshold is used to obtain ini-

tial labeling of the frame into background and foreground

regions. Next an inter-frame graph is constructed for pro-

ducing spatiotemporal saliency maps by the computation of

geodesic distance to the estimated background regions of t-

wo adjacent frames. Finally, to achieve refined estimation

of foreground, global appearance model for foreground and

background is established by saliency results. Dynamic lo-

cation model for each frame is estimated from motion infor-

mation extracted from few subsequent frames. Spatiotem-

poral saliency maps, global appearance model and dynamic

location model are combined into an energy function for

final segmentation. Our source code will be publicly avail-

able online 1.

2.1. Object estimation using spatiotemporal edges

Edges provide good guide in predicting object bound-

aries, while simultaneously being very efficient. Motion

information also offers a simplified but very effective in-

dicator of object, the pixels which change abruptly from

neighbors often gain more attention. As shown in Fig. 1,

the location of static edges for single frame and the opti-

cal flow field estimated from two consecutive frames could

provide useful information for detecting object. We base

our approach on these two discriminative features for prim-

ing object locations.

Given an input video sequence F = {F 1, F 2, · · ·}, we

compute an edge probability map Ek
c (x

k
i ) corresponding to

k-th frame F k at pixel xk
i using [16]. The optical flow

between pairs of subsequent frames are obtained by the

large displacement motion estimation algorithm [7]. Let

V k be the optical flow field of frame F k, we then compute

the gradient magnitude Ek
o of the optical flow field V k as

1http://github.com/shenjianbing/videoseg15



Ek
o = ∥∇V k∥. We oversegment each frame into superpix-

els using SLIC [1]. Let Yk = {Y k
1 , Y k

2 , · · ·} be the super-

pixel set of frame F k. Given the pixel edge map Ek
c , the

edge probability of each superpixel Y k
n is computed as the

average value of the pixels with ten largest edge probabil-

ities within Y k
n . This generates a superpixel edge mapÊk

c .

Similarly, we compute a superpixel optical flow magnitude

map Êk
o using Ek

o . Then a spatiotemporal edge probability

map Ek is generated as:

Ek = Êk
c · Êk

o . (1)

The intuition behind the design of (1) is that, if the mo-

tion patterns of foreground object distinct from background,

the gradient of optical flow should have large magnitude

around the object boundary. Additionally, the static edge

maps give an instructor for the object boundaries according

to the spatial information. When spatial edge and temporal

discontinuity in motion are fused together through (1), the

output spatiotemporal edges maps are able to imply the

location of foreground object. This phenomenon could be

easily observed from Fig. 1, the object regions either have

high spatiotemporal edge values or are surrounded by these

high-edge-probability regions. Based on this argument,

we opt to use the geodesic distance to discriminate the

visually salient regions from backgrounds and measure

their likelihoods for foreground.

Intra-frame graph construction For frame F k, we

construct an undirected weighted graph Gk = {Vk, Ek}
with superpixels Yk as nodes Vk and the links between

pairs of nodes as edges Ek. The weight wk
mn of the edge

ekmn ∈ Ek between adjacent superpixels Y k
m and Y k

n is

defined as:

ekmn = ∥Ek(Y k
m)− Ek(Y k

n )∥, (2)

where Ek(Y k
m) and Ek(Y k

n ) correspond to the spatiotempo-

ral boundary probability of superpixels Y k
m and Y k

n , sepa-

rately. Based on the graph structure, we derive an |Vk| ×
|Vk| weight matrix W k, where |Vk| is the number of nodes

in Vk. The (m, n)th element of W k is: W k(m,n) = ekmn.

For each superpixel Y k
n , the probability P k

n for foreground

is computed by the shortest geodesic distance to the image

boundaries using

P k
n = min

T∈ Tk
dgeo(Y

k
n , T,Gk), (3)

where Tk indicate the superpixels along the four boundaries

of frame F k. The geodesic distance dgeo(v1, v2,G
k) be-

tween any two superpixels v1, v2 ∈ Vk in graph Gk is de-

fined as the accumulated edge weights along their shortest

path on graph Gk:

dgeo(v1, v2,G
k) = min

Cv1,v2

∑

p=0,1

|W k · Ċv1,v2(p)|, (4)

Figure 2. Illustration of inter-frame graph construction. (a) Frame

F
k. (b) Optical flow flied V

k of (a). When the estimation for opti-

cal is not accurate (which is the usual case) object detection suffers

P
k in (c). (d) Frame F

k is decomposed into background regions

Bk and object-like regions Uk by self-adaptive threshold σ
k. The

black regions indicate the background regions Bk, while the bright

regions indicate the object-like regions Uk. (e) The decomposition

of prior frame F
k−1. (f) The object-like regions Uk−1 of frame

F
k−1 are projected onto frame F

k. (g) Spatiotemporal saliency

result Sk for frame F
k with consideration of (d) and (e). (h) Spa-

tiotemporal saliency result Sk for frame F
k with consideration of

(e) and (f).

where Cv1,v2(p) is a path connecting the nodes v1, v2 (for

p = 0 and p = 1 respectively). If a superpixel is outside

the desired object, its foreground probability is small be-

cause there possibly exists a pathway to image boundaries

that does not pass the regions with high spatiotemporal edge

value. Whereas, if a superpixel is inside the object, this

superpixel is surrounded by the regions with large proba-

bilities of edges, which increases the geodesic distance to

image boundaries. We normalize all the foreground object

probabilities P k
n to [0, 1] for each frame, the object proba-

bility map for frame F k is indicated by P k. As our graph

is very sparse, the shortest paths of all superpixels are effi-

ciently computed by Johnson algorithm.

2.2. Spatiotemporal saliency

The obtained foreground probability map P k can locate

the foreground object but not very precisely. In particular,

object probabilities of the background regions near the

object boundaries are needless increased, due to the over-

segmentation. Furthermore, erroneous results may come

from the inaccuracy of optical flow estimation. Fortunately,

foreground and background are visually different (by

definition of saliency) and object is temporally continuous

between adjacent frames. We present here a method which

leverages this information to obtain spatiotemporal saliency

results and is processed between pairs of adjacent frames.

Inter-frame graph construction For each pair of sub-

sequent frame F k and F k+1, an undirected weighted graph

G′k = {V ′k, E ′k} is constructed. The nodes V ′k consist

of all the superpixels Yk of frame F k and all the superpix-



els Yk+1 of frame F k+1. There are two types of edges:

intra-frame edges link all the spatially adjacent superpixels

and inter-frame edges connect all the temporally adjacent

superpixels. The superpixels are spatially connected if they

are in the same frame and are adjacent, temporally adjacent

superpixels refer to the superpixels which belong to differ-

ent frames but have overlaps along the time axis. We assign

the edge weight as the Euclidean distance between their av-

erage colors in the CIE-Lab color space.

For each frame, a self-adaptive threshold is used to de-

compose frame F k into background regions Bk and object-

like regions Uk through the object probability map P k. This

threshold σk for frame F k is computed by σk = µ(P k),
where µ(·) computes the mean probability of all pixels

within frame F k by probability map P k. Additionally, the

background information of previous frame offers valuable

prior, which could eliminate the artifacts due to the inaccu-

rate optical flow estimation. Therefore, we define the back-

ground regions Bk of k-th frame as:

Bk = {Y k
n |P k

n ≤ σk}

∪ {Y k
n |Y k

n is temporally connected to Bk−1},

Uk = Yk − Bk,

(5)

Based on the graph G′k, we obtain a saliency value Sk
n

(P k+1
n ) of superpixels Y k

n (Y k+1
n ) of frame F k (F k+1) as

follows:

Sk
n = min

B∈ Bk∪Bk+1
dgeo(Y

k
n , B,G′k). (6)

The main rationale behind the relation in (6) is that a

saliency value of a superpixel is measured by its shortest

path to background regions in color space, both consider-

ing spatial and temporal background information. Fig. 2

gives illustration of this process. After obtaining spatiotem-

poral saliency map Sk and Sk+1 for frame F k and F k+1 ,

we keep executing this process for next two adjacent frame

F k+1 and F k+2 until the end of the video sequence.

2.3. Spatiotemporal object segmentation

We formulate video object segmentation as a pixel label-

ing problem with two labels (foreground and background).

Each pixel xk
i ∈ Xk can take a label lki ∈ {0, 1}, where

0 corresponds to background and 1 corresponds to fore-

ground. A labelling L = {lki }k,i of pixels from all frames

represents a segmentation of the video. Similarly to other

segmentation works [15, 27], we define an energy function

for labeling L of all the pixels:

F(L) =
∑

k,i

Uk
i (l

k
i ) + λ1

∑

k,i

Ak
i (l

k
i ) + λ2

∑

k,i

Lk
i (l

k
i )

+ λ3

∑

(i,j)∈Ns

Vk
ij(l

k
i , l

k
j ) + λ4

∑

(i,j)∈Nt

Wk
ij(l

k
i , l

k+1
j ),

(7)

where spatial pixel neighborhood Ns consists of eight spa-

tially neighboring pixels within one frame, temporal pix-

el neighborhood Nt consists of the forward-backward nine

neighbors in adjacent frames, and i, j index the pixels.

This energy function consists of three unary terms, Uk,

Ak and Lk, and two pairwise terms Vk and Wk, which de-

pend on the labels of spatially and temporally neighboring

pixels. The scalar parameters λ weight the various terms. In

our experiments, we set λ1 = λ2 = 0.5, λ3 = λ4 = 4. The

purpose of Uk is to evaluate how likely a pixel is foreground

or background according to saptio-temporal saliency maps

computed by prior step. The unary appearance term Ak

encourages labeling pixels which have similar colors as

pixels with high saliency for foreground. The third unary

term Lk is defined for labeling pixels with location priors

estimated from dynamic location models. The pairwise

terms Vk and Wk encourage spatial and temporal smooth-

ness, respectively. All the terms are described in detail next.

Saliency term Uk. The unary saliency term Uk is

based on our saliency detection results, which penalizes

labelings which assign pixel with low saliency value to the

foreground. The term Uk has the following form:

Uk(lki ) =

{
− log(1− Sk(xk

i )) if lki = 0;

− log(Sk(xk
i )) if lki = 1.

(8)

Appearance term Ak. To model the foreground and

background appearance, two weighted color histograms are

computed in RGB color space, which should be denoted by

Hf and Hb. Each color channel is uniformly quantized in-

to 10 bins, and there is a total of 103 bins. Each pixel is

stacked into histograms according to its color values and

weighted by its saliency value, where the weight for pixel x
is Sk(x) and 1− Sk(x) for Hf and Hb, respectively. Then

we establish global appearance model for foreground and

background by normalizing Hf and Hb.

More specially, pixels belonging to two kinds superpix-

els are sampled for forming Hf and Hb: one that the super-

pixels with saliency value larger than the adaptive thresh-

old defined as the mean value of spatiotemporal saliency

map, and one that the superpixels spatially connected to the

former superpixels. We denote these pixels as Xs. This s-

trategy makes full use of the information of spatiotemporal

saliency results and is able to eliminate ill effects of some

background regions with similar color to the foreground,

thus offering more accurate fore-/background estimation.

Let c(xk
i ) denotes the histogram bin index of RGB color

value at pixel xk
i , the unary appearance term Ak is defined



Figure 3. The illustration of establishing appearance model. (a)

Input frame F
k. (b) Spatiotemporal saliency map S

k. (c) Pixel

set Xs for the frame in (a), which consist of the pixels within the

green boundaries. The regions within the red boundaries are the

superpixels with the saliency value larger than the adaptive thresh-

old. (d)-(e) The global appearance model with color histogram Hf

(d) and Hb (e) for foreground and background respectively, which

are sampled from all the pixels belonging to Xs for each frame. (f)

The probability map for foreground computed via global appear-

ance model.

as:

Ak(lki )=





− log(
Hb(c(x

k
i ))

Hf (c(xk
i )) +Hb(c(xk

i ))
) if lki = 0;

− log(
Hf (c(x

k
i ))

Hf (c(xk
i )) +Hb(c(xk

i ))
) if lki = 1.

(9)

Location term Lk. Even above efforts for making the ap-

pearance model as accurate as possible pay off, the esti-

mation can still be distorted when the scene is complex or

the background regions share similar appearance with fore-

ground. To this, the object motion continuity among few

subsequent frames, provides a valuable prior to locate the

areas likely to contain the object. Thus, we design a method

to estimate location of foreground object with with respect

to motion information from a small number of neighbor-

ing frames. For k-th frame, we accumulate its forward-

backward t frames’ optical flow gradient magnitude that

yields trajectory of the object within few subsequent frames:

Ek
t =

k+t∑

i=k−t

Ei
o =

k+t∑

i=k−t

∥∇V i∥. (10)

Having a larger t for a certain frame, long-range motion

information will be taken into account ignoring some unre-

liable optical flow estimation from small number of frames.

However, this possibly makes Ek
t lose discriminative abil-

ity for object since too much motion information is unnec-

essary. When t is as small as 0, only considering curren-

t frame’s motion information possibly precisely prime the

Figure 4. Statistical comparison with 5 alternative saliency detec-

tion methods using SegTrack dataset [29] with pixel-level ground

truth: (a) average precision recall curve by segmenting saliency

maps using fixed thresholds, (b) average MAE. Notice that our

algorithm significantly outperforms other methods in terms of the

precision-recall. Additionally, our method achieved 75% improve-

ment over the best previous method in terms of MAE.

object location but sometimes will fail because of inaccu-

rate optical flow estimation. In our experiments, we set

t = 5. Then we use the within-frame graph construction

method described in section 2.1 to compute a dynamic lo-

cation model for each frame. Finally, we can get location

prior Lk
i for pixel xk

i , and the unary location term Lk is

defined as:

Lk(lki ) =

{
− log(1− Lk(xk

i )) if lki = 0;

− log(Lk(xk
i )) if lki = 1.

(11)

Pairwise terms Vk, Wk. Vk, Wk compose the consistency

term, constraining the segmentation labels to be both spa-

tially and temporally consistent. These two terms follow

the conventional form defined in [27], which favors assign-

ing the same label to neighboring pixels that have similar

color.

Having defined the complete energy function F(L), we

can use graph-cuts to compute the optimal binary labeling,

and thus get the final segmentation results.

3. Experimental results

Our approach automatically detects and segments the

foreground object in the video sequences. In this section,

we first test our method on video saliency detection. Even

though it is not the final goal of our proposed algorithm,

we still evaluate the effectiveness of our approach by com-

paring our spatiotemporal saliency results against the state-

of-art saliency methods [31, 13, 28, 14] on the SegTrack

dataset [29]. Then we compare our segmentation results

with 9 alternate methods on the SegTrack [29], SegTrack

v2 [18] and Youtube datasets.



Figure 5. Comparison of previous methods to our spatiotemporal saliency results using SegTrack dataset [29] with ground truth (GT).

method Ours [32] [23] [15] [6] [19] [4] [22] [29] [9]

birdfall 209 155 189 288 217 468 468 606 252 454

cheetah 796 633 806 905 890 1175 1968 11210 1142 1217

girl 1040 1488 1698 1785 3859 5683 7595 26409 1304 1755

monkeydog 562 365 472 521 284 1434 1434 12662 563 683

parachute 207 220 221 201 855 1595 1113 40251 235 502

Avg. 427 452 542 592 868 1727 1911 19079 594 791

supervised N N N N N N N N Y Y
Table 1. The average per-frame pixel error rate using SegTrack dataset [29] compared to the ground-truth .

In the proposed algorithm, we utilize the spatiotemporal

edge information to compute the prior saliency maps for

videos. As this is an important step of our method, we

evaluate the results through other saliency methods. Us-

ing the codes obtained from the corresponding authors, we

compare our spatiotemporal saliency results with five alter-

nate methods [31, 13, 28, 14]. The first method aims at

image saliency detection while the later three ones are de-

signed for video saliency detection. To evaluate the perfor-

mance of our method, we test our results based on two wide-

ly used criteria, including PR (precision-recall) curve and

MAE (mean absolute errors). We first evaluate our method

using precision recall analysis. Precision is defined as the

percentage of salient pixels correctly assigned, while recall
measures the percentage of salient pixel detected. To plot

the precision-recall cures, we generate binary saliency maps

from each method using a fixed threshold. The PR curve is

drawn by 256 precision-recall pairs, which are obtained by

varying the threshold from 0 to 255.

For a more balanced comparison, we follow Perazzi et al.

[24] to evaluate the mean absolute error (MAE) between

a continuous saliency map S and the binary ground truth G

for all image/frame pixels. MAE is defined as: MAE =
|S−G|/N , where N is the number of image/frame pixel-

s. The MAE estimates the approximation degree between

the saliency map and the ground truth, which is normalized

to [0, 1]. MAE provides a better estimate of dissimilarity

between the saliency map and ground truth.

The resulting precision recall curve is illustrated in Fig.

4(a), which provides a reliable comparison of how well var-



Figure 6. Our segmentation results using SegTrack dataset[29]. The regions within the green boundaries are the segmented foreground

objects.

ious saliency maps highlight salient regions in images. The

results show that the proposed algorithm significantly out-

performs other methods. When the threshold is close to 255,

the recall values of [31, 13, 28, 14] are very small, even

the recall values of [28] and [14] decrease to 0, since their

saliency maps do not respond to the objects of attention.

The minimum recall value of the proposed method does not

drop to zero because the corresponding saliency maps are

able to effectively detect the salient region with strong re-

sponse. Moreover, our saliency method achieves the best

performance up to a precision rate above 0.8, which indi-

cates our saliency maps are more precise and responsive to

the salient regions. The MAE results are presented in Fig.

4(c). Our saliency maps successfully reduce the MAE by

75% compared to the best result [29] of other methods.

Fig. 5 gives a visual comparison of different method-

s, where brighter pixels indicate higher saliency probabili-

ties. The performance of image saliency method [31] is not

well, some saliency maps even cannot correctly detect the

foreground object. The lack of motion information limit-

s their ability to precisely localize object, especially when

foreground and background have similar color. In most cas-

es, saliency methods [13, 28, 14] for video are able to accu-

rately locate the salient objects, which perform better than

the method [31] for image saliency detection. Since those

spatiotemporal methods utilize motion information. How-

ever, some saliency maps using [13, 28, 14] are generated

in low resolution and tend to assign relatively low probabili-

ties to pixels inside the objects. That is because optical flow

estimation sometimes is not correct. Based on prior analy-

sis, we can draw two important conclusions: (1) motion in-

formation gives effective guidance for detecting foreground

object; (2) making methods excessively dependent on mo-

tion information is not an excellent choice. Comprehensive

utilization of various features in spatial and temporal space

(etc. color, edges, motion) should produce more satisfied re-

sults. Overall, our model is able to better estimated saliency

maps at pixel level within and on the contour of the objects

in cluttered backgrounds.

Our framework produces both spatially and temporally

coherent object segmentation results for videos in a fully

unsupervised way, and we compare nine methods that are

the most closely related works published in recent years.

The average per-frame pixel error rate [29] is introduced

for evaluation, which is the number of pixels misclassi-

fied according to the ground truth segmentation. The aver-

age per-frame pixel error rate compared with these methods

[32, 23, 15, 6, 19, 4, 22, 29, 9] for each video from Seg-

Track dataset [29] are summarized in Table 1. The methods

in [32, 23, 15, 6, 19, 4, 22] and our method are unsuper-

vised. They automatically detect object in video as well as

segment the object out. The methods in [29] and [9] are

supervised, which require an initial annotation for the first

frame. As the results shown, our method has the lowest av-

erage per frame segmentation error over the test videos.

Fig. 6 shows qualitative results for the videos of Seg-

Track dataset [29]. It can be observed that our method

has the ability to segment the objects with large shape

deformation (girl), foreground/background color overlap

(parachute) and camera motion (monkeydog), and also pro-

duces accurate segmentation even when the objects are very

small (birdfall), or foreground with fast motion patterns

(cheetah).

We further carried out experiments on SegTrack v2

dataset [18] and 12 groups of videos randomly select-

ed from Youtube Objects and compared our method with

[32, 23, 15, 6] as well. The average per-frame pixel error

rate are illustrated in Table 2. As seen, our method sig-



dataset Ours [32] [23] [15] [6]

SegTrack v2 4766 25289 5859 23161 16074

Youtube 2208 11148 3461 20115 16858
Table 2. The average per-frame pixel error rate using SegTrack

v2 [18] and Youtube dataset compared to the ground-truth .

nificantly outperforms all others on SegTrack v2 [18] and

Youtube dataset too.

4. Conclusions

We presented an unsupervised method that incorporates

geodesic distance into saliency empowered video objec-

t segmentation. The proposed spatiotemporal edge map is

shown to be able to indicate the location of foreground and

background. Our approach integrated spatiotemporal edge

map and geodesic distance to obtain accurate spatiotempo-

ral saliency results as a prior to object segmentation. We

produced spatiotemporal saliency maps via the computa-

tion of geodesic distance to the estimated background on the

inter-frame graph for each pair of adjacent frames. Finally,

we computed the segmentation result by combining salien-

cy, global appearance model and location model into the

graph-cut energy minimization. Numerous results showed

that our approach yields clearly higher performance than the

state-of-the-art methods.
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