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Abstract—Video saliency, aiming for estimation of a single dominant object in a sequence, offers strong object-level cues for

unsupervised video object segmentation. In this paper, we present a geodesic distance based technique that provides reliable and

temporally consistent saliency measurement of superpixels as a prior for pixel-wise labeling. Using undirected intra-frame and

inter-frame graphs constructed from spatiotemporal edges or appearance and motion, and a skeleton abstraction step to further

enhance saliency estimates, our method formulates the pixel-wise segmentation task as an energy minimization problem on a function

that consists of unary terms of global foreground and background models, dynamic location models, and pairwise terms of label

smoothness potentials. We perform extensive quantitative and qualitative experiments on benchmark datasets. Our method achieves

superior performance in comparison to the current state-of-the-art in terms of accuracy and speed.

Index Terms—Video saliency, video object segmentation, geodesic distance, spatiotemporal object prior.
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1 INTRODUCTION

U NSUPERVISED video object segmentation, a key challenge

in computer vision, aims at partitioning multiple video

frames into objects and background regions. Such an automatic

segmentation has been shown to benefit a variety of applications

such as video summarization, video compression, content based

video retrieval and human-computer interaction, to name a few.

Traditionally, video object segmentation task is performed

with motion and appearance information represented by motion

vectors, feature point trajectories, color descriptors, and boundary

indicators. Depending on the availability and quality of these

inputs, object regions are usually obtained after complicated and

fragile inference procedures often with preset assumptions of ob-

ject and camera motion. In simple scenarios where the foreground

object moves distinctly from its background, grouping of mo-

tion vectors and feature point trajectories generates semantically

meaningful segments. Several works [1], [2], [3] analyzed point

trajectories to leverage the motion information. But, what about if

a part of the object remains static? In typical complex videos, the

assumption of motion consistency may result in oversegmentation,

thus failing to extract entire object regions. Utilizing both motion

and appearance cues seems to be a better choice as it was adopted

by many methods [4], [5], [6], [7], [8], [9]. Specially, [4], [5],

[6] generate a large number of object proposals [10], [11], [12]

in every frame using these cues, and cast the task of video object

segmentation as the problem of inferring and selecting the most

relevant object proposal.

• This work was supported in part by the National Basic Research Program

of China (973 Program) (No. 2013CB328805), the National Natural

Science Foundation of China (No. 61272359), the Australian Research

Council’s Discovery Projects funding scheme (DP150104645), and the Fok

Ying-Tong Education Foundation for Young Teachers. Specialized Fund

for Joint Building Program of Beijing Municipal Education Commission.

(Corresponding author: Jianbing Shen).

• W. Wang and J. Shen are with Beijing Laboratory of Intelligent Information

Technology, School of Computer Science, Beijing Institute of Technology,

(email: wenguanwang@bit.edu.cn, shenjianbing@bit.edu.cn)

• R. Yang is with the University of Kentucky, Lexington, KY 40507. (email:

ryang@cs.uky.edu)

• F. Porikli is with the Research School of Engineering, Australian National

University, and NICTA. (email: fatih.porikli@anu.edu.au)

However, all these approaches still face many difficulties. On

one hand, they all require complicated object inference techniques,

which comes with a high computational expense. On the other

hand, they impose heuristically chosen cues which may not be the

right choice for a general class of objects. Besides, proposal based

methods sustain the disadvantage that correct proposals are often

few or do not exist at all when the foreground object is small or

similar to the background.

We can ask whether there is any reliable object descriptor that

can be employed for a general class of video objects. We address

this challenge by giving emphasis to the value of video saliency

to automatically identify visually prominent object regions in

dynamic scenes. Our intuition is that potentially discriminative yet

confined motion and appearance cues should be combined with

more comprehensive spatiotemporal saliency cues in order to gen-

erate reliable object prior. Once a reliable saliency prior is built,

estimating refined appearance models and then in turn generating

accurate object segments becomes feasible. This motivates us to

decompose the automatic segmentation problem into two stages:

video saliency detection and video object partitioning.

For an effective solution to unsupervised video segmentation,

we need the capability to detect salient regions in a video. While

salient object detection in still images has been exploited in the

past, computing spatiotemporal saliency in videos is still an active

area of research since extending image based algorithms to video

is nontrivial. Temporal coherence yields significant information,

nevertheless, it is inevitably susceptible to noise due to nonuniform

background motions and well-known motion estimation errors.

Moreover, most video saliency methods simply treat the motion

feature as another cue within their image saliency models [13],

[14], [15], lacking an elegant framework to incorporate intra-frame

and inter-frame information in a unified fashion.

In this paper, we aim to partition the foreground objects from

their backgrounds in all frames of a given video sequence without

any user assistance or contextual assumptions. To this end, we

propose a video object segmentation method that consists of a

superpixel based spatiotemporal saliency prior detection stage

and pixel based binary labeling stage that runs in a recursive

fashion. Our proposed video segmentation framework is depicted
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Fig. 1. Overview of our video object segmentation framework. Input frame is over-segmented into superpixels and a spatiotemporal edge map is
produced by the combination of static edge probability and optical flow gradient magnitude. For each superpixel, we compute its object-probability
and the refined saliency estimate via intra-frame graph and inter-frame graph, respectively. An object skeleton abstraction method is further derived
for obtaining final saliency estimates via biasing the central skeleton regions with higher saliency values. Finally, spatiotemporal saliency priors,
global appearance models and dynamic location models are combined for producing correct video segmentation.

in Figure 1. We first introduce a spatiotemporal saliency prior

that incorporates spatial and temporal stimulus and temporal

coherence into a unified, geodesic distance based model. The

geodesic distance, which has been shown to be effective in many

interactive computer vision applications [16], [17], [18], [19], has

the power of abstracting object structure to efficiently determine

its central regions by assigning higher saliency values to more

representative regions. Saliency of a region is measured by its

shortest geodesic distance to background regions in inter-frame

and intra-frame graphs. Hence, we design a skeleton abstraction

method that explicitly incorporates weak object structure and

emphasizes the saliency values of the central skeleton regions

based on geodesic distances. After obtaining video saliency, we

integrate saliency prior, dynamic location models as well as global

appearance models into an energy minimization that is optimized

via graph-cuts to generate final video object segments. Our source

code and supplementary materials will be available at 1.

To summarize, our main contributions are:

• A unified framework that incorporates video saliency for

unsupervised pixel-wise labeling of foreground objects

using an energy function that contains three unary and

two pair-wise terms (Section 4).

• A new formulation for video saliency by exploiting intra-

frame and inter-frame relevancy via undirected graphs. For

the intra-frame stimulus, we employ geodesic distance on

spatiotemporal edges within a single frame. We construct

the inter-frame graph for temporal coherence between

consecutive frames (Section 3).

• A geodesic distance based weighting of intra-frame and

inter-frame graphs based on the observation that salient

regions have higher geodesic distances to background

regions (Section 3.1 and 3.3).

• A greedy skeleton abstraction scheme for iteratively se-

lecting confident foreground regions (Section 3.4).

This paper builds upon and extends our recent work in [20]

with a more in depth discussion of the algorithm and expanded

evaluation results. We further introduce a new geodesic distance

based skeleton regions abstraction method that regularizes the

original regions of object with higher saliency.

1. http://github.com/shenjianbing/saliencysegment

2 RELATED WORK

In this section, we give a brief overview of recent works in

unsupervised video segmentation and saliency detection.

2.1 Unsupervised Video Segmentation

A variety of techniques have been proposed for unsupervised

video segmentation in the past decade. Most approaches are based

on bottom-up models using low-level features such as motion,

color, and edge orientation. In particular, the importance of the

motion information was emphasized in many works [1], [2], [3],

[21], [22], [23], [24]. While the use of short duration motion

boundaries in pairs of subsequent frames is not uncommon [22],

several methods [1], [2], [3], [21], [23] argued that motion should

be analyzed over longer periods, as such long term analysis is

able to decrease the intra-object variance of motion relative to the

inter-object variance and propagate motion information to frames

in which the object remains static. For this, [2] grouped pixels with

coherent motion computed via long-range motion vectors from the

past and future frames. Similarly, the work in [1] offered a frame-

work for trajectory-based video segmentation through building

affinity matrix between pairs of trajectories. In [3], discontinuities

of embedding density between spatially neighboring trajectories

were detected. Incorporating higher order motion models, a clus-

tering method for point tracks was proposed in [23]. In general,

motion based methods suffer difficulties when different parts of an

object exhibit nonhomogeneous motion patterns. This problem is

exacerbated further with the absence of a strong prior for object.

Moreover, these approaches require careful selection of a suitable

model especially for the trajectory clustering process, which often

comes with a high computation complexity, as [7] pointed out.

There were previous efforts [4], [5], [6], [25], [26], [27] that

presented optimization frameworks for bottom-up segmentation

employing both appearance and motion cues. Several methods

[7], [8], [9], [28], [29] proposed to select primary object regions

in object proposal domain based on the notion of what a generic

object looks like. These approaches benefit from the work of ob-

ject hypotheses proposals [10], [11], [12] that offer a large number

of object candidates in every frame. Therefore, segmenting video

object is transformed into an object region selection problem.

In the selection process, both motion and appearance cues are

http://github.com/shenjianbing/saliencysegment
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used to measure the objectness of a proposal. More specifically, a

clustering process was introduced for finding objects by [7], a con-

strained maximum weight cliques technique to model the selection

process was imposed [8], and a layered directed acyclic graph

based framework was presented by [9]. Work of [28] segmented

video objects by ranking spatiotemporal segment proposals with

moving objectness detector trained on image and motion fields.

In [29], tracking and segmentation were integrated to detect the

primary object proposal and handle the video segmentation task.

The main drawbacks of the proposal based algorithms are their

high computational cost [30] associated with proposal generation

and complicated object inference schemes.

2.2 Saliency Detection for Image and Video

Saliency detection [31] is originally a task of simulating the

human visual system for predicting scene locations where a human

observer may fixate. Recent research has shown that extracting

salient objects or regions is more beneficial to a wide range

of computer vision applications. Saliency detection methods in

general can be categorized as either bottom-up or top-down

approaches. Top-down approaches [32], [33], [34], [35] are goal-

directed and require an explicit understanding of the context of the

image. Supervised learning with a specific class is therefore a fre-

quently adopted principle. Most of the saliency detection methods

[36], [37] are based on bottom-up visual attention mechanisms,

which are independent of the knowledge of the content in the

image.

Inspired by visual perception studies that indicate contrast is a

major factor in visual attention mechanisms, numerous bottom-up

models have been proposed based on different mathematical for-

mulations of contrast. Many methods [32], [39], [40] assumed that

globally infrequent features are more salient, and adopted various

low level features, such as intensity, color and orientation. More

specially, in [41], a content-aware saliency detection with the con-

sideration of the contrast from both local and global perspectives

was built. [42] presented a saliency method based on the fusion

of different feature channels and local center-surround hypothesis.

In [43], two saliency indicators, global appearance contrast and

spatially compact distribution, were considered. Recently, several

approaches [44], [45], [46] exploited background information,

called boundary prior. These methods use image boundaries as

background, further enhancing saliency computation.

While image saliency detection has been extensively studied,

computing spatiotemporal saliency for videos is a relatively new

problem. Different from image saliency detection, moving objects

catch more attention of human beings than static ones, even if the

static objects have large contrast to their neighbors. In other words,

motion is the most important cue for video saliency detection,

which makes deeper exploration of the inter-frame information

crucial. Gao et al. [13] extended their image saliency model

[47] by adding the motion channel for prediction of human eye

fixations in dynamic scenes based on the center-surround hypoth-

esis. Similarly, Mahadevan et al. [14] combined center-surround

saliency with dynamic textures for spatiotemporal saliency using

the saliency model in [47]. The phase spectrum of the Fourier

transform is considered to be the key element in obtaining the

location of salient regions in [38]. In [15], Seo et al. computed the

so-called local regression kernels from the given video, measuring

the likeness of a pixel (or voxel) to its surrounding. They extended

their model for video saliency detection straightforwardly by

extracting a feature vector from each 3-D cube. Recently, [5]

used a statistical framework and local feature contrast in illu-

mination, color, and motion for formulating final saliency maps.

[48] proposed a cluster-based saliency method, where three visual

attention cues, contrast, spatial, and global correspondence, are

devised to measure the cluster saliency. [49] adopted space-time

saliency to generate a low-frame-rate video from a high-frame-rate

input using various low-level features and region-based contrast

analysis. In [50], gradient flow field is proposed for detecting

salient object regions in video sequences with global optimization.

3 SPATIOTEMPORAL SALIENCY PRIOR

Our video object segmentation method consists of two stages:

superpixel based spatiotemporal saliency prior detection and pixel

based binary labeling. Here, we explain the saliency stage first.

To achieve reliable saliency estimation, our method combines

psychophysically motivated low-level features, such as color,

edge, and motion boundary in a unified geodesic distance based

framework. Figure 2 shows intermediate stages of our video

saliency. First, input frames are partitioned into superpixels for

computational efficiency (Figure 2-b). We then extract two types

of edges: spatial edges (Figure 2-c) within the same frame, and

motion boundary edges (Figure 2-d) across neighboring frames.

These two features are explicitly integrated into a single spa-

tiotemporal edge map (Figure 2-e) as described in Section 3.1.

In Section 3.2, geodesic distance is adopted in an intra-frame

graph for computing rough object probability of each superpixel

as given Figure 2-f. To improve the saliency estimation, in Section

3.3, an inter-frame graph is incorporated with geodesic measure

for producing an initial spatiotemporal saliency map as shown in

Figure 2-g. Finally, we apply a skeleton abstraction method that

amplifies the saliency values of central skeleton regions based on

geodesic distances to incorporate weak object structure, which can

be seen in Figure 2-h and is detailed in Section 3.4.

3.1 Spatiotemporal Edge Generation

Human visual perception [51], [52] suggest that basic visual

features such as motion and edges are processed at the human

pre-attentive stage for visual attention, which motivates us to

combine spatial edge and motion boundary cues into a coalescent

spatiotemporal edge map. Both color and motion discontinuities

provide valuable evidence in predicting object boundaries. As

shown in Figure 2, spatial color discontinuities in a single frame

and optical flow field estimated from two consecutive frames

reveal the important regions of the video frames. We build our

approach on these two indicators.

Given an input video sequence {F 1, F 2, · · ·}, we compute a

spatial edge probability map Ek
c of k-th frame F k using [53]. The

value of Ek
c (x), normalized to [0, 1], represents the probability of

edge at the corresponding pixel x. The optical flow between the

pairs of subsequent frames are obtained by the large displacement

motion estimation algorithm [54]. Let V k be the optical flow field

of frame F k. We compute the motion gradient magnitude Ek
o of

V k as Ek
o (x) = ‖∇V

k(x)‖.
We oversegment each frame into superpixels using SLIC [55].

Let Yk = {yk1 , y
k
2 , · · ·} be the superpixel set of frame F k. Given

the pixel edge map Ek
c , the edge probability of superpixel ykn

is computed as the average value of the pixels within ykn. This

generates a superpixel-wise edge map Ek
c . Similarly, the optical
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Fig. 2. Overview of geodesic distance based spatiotemporal saliency prior. (a) Input frame Fk. (b) Oversegmentation of Fk into superpixels Yk.
(c) Spatial edge probability map Ek

c of Fk. (d) Gradient magnitude Ek
o of optical flow of Fk. (e) Superpixel-wise spatiotemporal edge map Ek

computed via Equation 1. (f) Object estimation result Pk via intra-frame graph. (g) Saliency result Sk via inter-frame graph. (h) Final video saliency
via the proposed skeleton abstraction method.

flow magnitude map Ek
o is re-computed on superpixel level. Then,

we generate a spatiotemporal edge map Ek as:

Ek = Ek
c · E

k
o . (1)

The intuition behind the design of Equation 1 is that, distinct mo-

tion patterns and spatial gradients are indicators of the location of

salient foreground object. This can be easily observed in Figure 2-

e, where object superpixels either have high spatiotemporal edge

map values or are surrounded by those high valued superpixels.

3.2 Intra-frame Graph Construction

To highlight the foreground regions that have high spatiotemporal

edge values or are surrounded by regions with high spatiotemporal

edge values, we employ geodesic distance to compute a rough

object probability map.

The geodesic distance dgeo(v1, v2,G) between any two nodes

v1, v2 in graph G is the smallest integral of a weight function W
over all possible paths between v1 and v2:

dgeo(v1, v2,G) = min
Cv1,v2

∫ v1

v2

|W (m) · Ċv1,v2
(m)|dm, (2)

where Cv1,v2(m) is a path connecting the nodes v1, v2.

For frame F k, we construct an undirected weighted graph

Gk = {Vk, Ek} with superpixels Yk as nodes Vk and the links

between adjacent nodes as edges Ek. Based on the graph structure,

we derive a |Vk| × |Vk| weight matrix W k, where |Vk| is the

number of nodes in Vk. The (m, n)-th element of W k indicates

the weight of edge ekmn ∈ E
k between adjacent superpixels Y k

m

and Y k
n :

W k
mn = ‖Ek(ykm)− Ek(ykn)‖, (3)

where Ek(Y k
m) and Ek(Y k

n ) correspond to the spatiotemporal

boundary probability of superpixels Y k
m and Y k

n , separately.

For superpixel ykn, the probability P k(ykn) of being foreground

is computed by the shortest geodesic distance to the image

boundaries using

P k(ykn) = min
q∈Qk

dgeo(y
k
n, q,G

k), (4)

where Qk indicate the superpixels along the four boundaries of

frame F k. The geodesic distance dgeo(v1, v2,G
k) between any

two superpixels v1, v2 ∈ V
k in graph Gk can be computed in

discrete form:

dgeo(v1, v2,G
k) = min

Cv1,v2

∑

m,n

W k
mn, m, n ∈ Cv1,v2 . (5)

which can be seen as the accumulated edge weights along their

shortest path on graph Gk.

If a superpixel is outside the desired object, its probability

value is small because there exists a pathway to image boundaries

that does not pass the regions with high spatiotemporal edge value.

Whereas, if a superpixel is inside the object, this superpixel is

surrounded by the regions with large probabilities of edges, which

increases the geodesic distance to image boundaries. Since our

graph is very sparse, the shortest paths of all superpixels are

efficiently computed by the Johnson algorithm [56].

3.3 Inter-frame Graph Construction

The foreground probability map P k reveals the foreground object

region but it is not complete and precise. In particular, probability

values of the true background regions near the object boundary

may have high values due to the oversegmentation process. Be-

sides, inaccurate optical flow estimation may result in erroneous

values. By the definition of saliency, foreground and background

regions should be visually different, and object regions should

be temporally continuous between consecutive frames. These

motivate us to estimate saliency between pairs of adjacent frames.

For each pair of adjacent frames F k and F k+1, we construct

an undirected weighted graph G′
k
= {V ′k, E ′

k
}. The nodes V ′k
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Fig. 3. Illustration of inter-frame graph construction. (a) Frame Fk. (b) Optical flow flied V k. (c) When the optical flow estimation is not accurate
(which is unfortunately the common case) object probabilities Pk are degraded. (d) Frame Fk is decomposed into background regions Bk and
object-like regions Uk by self-adaptive threshold σk defined in Equation 6. The black regions indicate the background regions Bk, while the bright
regions indicate the object-like regions Uk. (e) The decomposition of prior frame Fk−1. (f) The object-like regions Uk−1 of frame Fk−1 are projected
onto frame Fk. (g) Spatiotemporal saliency result Sk for frame Fk with consideration of (d) and (e). (h) Spatiotemporal saliency result Sk for frame
Fk with consideration of (e) and (f).

consist of the superpixels Yk of frame F k and the superpixels

Yk+1 of frame F k+1. There are two types of edges: intra-frame

edges that link spatially adjacent superpixels and inter-frame edges

that connect temporally adjacent superpixels. The superpixels

are spatially connected if they are adjacent in the same frame.

Temporally adjacent superpixels refer to the superpixels which

belong to different frames but have overlap. We assign the edge

weight as the Euclidean distance between their mean colors in the

CIE-Lab color space.

For each frame, we use a self-adaptive threshold to decompose

frame F k into background regions Bk and object-like regions Uk

through the probability map P k. The threshold σk for frame F k

is computed as

σk = µ(P k), (6)

where µ(·) is the mean probability of all pixels within the frame

F k. We assign the object-like regions Uk and the background

regions Bk of k-th frame as

Uk = {ykn|P
k(ykn) > σk}

∪ {ykn|y
k
n is temporally connected to Uk−1},

Bk = Yk − Uk.

(7)

In a causal system, previously determined object regions offer

valuable information to eliminate artifacts due to inaccurate op-

tical flow estimation. Therefore, we project object-like regions of

prior frame F k−1 onto frame F k. Our motivation can be observed

in Figure 3. The object estimation result of frame F k (Figure 3-

c) is not ideal, due to the incorrect optical flow estimation

(Figure 3-b). If F k is segmented using only the self-adaptive

threshold T k defined in Equation 7, an inferior decomposition

is generated (Figure 3-d), further leading into incorrect saliency

result (Figure 3-g). When the previous estimation is projected,

a more correct decomposition can be obtained (Figure 3-f), and

more consistent saliency can be attained (Figure 3-h).

Based on the graph G′
k

, we compute saliency map Sk (Sk+1)

for frame F k (F k+1) as follows:

Sk(ykn) = min
b∈Bk∪Bk+1

dgeo(y
k
n, b,G

′k),

Sk+1(yk+1n ) = min
b∈Bk∪Bk+1

dgeo(y
k+1
n , b,G′

k
).

(8)

The rationale behind Equation 8 is that the saliency value of a

superpixel is measured by its shortest path to background regions

in color space considering both spatial and temporal information.

We update P k and P k+1 for frame F k and F k+1 with Sk and

Sk+1, and keep iterating this process for the following two adjacent

frames F k+1 and F k+2 until the final frame.

3.4 Skeleton Abstraction

To further refine the saliency estimates above, we use a geodesic

distance based abstraction scheme that augments core regions with

higher saliency values. We decompose (Figure 4-c) frame F k into

two parts: background regions B′k and object-like regions U′k

using a threshold similar to the one in Equation 6 yet computed

by the saliency result Sk as

σ′k = µ(Sk),

U′k = {ykn|S
k(ykn) > σ′k},

B′k = Yk − U′k.

(9)

As the saliency result Sk is more accurate than P k (this is

quantitatively verified in our experiment part), we decompose

frame F k through an efficient thresholding strategy.

The skeleton region abstraction is an iterative process based

on the undirected weighted graph Gk defined in Section 3.2. The

base skeleton region should have two properties. First, this region

should be as far away from background regions B′k as possible;
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Fig. 4. Illustration of skeleton abstraction process. (a) Frame Fk. (b) Saliency results Sk of (a) obtained via Equation 8. (c) Frame Fk is decomposed
into background regions B′k (black area) and object-like regions U′k (bright area) via Equation 9. (d) The red region corresponds to the first selected
skeleton region through Equation 10. (e) The yellow regions correspond to the subsequently selected skeleton regions through Equation 11. (f) We
iteratively add skeleton regions until the number of selected skeleton regions reaches 10% of object-like regions U′k. (g) The blue regions are the
other skeleton regions that lie on the shortest geodesic path between the base and the selected skeleton regions. (h) The saliency values of the
skeleton regions are enhanced.

second, it should be close to foreground regions U′k. Based on

this conditions, the base skeleton region is selected by

Ok ←
{
argmin
o∈U′k

maxu′∈U′k dgeo(o, u
′,Gk)

minb′∈B′k dgeo(o, b′,Gk)

}
. (10)

After obtaining the base skeleton region (Figure 4-d), we select

the other skeleton regions. These regions are as far away from

background regions B′k and previous skeleton regions as possible.

This induces the skeleton regions to cover object regions that may

have different appearances. Therefore, the skeleton regions are

selected in a greedy fashion:

Ok←Ok∪
{
argmax
o∈U′k

(
min
o′∈Ok

dgeo(o, o
′,Gk)·min

b′∈B′k
dgeo(o, b

′,Gk)
)}

.

(11)

As shown in Figure 4-e, each of the subsequent skeleton re-

gions is selected to maximize its geodesic distance to background

and previously selected skeleton regions. This process continues

until a small percentage (10%) of the object-like regions U′k are

selected as skeleton. All object-like regions that lie on the shortest

geodesic path between the base and subsequently chosen skeleton

regions are also selected as skeleton regions. Finally, we increase

the saliency values of the skeleton regions (in all experiments

2×) as shown in Figure 4-h). A quantitative evaluation of the

effectiveness and improvement of each step of our saliency scheme

is presented in Section 5.4.

4 PIXEL LABELING ENERGY FUNCTION

In the second stage of our segmentation method, we perform

binary video segmentation based on the saliency results from Sec-

tion 3. Global appearance models for foreground and background

are established using our saliency prior. Dynamic location model

for each frame is estimated from motion information extracted

from subsequent frames. Finally, the spatiotemporal saliency

maps, global appearance models and dynamic location model are

combined into an energy function for binary segmentation.

We formulate the segmentation task as a pixel labeling prob-

lem. Each pixel xk
i in frame F k can take a label lki ∈ {0, 1},

where 0 corresponds to background and 1 corresponds to fore-

ground. A labeling L={lki }k,i of pixels from all frames represents

a partitioning of the entire video. Similar to other segmentation

works [7], [57], we define an energy function for labeling L of all

the pixels as

F(L) =
∑

k,i

Uk(lki ) + λ1

∑

k,i

Ak(lki ) + λ2

∑

k,i

Lk(lki )

+ λ3

∑

(i,j)∈Ns

Vk(lki , l
k
j ) + λ4

∑

(i,j)∈Nt

Wk(lki , l
k+1
j ),

(12)

where the spatial pixel neighborhood Ns consists of 8 neighboring

pixels within the same frame, the temporal pixel neighborhood Nt

consists of the forward-backward 9 neighbors in adjacent frames,

and i, j are indices of pixels. This energy function consists of

three unary terms, Uk, Ak and Lk, and two pairwise terms Vk

and Wk, which depend on the labels of spatially and temporally

neighboring pixels. The purpose of Uk is to evaluate how likely

a pixel is foreground according to the spatiotemporal saliency

maps computed in the previous step. The unary appearance term

Ak encourages labeling pixels that have similar colors according

to their global appearance models. The third unary term Lk is

for labeling pixels according to the location priors estimated

from the dynamic location models. The pairwise terms Vk and

Wk encourage spatial and temporal smoothness, respectively. All

the terms are described in detail next. The scalar parameters

λ weight the various terms, which can be set according to the

characteristic of the video content. Having described the separate

terms of the complete energy function F below, we use graph-cuts

[58] to compute the optimal binary labeling and obtain the final

segmentation (Figure 5-h).
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Fig. 5. Illustration of video segmentation. (a) Input frame Fk. (b) Video saliency map Sk. (c) The regions within the red boundaries have higher
saliency values than adaptive threshold, which are used for establishing foreground histogram model. The regions between the green boundaries
and red boundaries are for building background histogram model. (d) Global appearance models {Hf , Hb} estimated from (c). (e) Foreground

probability computed via appearance model in (d). (f) Accumulated optical flow gradient magnitude Êk yields trajectory of the object within few
subsequent frames. (g) Dynamic location prior Lk obtained via intra-frame graph described in Section 3.2. (h) Final segmentation results by
Equation 13, which consists of the saliency term (b), the appearance term (e), and the location term (g), and two pairwise terms.

Saliency term Uk: The unary saliency term Uk is based on the

saliency estimation results and penalizes assignments of pixels

with low saliency to the foreground. The term Uk has the follow-

ing form

Uk(lki ) =

{
− log(1− Sk(xk

i )) if lki = 0;

− log(Sk(xk
i )) if lki = 1.

(13)

Appearance term Ak: To model the foreground and background

appearance, two weighted color histograms Hf and Hb are

computed in RGB color space. Each color channel is uniformly

quantized into 10 bins, and there is a total of 103 bins in the

joint histogram. Each pixel contributes into these histograms Hf

and Hb according to its color values with weights Sk(x) and

1− Sk(x), respectively.

To construct the foreground (background) histogram, we only

use pixels from the superpixels spatially connected to the former

foreground (background) superpixels and have saliency values

larger (smaller) than the adaptive threshold, which is defined as the

mean value of spatiotemporal saliency map. This strategy makes

better use of the information of spatiotemporal saliency results

and minimizes adverse effects of background regions with similar

color to the foreground contaminating the foreground histogram

(Figure 5-c,e). Finally, the histograms are normalized. Denoting

c(xk
i ) as the histogram bin index of RGB color value at pixel xk

i ,

the unary appearance term Ak is defined as:

Ak(lki )=





− log(
Hb(c(x

k
i ))

Hf (c(xk
i )) +Hb(c(xk

i ))
) if lki = 0;

− log(
Hf (c(x

k
i ))

Hf (c(xk
i )) +Hb(c(xk

i ))
) if lki = 1.

(14)

Location term Lk: For the cases of cluttered scenes and back-

ground regions having similar appearance models with the fore-

ground, the object motion consistency provides a valuable prior to

locate the areas likely to contain the object. Thus, we estimate the

location of foreground object with respect to motion information

from a small number of neighboring frames.

For k-th frame, we accumulate the optical flow gradient mag-

nitudes within a temporal window of±t frames to obtain relatively

longer term motion information of the foreground regions as

Êk =
k+t∑

i=k−t

Ei
o =

k+t∑

i=k−t

‖∇V i‖. (15)

Having a larger temporal window provides some robustness to

individual pixel-wise unreliable optical estimates. However, this

may also cause Êk loses its discriminative power since motion

cue spans out on too many frames. In our experiments, we set

t = 5. We use the intra-frame graph construction described in

Section 3.1 to compute a dynamic location model for each frame

(Figure 5-f,g). Finally, we determine the location prior Lk
i for

pixel xk
i and the unary location term Lk as

Lk(lki ) =

{
− log(1− Lk(xk

i )) if lki = 0;

− log(Lk(xk
i )) if lki = 1.

(16)

Pairwise terms Vk, Wk: These terms impose label smoothness

by constraining the segmentation labels to be both spatially and

temporally consistent. They are contrast-modulated Potts poten-

tials [7], [22], [57], which favor assigning the same label to

neighboring pixels that have similar color. The spatial consistency

term Vk computed between spatially adjacent pixels xi and xj is

defined as

Vk(lki , l
k
j ) = δ(lki , l

k
j ) exp

−θ||C(xk
i )−C(xk

j )||
2

, (17)

where C(xk
i ) is the color vector of the pixel xk

i and δ(·) denotes

the Dirac delta function, which is 0 when lki 6= lkj . The constant φ
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Fig. 6. Comparison with 6 alternative saliency detection methods using SegTrack dataset [59] (top), extended SegTrack dataset [60] (middle) and
FBMS dataset [1] (bottom) with pixel-level ground-truth: (a) average precision recall curve by segmenting saliency maps using fixed thresholds, (b)
F-score, (c) average MAE.

is chosen [57] to be

θ = (2
∑

(i,j)∈Ns

||C(xk
i )− C(xk

j )||
2)−1,

(18)

to ensure the exponential term in Equation 17 switches appro-

priately between high and low contrast. Similarly, the temporal

consistency termWk is defined as

Wk(lki , l
k+1
j ) = δ(lki , l

k+1
j ) exp−θ||C(xk

i )−C(xk+1

j )||2 . (19)

5 EXPERIMENTAL EVALUATIONS

We first evaluate the effectiveness of our spatiotemporal saliency

estimation method by comparing against some state-of-the-art

saliency methods in Section 5.1. After that, we compare both

quantitatively and qualitatively our overall segmentation method

with serveral well-known video segmentation approaches (in Sec-

tion 5.2). Then we offer more detailed exploration and dissect

various parts of our approach. In Section 5.3, we assess its

computational load. In Section 5.4, we evaluate the effectiveness

of each step of the proposed framework. In our comparisons, we

use the implementations provided by the respective authors and

set their free parameters to maximize their performance.

We performed experiments on four benchmark datasets: the

SegTrack [59], the extended SegTrack [60], and Freiburg-Berkeley

Motion Segmentation Dataset (FBMS) [1]. The SegTrack dataset

contains 6 videos where full pixel-level segmentation ground-

truth for each frame is available. We follow the common protocol

[7], [8], [22] and use 5 video sequences (Birdfall, Cheetah,

Girl, Monkeydog and Parachute) for evaluations. The extended

SegTrack dataset consists of 8 additional sequences, which have

complex backgrounds and varying object motion patterns. We

select five sequences (Bird of Paradise, Frog, Monkey, Soldier

and Worm), each of which contains a single dominant object. The

FBMS dataset, containing 59 video sequences, is widely used

for video segmentation and covers various challenges such as

large foreground and background appearance variation, significant

shape deformation, and large camera motion.
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Fig. 7. Qualitative comparison against the state-of-the-art methods on the SegTrack benchmark videos [59], the extended SegTrack [60] sequences
and the famous FBMS dataset [1] with pixel-level ground-truth labels. Our saliency method renders the entire objects as salient in complex scenarios,
yielding continuous saliency maps that are most similar to the ground-truth.

5.1 Evaluation of Spatiotemporal Saliency

Since spatiotemporal saliency detection is an important step of

our video segmentation approach, we assess its performance

against the existing saliency methods. Using the original imple-

mentations obtained from the corresponding authors, we make

comparisons between 6 alternative approaches including manifold

ranking saliency model (MR) [45], saliency filter (SF) [40], self-

resemblance based saliency (SS) [15], saliency via quaternion

Fourier transform (QS) [38], cluster-based co-saliency (CS) [48],

and space-time saliency for time-mapping (TS) [49]. The former

two of these methods aim at image saliency while the latter four

are designed for video saliency.

We report results on three widely used performance measures

including precision-recall (PR) curve, F-score [39], and MAE

(mean absolute errors). Precision is the fraction of the correctly la-

beled foreground pixels among the all pixels labeled as foreground

by the algorithm, while recall is the fraction of correctly labeled

foreground pixels among the ground-truth foreground pixels. We

generate binary saliency maps from each method and plot the

corresponding PR curves by varying the operating point threshold.

In general, a high recall response may come at the expense

of reduced precision, and vice versa. Therefore, we also estimate

F-score for evaluating precision and recall simultaneously. F-score

evaluates precision and recall is defined as

F-score =
(1 + β2)× precision× recall

β2 × precision + recall
, (20)

where we set β2 to 0.3 to assign a higher importance to precision

as suggested in [39].

For a complete analysis, we follow [40] to evaluate the mean

absolute error (MAE) between a real-valued saliency map S and

a binary ground-truth G for all image pixels:

MAE =
|S− G|

N
, (21)

where N is the number of pixels. The MAE estimates the approx-

imation degree between the saliency map and the ground-truth

map, and it is normalized to [0, 1]. The MAE provides a better

estimate of conformity between estimated and ground-truth maps.

The precision-recall curves of all methods are reported in

Figure 6-a. As shown, our method significantly outperforms the

state-of-the-art. The minimum recall value in these curves can also

be regarded as an indicator of robustness. A high precision score

at the minimum recall value means a good separation between the

foreground and background confidence values, as most of the high

confidence saliency values (close to 1) are correctly estimated the

foreground object. As can be seen, when the threshold is close

to 255, the recall scores of other saliency models become very

small, and the recall scores of SS [15] and QS [38] shrinks to

0. This is a result of those saliency maps do not correspond to

the ground-truth objects. To our advantage, the minimum recall of

the our method does not drop to 0. This demonstrates our saliency

maps align better with the correct objects. In addition, our saliency

method achieves the best precision rates above 0.9, which shows

it is more precise and responsive to the actual salient information.

Similar conclusions can be drawn from the F-score, as shown in

Figure 6-b. Our F-score is well above the performance of other

methods. The MAE results are presented in Figure 6-c. As shown,

our saliency maps successfully reduce the MAE almost by 75%

compared to the second best method (which is SF [40]).

Figure 7 shows a qualitative comparison of different methods,

where brighter pixels indicate higher saliency probabilities. It is

observed that image saliency methods (MR [45], SF [40]) applied

independently to each frame produce unstable outputs, some
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Fig. 8. Our segmentation results on SegTrack [59] (Cheetah), extended SegTrack dataset [60] (Monkey ), and FBMS [1] (Horse) with pixel-level
ground-truth masks. The pixels within the green boundaries are segmented as foreground.

TABLE 1
APFPER results on SegTrack dataset [59] compared to the ground-truth. Lower values are better. The best and the second best results are

boldfaced and underlined, respectively.

video frames
unsupervised supervised

Ours [1] [7] [8] [9] [23] [22] [27] [60] [61] [59] [62]

SegTrack

Birdfall 30 140 217 288 468 155 606 189 144 199 468 252 454
Cheetah 29 622 890 905 1175 633 11210 806 617 599 1968 1142 1217

Girl 21 991 3859 1785 5683 1488 26409 1698 1195 1164 7595 1304 1755
Monkeydog 71 350 284 521 1434 365 12662 472 354 322 1434 563 683
Parachute 51 195 855 201 1595 220 40251 221 200 242 1113 235 502

Avg. - 459 1221 740 2071 572 18228 677 502 505 2516 699 922

saliency maps even completely miss the foreground object, mainly

because temporal coherence in video can convey important infor-

mation for identifying salient objects. In contrast, video saliency

methods SS [15], QS [38], CS [48], and TS [49] perform relatively

better as they utilize motion information. However, saliency maps

from previous video saliency models are often generated in lower

pixel precision and tend to assign lower foreground probabilities

to pixels inside the salient objects. This is due to the fact that

optical flow estimations are unreliable.

Based on above, we draw two important conclusions: (1) mo-

tion information gives effective guidance for detecting foreground

object; (2) making methods rely heavily on motion information

is not the optimal choice. Comprehensive utilization of various

features in spatial and temporal space (color, edges, motion, etc.)

produces more satisfactory segmentation results. Our model is

able to estimate more accurate saliency maps within and on

the boundaries of the target objects in cluttered backgrounds.

In addition, the assigned saliency values have higher confidence

values, which also reflects in the quantitative analysis.

5.2 Evaluation of Pixel Labeling

Our framework produces both spatially and temporally coherent

video object segmentation results in a fully unsupervised way. We

use the average per-frame pixel error rate (APFPER) introduced by

[59] for evaluating the performance on the SegTrack dataset. This

error rate measures the number of misclassified pixels and used

in [8], [9], [22]. As discussed in [60], the intersection-over-union

overlap (IoU) metric, which is the intersection over union of the
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TABLE 2
IoU scores on SegTrack dataset [59] and extended SegTrack dataset [60] compared to the ground-truth. Higher values are better. The best and the

second best results are boldfaced and underlined, respectively.

video frames
unsupervised supervised

Ours [7] [9] [22] [29] [27] [25] [63] [64] [65] [66]

SegTrack

Birdfall 30 74.5 48.7 71.4 37.4 72.5 73.2 57.4 78.7 57.4 56.0 32.5
Cheetah 29 64.3 43.4 58.8 40.9 61.2 64.2 24.4 66.1 33.8 46.1 33.1

Girl 21 88.7 77.5 81.9 71.2 86.4 86.7 31.9 84.6 87.9 53.6 52.4
Monkeydog 71 78.0 64.3 74.2 73.6 74.0 76.1 68.3 82.2 54.4 61.0 22.1
Parachute 51 94.8 94.3 93.9 88.1 95.9 94.6 69.1 94.4 94.5 85.6 69.9

Bird of Paradise 98 94.5 22.3 35.2 85.4 90.0 93.9 86.8 93.0 95.2 5.1 44.3
Frog 279 83.3 71.0 76.3 69.4 80.2 81.5 67.1 56.3 81.4 14.5 45.2

Extended Monkey 31 84.1 38.6 61.4 69.6 83.1 63.9 61.9 86.0 88.6 73.1 61.7
SegTrack Soldier 32 79.2 10.0 51.4 47.4 76.3 36.8 66.5 81.1 86.4 70.7 43.0

Worm 243 74.8 40.5 53.9 73.0 82.4 61.7 34.7 79.3 89.6 36.8 27.4

Avg. - 81.6 51.1 65.8 65.6 80.2 73.3 56.8 80.1 76.9 50.2 43.1

TABLE 3
IoU scores on a representative subset of the FBMS dataset [1], and the

average computed over the 59 video sequences. Higher values are
better. The best and the second best results are boldfaced and

underlined, respectively.

video Ours [7] [9] [22]

FBMS

Bear2 70.1 87.5 21.0 86.8
Cars5 38.5 10.7 38.7 17.4
Cars9 60.0 19.5 28.9 52.4
Cars10 55.9 65.7 74.9 79.0

Cats1 85.7 19.8 81.5 83.1
Dogs2 91.7 90.8 83.7 86.3

Horses1 89.4 77.6 83.5 77.5
Horses2 92.7 13.5 86.7 91.5
People1 68.1 56.0 64.8 53.3
People2 68.3 47.1 56.5 48.0
People4 86.4 82.1 83.8 79.4
People5 56.4 10.7 84.4 51.8
Rabbits1 90.8 92.4 91.6 92.9

Rabbits2 71.0 20.4 47.8 28.3
Rabbits5 88.1 55.1 84.7 90.1

Avg. 63.3 52.3 54.3 47.7

estimated and ground-truth segmentation maps, is an informative

indicator of the performance. This metric is also widely used for

evaluating the segmentation performance. Therefore, we report our

performance on the IoU metric for the SegTrack [59], extended

SegTrack [60], and FBMS [1] by computing the score for each

frame and then averaging it over all frames.

The APFPER results of ours and [1], [7], [8], [9], [23], [22],

[27], [60], [61], [59], [62] on the SegTrack are shown in Table 1.

The segmentation methods in [1], [7], [8], [9], [23], [22], [27],

[60], [61] and our method are unsupervised, while other methods

in [59], [62] are supervised. As seen, our method outputs promis-

ing results on most video sequences, compared with existing top-

performing unsupervised algorithms. Furthermore, our algorithm

is better or on a par with the supervised approaches [59], [62],

which indicates the robustness of the proposed approach.

Table 2 presents the IoU scores of our method and [7], [9],

[22], [29], [27], [25], [63], [64], [65], [66] on the SegTrack and the

extended SegTrack. Our approach outperforms the state-of-the-art

most videos and achieves the highest overall IoU score (81.6). The

IoU scores for representative sequences of the FBMS dataset and

the average performance over the entire dataset are demonstrated

in Table 3. The proposed method achieves the best score on

most of the videos and performs comparably or better than other

concurrent approaches. Representative pixel labeling results are

Fig. 9. Computational load of our method and the state-of-the-art for
320×240 video. (a) Execution time of video saliency estimation stage
compared against other video saliency methods [15], [38], [48], [49]. (b)
Execution time of overall method compared against other video seg-
mentation methods [7], [9], [22]. (c) Execution time of each intermediate
steps. Step1 and Step2 are saliency estimations via intra-frame graph
and inter-frame graph, respectively. Step3 is the final saliency step.

shown in Figure 8. We can observed that target foregrounds in

various scenarios can be segmented accurately by our algorithm.

In contrast, existing approaches [7], [9], [22] either mislabel

background pixels as foreground or miss foreground pixels.

5.3 Computational Load

Our method is tested on a Dell T5610 workstation with an

Intel Xeon E5 CPU of 2.50 GHz with unoptimized MATLAB

implementation. We analyze the computational load of the steps

in the proposed pipeline. We also include 4 video saliency methods

[15], [38], [48], [49] and 3 video segmentation methods [7], [9],

[22] for providing a comprehensive view of execution times of

existing approaches.

The execution times are presented in Figure 9 (excluding

optical flow computations for all algorithms). Figure 9-a shows the

execution time comparisons of our and other saliency methods. It
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Fig. 10. Assessment of individual steps of our saliency estimation by
(a) precision-recall curves, and (b) MAE scores. Step1 and Step2 refer
to saliency via intra-frame and inter-frame graphs, respectively. Step3
is the skeleton abstraction. Top: evaluation results on the extended
SegTrack [60]. Bottom: evaluation results on the FBMS [1].

is clear that our saliency method is one of the fastest solutions

and only slower than the frequency domain based method [38].

Figure 9-b reports the per-frame processing times of the overall

segmentation procedures. All solutions use the optical flow esti-

mation method of [54]. Our method (3.5 seconds per frame) is

much faster than [7], [9] but only slower than [22].

The object proposal based segmentation methods of [7], [9]

require computationally expensive and complex object proposal

generation and inference stage [10] costing 43.5 seconds addi-

tional time per frame. Clearly, running time efficiency is the

major bottleneck for the usability of those video segmentation

algorithms, as a substantial amount of time is spent preprocessing

image frames to generate object proposals.

The execution time of each part of our whole scheme is shown

in Figure 9-c. The whole segmentation pipeline takes about 3.5

seconds for each frame, where over 60% of the runtime is spent

on the edge generation [53]. Saliency detection takes a total of

1.2 seconds: 0.38 seconds for computing the saliency via intra-

frame graph (Step1), 0.59 seconds for improving saliency results

via inter-frame graph (Step2), and 0.23 seconds for generating

final saliency via abstracting skeleton regions (Step3).

5.4 Validation of the Proposed Algorithm

To exhibit more details of our algorithm and objectively evaluate

the contribution of different parts in the proposed saliency model

to the saliency detection performance, we report the evaluation

of each stage of our algorithm on the extended SegTrack [60]

and the FBMS [1] datasets. We report the performance improve-

ment of each step in Figure 10. Step1 and Step2 refer to the

initial saliency via the intra-frame graph (Section 3.2) and the

refined saliency via the inter-frame graph (Section 3.3). Step3
corresponds to our final saliency results (Section 3.4). As shown,

compared to the PR curve for initial saliency map Step1, the

performance of the refined saliency Step2 is elevated and final

saliency estimates Step3 achieve the best performance. This

demonstrates the contribution of our saliency refinement via inter-

frame graph and object skeleton abstraction scheme based saliency

optimization for improving the saliency detection performance.

The results for the MAE measure show similar conclusions. Over-

all, the performance of each step improves progressively, which

demonstrates that the combination of all steps is effective for

improving the overall performance. Some qualitative comparison

results can be observed in Figure 2.

6 CONCLUSION

We have presented an unsupervised approach that incorporates

geodesic distance into saliency-aware video object segmentation.

As opposed to the traditional video segmentation methods that

heavily rely on cumbersome object inference and motion analysis,

our method emphasizes the importance of video saliency, which

offers strong and reliable cues for pixel labeling of foreground

video objects.

The proposed method incorporates intra-graph edge and inter-

graph motion boundary information into a spatiotemporal edge

map. It uses the geodesic distance on these graphs to measure

the saliency score of each superpixel. In intra-frame graph, the

geodesic distance between the superpixel and frame boundary is

exploited to estimate the foreground probability. In inter-frame

graph, geodesic distance to the estimated background is utilized to

update the spatiotemporal saliency map for each pair of adjacent

frames. The geodesic distance is also employed to extract the base

and supporting foreground superpixels in the skeleton abstraction

step to further enhance the saliency scores. In the pixel labeling

stage, an energy function that combines global appearance models,

dynamic location models and spatiotemporal saliency maps is

defined and efficiently minimized via graph-cuts to obtain the final

segmentation results.

We have evaluated our methods on four benchmarks, namely

SegTrack [59], extended SegTrack [60], and FBMS [1]. The exten-

sive experimental evaluations show that our approach can generate

high quality saliency maps in relatively short time and achieve

consistently higher performance scores than many other existing

methods. Comparing with other video segmentation methods, our

approach generates both quantitatively and qualitatively superior

segmentation results.
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