
 

Abstract— The segmentation of skin lesions in dermoscopic 

images is a fundamental step in automated computer-aided 

diagnosis (CAD) of melanoma. Conventional segmentation 

methods, however, have difficulties when the lesion borders are 

indistinct and when contrast between the lesion and the 

surrounding skin is low. They also perform poorly when there is a 

heterogeneous background or a lesion that touches the image 

boundaries; this then results in under- and over-segmentation of 

the skin lesion.  We suggest that saliency detection using the 

reconstruction errors derived from a sparse representation model 

coupled with a novel background detection can more accurately 

discriminate the lesion from surrounding regions. We further 

propose a Bayesian framework that better delineates the shape 

and boundaries of the lesion. We also evaluated our approach on 

two public datasets comprising 1100 dermoscopic images and 

compared it to other conventional and state-of-the-art 

unsupervised (i.e. no training required) lesion segmentation 

methods, as well as the state-of-the-art unsupervised saliency 

detection methods. Our results show that our approach is more 

accurate and robust in segmenting lesions compared to other 

methods. We also discuss the general extension of our framework 

as a saliency optimisation algorithm for lesion segmentation.  

 
Index Terms— Dermoscopic Image, Lesion Segmentation, 

Saliency Detection, Computer-aided diagnosis 

I. INTRODUCTION 

Malignant melanoma is a skin disease that has a significant 

morbidity and mortality worldwide [1]. Malignant melanoma 

can be cured, however, by simple lesion excision if diagnosed 

at an early stage. Dermoscopy is a non-invasive image 

diagnosis technique for the in vivo observation of pigmented 

skin lesions in dermatology [2]. This technique allows 

dermatologists to detect early stage melanoma that are not 

visible to the human eye. Manual visual interpretation by 

dermatologists, however, can be time consuming, subjective 

and non-reproducible [3]. Well-trained dermatologists show 
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inter-observer variability and produce different analyses when 

delineating the same skin lesion [4]. Therefore, an accurate and 

automatic detection of melanoma from dermoscopic images 

has been of great interest in computer aided diagnosis (CAD) 

systems. Automatic lesion segmentation is a fundamental 

requirement for melanoma CAD as its accuracy determines the 

overall analysis of skin lesion including disease classification 

and quantification. Automated skin lesion segmentation, 

however, is challenging due to variations in lesion size, shape, 

fuzzy boundaries and different skin colours. Complicated 

background regions (e.g. heterogeneous background [5] or 

lesion touching image boundaries) in dermoscopic images also 

make it difficult to identify the lesions and separate them from 

surrounding regions. Artifacts such as hair, specular reflections 

and colour calibration charts are additional obstacles that lower 

the accuracy of the segmentation. 

A number of different algorithms have been proposed to 

effectively segment lesion regions from background skin. The 

most common and simple automatic segmentation methods are 

based on histogram thresholding [6-12], which creates a 

histogram using RGB channels, luminance or principal 

component analysis. Silveira et al. [6] proposed an adaptive 

thresholding (AT) method to segment lesions by comparing the 

colour of each pixel with a threshold and classified it as a lesion 

if it is darker than the threshold. It used image entropy to select 

the best channel from RGB to facilitate the discrimination; the 

threshold was then automatically determined as the local 

minimum between the maxima, plus a small offset to account 

for quantization issues. While thresholding methods are easily 

adopted because of their simplicity, they are limited by the 

luminance distribution and may fail if there are multiple peaks 

in the luminance histogram. 

Deformable models, such as active contours, have also been 

used [6, 13-17]. The key concept with these methods is to 

minimize the internal forces defined within the curve and 

external (image-based) energies to find an optimum boundary 

of the skin lesion. A major drawback is the reliance on the 

optimal selection of the segmentation parameters and 

deformable models also often require an ineffective stopping 

criterion that generates unnecessary computations. Ma et al. 

[13] proposed a new deformable model (NDM) approach to 

address these limitations. In their work, the CIE L*a*b* and 

L*u*v* colour models were applied to effectively differentiate 

normal skin to the lesion. The differences in the colour channels 

were combined together to define the stopping criterion [13]. 

However, this work was not fully automated and its 

performance varied widely depending on the initial parameter 

estimation [11] and morphological post-processing [6, 18]. 
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Region based segmentation is another well-known approach 

for dermoscopic images [6, 18, 19]. These techniques divide an 

image into different regions based on pre-defined unique 

features such as colour, intensity, objects or wavelets. For 

example, Celebi et al. [20] expanded the region growing with a 

statistical region merging (SRM) [21], which treated an input as 

an observed instance of an unknown theoretical image and 

reconstructed the input image based on statistical colour 

distribution of lesion regions. Silveira  et al. [6] used a 

Chan-based level set segmentation algorithm (C-LS) [22] with 

the traditional active contour model (using mean curvature 

motion techniques), and the Mumford-Shah model. Sadri et al. 

[23] proposed a fixed-grid wavelet network approach. Here, the 

RGB channels of the images were considered as the input 

wavelets and an orthogonal least squares algorithm was used to 

compute network weights and optimize the network structure. 

Bi et al. [24] recently proposed a cellular automata (CA) based 

approach for lesion segmentation. They used image-wise 

learning technique to derive a probabilistic map for automated 

seed selection. In our prior work, we proposed a saliency based 

method through measuring sparse reconstruction errors from 

skin lesions against a background template of a set of regions 

located at the image boundaries [25]. Although the 

reconstruction error improved the lesion segmentation, it 

assumed that the lesions were located at the centre of the image 

and subsequently used image boundaries to separate the lesions 

from background normal skin regions. However, this approach 

could not localise lesions at the image boundaries. Apart from 

the new and widely studied approaches above, several other 

related methods have previously been compared and evaluated 

and they can be found in the references below [6, 26]. 

Recently, supervised learning approaches such as 

convolutional neural networks (CNNs) have been used for 

lesion segmentation in dermoscopic images. These methods 

produced good results in a challenge held in International 

Symposium on Biomedical Imaging (ISBI) 2016 [27]. CNNs 

are deep neural networks that require extensive learning and 

make a prediction at every pixel; each deeper layer or the 

network learns a semantically ‘higher’ level representation of 

the image data [28]. The successful learning-based algorithms 

such as CNNs require a very large number of parameters and 

thus needs a large volume of labelled training images, e.g. 1.2 

million images for ImageNet (general image). Data acquisition, 

however, in medical domain is difficult and quality annotation 

is time consuming due to the complexity of manual annotation 

and subjectivity among clinicians [29].   

To address these limitations, we suggest a robust 

saliency-based skin lesion segmentation (RSSLS) framework, 

that uses reconstruction errors from a sparse representation 

model coupled with novel background detection. Saliency 

detection models identify visually salient regions or objects in 

an image by simulating the human visual and cognitive systems 

[30]. Saliency models have been applied to many computer 

vision applications including image segmentation and 

object-based image retrieval [30-32]. These studies underline 

that salient regions are visually more distinctive by virtue of 

their contrast. Hence, we hypothesize that the subtle contrast 

discrimination of the lesion from surrounding regions can be 

overcome via saliency detection. Unlike supervised learning 

algorithms, our RSSLS is an unsupervised approach which 

does not require any training. Instead, it makes use of robust 

image processing techniques to leverage the colour, spatial 

location, and structural cues, which are known to have a strong 

impact on visual attention [33]. 

In this work we present a major extension of our previous 

preliminary data where we first used saliency for lesion 

segmentation in dermoscopic images [25]. We now introduce: 

1) A method to detect the background by analysing the spatial 

layout of the image regions, the boundaries and the inherent 

colour characteristics of dermoscopic images (see Fig 1). This 

allows better separation of the lesion from the background, in 

particular, for when the skin lesions touch the image 

boundaries. 2) A Bayesian framework to detect lesion 

boundaries more accurately and efficiently by refining the 

reconstruction error of each pixel by its similarities to pixels of 

lesion regions as well as its difference from those in the 

background regions using a colour histogram. 3) The results 

from a comprehensive evaluation of our approach compared to 

‘state-of-the-art’ algorithms on a large test dataset.  

A. Saliency Detection from Dermoscopic Images 

Research from many cognitive neuroscientists has shown 

that the human visual system easily detects distinctive, or 

salient regions, in the visual fields [31-36]. These findings have 

now been recently applied to computer vision to find objects or 

regions that help to understand and represent an image. Itti et al. 

reported on one of the earliest saliency detection models using 

psychological theories of bottom-up attention based on 

centre-surround mechanisms [31]. Cheng et al. proposed a 

global histogram-based contrast (HC) algorithm [34] that used 

a pixel-wise colour separation, to detect salient regions and 

region-based contrast (RC) [35] algorithm. The RC algorithm 

improved on the HC by taking spatial distances into account at 

the cost of reduced computational efficiency. Yan et al. 

reported on a hierarchical model to analyse salient regions from 

multiple levels of structure [36]. These studies underlined that 

salient regions are more likely to be located centrally and are 

more conspicuous due to their contrast. Centre-surround 

contrast is problematic when a salient region is located at the 

image boundary and when a foreground region is globally 

compared to the rest of the image. 

Some recent approaches use a background prior, rather than 

centre-surround contrast, to improve saliency detection and 

they have recorded impressive results [37-40]. Yang et al. used 

a graph-based manifold ranking (MR) that exploited the four 

boundaries of the input image as background queries to obtain 

background seeds, and then used the derived seeds to extract a 

foreground saliency map [37]. Jiang et al. formulated the 

saliency detection via absorbing Markov Chain where 

 

  
(a) General Case (b) Extreme Case 

Fig 1. Examples of skin lesions from dermoscopic images. (a) is a  general case 

with the lesion entirely within the image and (b) is an extreme case when the 
lesion has multiple contacts with the image boundary. 
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boundary nodes are chosen as the absorbing nodes in a Markov 

chain [40]. Unlike the centre-surround approaches, the 

background prior method measures the local optimal saliency. 

The skin lesions in dermoscopic images are more 

conspicuous, by colour and contrast, when compared to 

surrounding regions. This relates to the unique contrast 

between the lightness and saturation of skin lesions and normal 

surrounding tissue [13]. In dermoscopy skin lesions are often 

connected to the image boundary and fill the entire image (Fig 

1b). Hence our hypothesis is that skin lesions can be detected 

from the surrounding regions using saliency detection by 

incorporating background detection coupled with inherent 

colour characteristics in the images.   

II. METHOD 

A. Overview of a Robust Saliency-based Skin Lesion 

Segmentation (RSSLS) Framework 

Fig 2 is an overview of our RSSLS framework. Initially, 

hairs on the images are removed as a pre-processing step. A 

superpixel algorithm [41] partitions the image into a number of 

segments. A background template is then created by measuring 

the boundary connectivity of each image segment [39]. The 

images are reconstructed by measuring the sparse 

reconstruction errors against the background template as an 

indication of saliency. Context-based error propagation is then 

applied to smooth the reconstruction error. A pixel level 

saliency map is created by integrating multi-scale 

reconstruction errors, followed by refinement with a Bayesian 

framework. 

B. Hair Removal 

Visual artifacts degrade the performance of segmentation 

methods, e.g., skin hair may occlude parts of the lesion. We 

adopted the algorithm of Lee et al. [42] to remove visible hair 

from the images. This algorithm first identifies dark hair by 

applying a generalized gray-scale morphological closing 

operation with three structure elements at different directions. 

The low intensity values, the thick dark hair pixels, are located. 

The hair pixels are replaced by the nearby non-hair pixels and 

the final result is smoothed. 

C. Boundary Connectivity 

Our assessment is that skin lesions in the images can be 

divided into general and extreme cases based on the specific 

image conditions and spatial layout between the lesions and 

background (i.e. surrounding regions) (Fig 1). We define 

‘general’ cases when the skin lesion has a general uniform color 

and is located at the image centre and not connected to the 

boundary (Fig 1a). We define ‘extreme’ cases as those where 

the lesion is connected to image boundaries, on at least two 

sides or 50% of one side of the lesion connected to the image 

boundary (Figure 1b). While the image boundaries can be used 

as good visual cues to separate general from the background it 

is inappropriate to simply treat all image boundaries as the 

background for the extreme cases. To address this problem, we 

propose a method that quantifies the boundary connectivity 

(BC) of an image region (i.e. area), according to [39]: 

 

 𝐵𝐶(𝐴) =
|{X|X ∈ 𝐴,   X ∈ 𝐵𝑛𝑑𝑆 }|

√|{X|X  ∈ 𝐴}|
  , 

 
 (1) 

where X is an image segment and 𝐵𝑛𝑑𝑆 (Boundary Segments) 

is the set of image segments located at the image boundary 

within image area (𝐴) (i.e. set of segments with same colour 

features). The Eq.1 explains the conceptual definition of 

boundary connectivity which quantifies the extent that an area 

(A) is connected to image boundary. 

D. Background Detection 

We used the simple linear iterative clustering (SLIC) [41] 

algorithm to partition the image into 𝑁  segments ( 𝐗 =
[X1 , X2, … , X𝑁] ) where 𝑁  is the total number of image 

segments. This helps to capture structural information that is 

difficult to be seen from the pixel-level features. SLIC is 

computationally efficient and accurate [41]. The input image is 

partitioned into segments with different sizes of 𝑁 to create 

multi-scale background templates.  

An undirected graph was constructed by connecting all 

adjacent segments (X, Y)  with their Euclidean distance 

 𝑑𝑒(X, Y) values computed by average colour differences in the 

CIELAB colour space. The geodesic distance between any two 

segments 𝑑𝑔(X, Y) was obtained as the sum of node  𝑑𝑒  values 

along their shortest path on the graph. This can be achieved by 

solving following minimization problem: 

 

                     𝑑𝑔(X, Y) =  min
X1= X, X2⋯X𝑁= Y   

∑ 𝑑𝑒(X𝑖 , X𝑖+1)𝑁−1
𝑖=1   (2) 

When X and X𝑖  share the same color features located in same 

 
 

Fig 2. Overview of our RSSLS method. 
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TABLE I. The average sparse reconstruction errors of segments for lesion and 
background regions. 

Mean/Total Number 

of Segments 
50 100 150 

Background Regions 1.84 ∗ 10−16 2.84 ∗ 10−16 2.04 ∗ 10−16 

Skin Lesion 0.6195 0.5708 0.4645 

 

region (i.e. 𝑑𝑒(X, X𝑖) = 0, set of segments), we can assume that 

𝑑𝑔(X, X𝑖) = 0. The soft spanning area of each segment X can be 

then defined as: 

 

 
 𝐴𝑟𝑒𝑎(X) = ∑ exp (−

𝑑𝑔
2(X, X𝑖)

2𝜎𝑐𝑙𝑟
2 )𝑁

𝑖=1 = ∑ 𝑆(X,  X𝑖)𝑁
𝑖=1    (3) 

 

This equation quantifies the contribution of the segments X𝑖  to 

X’s area. For example, when X and  X𝑖  are located in the same 

region with same color features,  𝑑𝑔(X, X𝑖) = 0 and 𝑆(X,  X𝑖) = 

1, ensuring that   X𝑖  adds a unit area to the area of  X. However, 

when  X𝑖  and X  are in different regions with different color 

features, there is always at least one distinct node with 

𝑑𝑒(X, X𝑖) ≫ 3𝜎𝑐𝑙𝑟  on their shortest path and 𝑆(X,  X𝑖) ≈ 0 , 

ensuring that  X𝑖  does not contribute to X’s area [39]. 𝜎𝑐𝑙𝑟  is a 

Gaussian kernel parameter. Similarly, the boundary 

connectivity of segments located at the boundaries from area of 

X can be computed as: 

 

 LenBndS(X) =  ∑ 𝑆(X,  X𝑖) ∗ 𝛿(X𝑖 ∈ 𝐵𝑛𝑑𝑆)𝑁
𝑖=1  ,  (4) 

 

where 𝛿  is 1 for segments on the image boundary and 0 

otherwise. Final boundary connectivity of each segment is 

calculated as (below equation is the actual calculation of the 

concept introduced in Eq. 1): 

 

      𝐵𝐶(X) =
𝐿𝑒𝑛𝐵𝑛𝑑𝑆(X)

√𝐴𝑟𝑒𝑎(X)
    (5) 

 

To make image segment resolution-invariant, the square root of 

the area was used for the computation. 

E. Background Template Creation 

Optimal segments representing background regions (i.e. 

normal skin area) were selected to create a background 

template using the boundary connectivity and lightness L* from 

CIELAB. We used the K-means algorithm to group segments 

into several clusters (𝐾1). Segments belonging to a cluster 

whose boundary connectivity and lightness were the largest 

amongst other clusters, were then considered as the optimal 

segments. We computed the average value of the boundary 

connectivity and lightness of segments in each cluster and 

sorted the clusters according to these values. We defined the 

largest cluster as the one with the highest average of boundary 

connectivity and lightness. Optimal segments from the cluster 

were extracted to construct the background template B = 

[𝐛𝟏, 𝐛𝟐,∙∙∙, 𝐛𝑀], where 𝑀 is the number of segments that belong 

to the cluster. This template was used as the basis (i.e. 

dictionary) for the sparse representation model in the following 

step. Several background templates were then extracted at 

various scales (different sizes of segments) to understand and 

learn the structural information represented by each scale.  

An entire image can be then represented as 𝐗 = [𝐁 𝐋], where 

𝐋 = [𝐿1, 𝐿2, … , 𝐿𝑁−𝑀] represents lesion segments. A regional 

mean feature consisting of CIELAB colour spaces, RGB colour 

values, and spatial location defined by [L, a, b, R, G, B, x, y], 

were used to represent each of all segments. This regional mean 

feature has proven value in saliency detection and dermoscopic 

image segmentation [13, 43]. Lab and RGB colour features also 

generate more accurate saliency maps [43]. The lightness 

component L* provides an advantage for skin lesion 

segmentation (e.g. detecting background segments) as the 

perceptual difference between colours and contrast is often 

affected by lightness variations [13]. 

F. Saliency Measure via Sparse Reconstruction Error 

The sparse representation model is used widely in computer 

vision and has proven effectiveness in representing, acquiring, 

and compressing high-dimensional signals [44]. This is 

attributed to the characteristics of image signals, which have 

generally sparse representation in regards to fixed bases (i.e. 

Fourier). Hence, a number of researchers have successfully 

applied the sparse representation model to a number of 

applications including medical image segmentation [45, 46], 

face recognition [47], image super-resolution [48] and image 

classification [49, 50]. 

For our application, sparse reconstruction errors were used to 

measure the probability of where the segment belongs. 

Basically, a segment with a larger reconstruction error against 

the background template is likely to be classified as a lesion. 

The sparse reconstruction error was computed as the 

residual-based on the sparse representation of the background 

templates B. The segment 𝐗𝑖  is encoded as follows: 

 

𝛼�̂� = argmin
𝛼𝑖

‖𝐗𝑖 − 𝐁α𝑖‖2
2 + ⋋ ‖𝛼𝑖‖1  ,           (6) 

where 𝛼�̂�is the sparse representation coefficient. This problem 

is equivalent to a Lasso linear regression problem. Using Lasso, 

the sparse reconstruction error = 휀𝑖 is then computed as:  

 

휀𝑖 = ‖𝐗𝑖 − 𝐁α𝑖‖2
2 ,                      (7) 

 

where ⋋ is a regularization parameter which controls sparsity 

of α. For example, the average sparse reconstruction errors of 

segments representing skin lesions and background regions in 

Fig 2 are shown in Table I. It shows that the segments 

representing lesions consistently have larger sparse 

reconstruction errors compared with those in background 

regions. 

G. Context-based Error Propagation 

We propose a context-based error propagation method to 

smooth the sparse reconstruction errors by considering other 

nearby segments. This allows each segment within a lesion to 

be evenly emphasized (See Fig 2). We used the K-means 

algorithm to cluster all the segments from the image into the K 

clusters (𝐾2). The new reconstruction error of 휀�̃� was estimated 

by proportionally combining the weighted averaging error of 

all other segments in the same cluster, and the initial sparse 
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Fig 3. Segmentation results from four study examples (top two – general cases and bottom two – extreme cases), where (a) – (f) represent  the original image 

in column 1, ground truth in column 2 and the segmentation results from column 3 to column 7 for AT, C-LS, SRG, SSLS, CA and RSSLS methods. 

reconstruction error of 휀𝑖 at segment 𝑖. This can be defined as: 

 

휀�̃� = τ ∑ 𝑤𝑖𝑘𝑗
휀�̃�𝑗

𝑁𝑐
𝑗=1 +  (1 − 𝜏)휀𝑖 ,                (8) 

 

where [𝑘1, 𝑘2, 𝑘3, ⋯ , 𝑘𝑁𝑐
]  indicate the 𝑁𝑐  segment labels in 

cluster k and 𝜏  is a weight parameter. The weight of each 

segment 𝑖  was then estimated by its normalized similarity 

according to: 

𝑤𝑖𝑘𝑗
=

exp(−
‖𝐗𝑖−𝐗𝑘𝑗

‖
2

2σX
2 )(1−δ(𝑘𝑗− 𝑖))

∑ exp(−
‖𝑿𝑖−𝑿𝑘𝑗

‖
2

2𝜎𝑿
2 )

𝑁𝑐
𝑗=1

  ,              (9) 

 

where the  𝜎𝑿
2 denotes the sum of the variance in each of X and 

δ(𝑘𝑗 −  𝑖) is the indicator function. 

H. Pixel-Level Sparse Reconstruction Error Creation 

Instead of using the segment as a whole, pixel level sparse 

reconstruction errors are calculated by integrating results from 

multi-scale (i.e. 𝑁𝑠  different sizes of segments) sparse 

reconstruction errors. This increases the detail of the boundary 

since the segments may not be optimally ‘cut’ for the 

boundaries. The pixel-level sparse reconstruction error of 𝐸(𝑧) 

is computed as: 

 

𝐸(𝑧) =  
∑ 𝜔

𝑧𝑛(𝑠)�̃�
𝑛(𝑠)

𝑁𝑠
𝑠=1

∑ 𝜔
𝑧𝑛(𝑠)

𝑁𝑠
𝑠=1

 ,                       (10) 

𝜔𝑧𝑛(𝑠) =  
1

‖𝑓𝑧−𝐗
𝑛(𝑠)‖

2

 ,                       (11) 

 

where, 𝑛(𝑠) indicates the label of the segment containing pixel z 

scale s and 𝑓𝑧 denotes the features of pixel z and we used the 

same feature space as mentioned in Section II.E. 

I.  Saliency Map Creation via Bayesian Framework 

We used a Bayesian model to create the final saliency map. 

The Bayes formula is used to measure the saliency value of 

each pixel by the posterior probability [51, 52]: 

 

𝑝(𝐿|𝑓(𝑧)) =  
𝑝(𝐿)𝑝(𝑓(𝑧)|𝐿)

𝑝(𝐿)𝑝(𝑓(𝑧)|𝐿)+(1−𝑝(𝐿))𝑝(𝑓(𝑧)|𝐵)
 ,             (12) 

 

where the 𝑝(𝐿|𝑓(𝑧)) is a probability of predicting a pixel being 

a lesion and the 𝑝(𝐿) and 𝑝(𝐵) are the prior probabilities of a 

pixel 𝑧 being a lesion and the background respectively. We 

computed prior probabilities of 𝑝(𝐿) and 𝑝(𝐵) by binarising an 

initial saliency map created from pixel-level sparse 

reconstruction error using the adaptive thresholding method 

proposed by Huang et al. [53]. This method can help effectively 

locate the deep valley of the gray-scale (i.e. saliency map) 

histogram, which performs well in maintaining the overall 

shape of the lesion area [53]. The observation likelihood 

probabilities can be then computed as follows: 

 

𝑝(𝑓(𝑧)|𝐿) =  ∏
𝑁𝐿(𝑓𝑧)

𝑁𝐿
𝑓(𝑧)  ,                       (13) 

𝑝(𝑓(𝑧)|𝐵) =  ∏
𝑁𝐵(𝑓𝑧)

𝑁𝐵
𝑓(𝑧)  ,                       (14) 

where each pixel 𝑧 is represented by colour histogram using 

𝑓(𝑧) = [L, a, b], 𝑁𝐿(𝑓𝑧) indicates the count that lesion region 

𝑁𝐿 contains 𝑓(𝑧), and 𝑁𝐿 is the total number of pixels in the 

lesion region. Similarly, we compute colour distribution 

histogram for background region 𝑁𝐵 . Therefore, the 

reconstruction error is refined by its similarities to pixels of 

lesion region L as well as its difference from those from 

background B using the colour distribution histogram. The final 

saliency map is converted into a binary segmentation result via 

a thresholding method proposed by Li et al. [54]. We followed 

common post-processing refinement. We used a morphological 

dilation process with a disc radius of 5 pixels, to fill small holes 
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and remove small isolated single pixels.  

III. EXPERIMENTAL SETUP AND RESULTS 

A. Materials 

We used 2 large public image datasets, the PH2 [55] and 

International Skin Imaging Collaboration (ISIC) public dataset 

[56], for the comparative evaluation. The PH2 public dataset 

provides 200 dermoscopic image studies, including 80 

common nevi, 80 atypical nevi and 40 melanomas. The PH2 

dataset was divided into two groups based on their image layout. 

There were 160 general cases: 152 images diagnosed as benign 

and 8 images as melanoma that capture the complete region of 

skin lesions. There were also 40 extreme cases, as defined in 

Section II.C. We selected the same 160 general cases used in 

the recent study of Ma and Tavaras [13].  

The ISIC data archive contains over 10,000 dermoscopic 

images retrieved from several international clinical centres, 

acquired from various imaging devices [57]. A new challenge 

was hosted by ISIC in International Symposium on Biomedical 

Imaging (ISBI) 2016. For this study we used 900 sample 

dermoscopic image studies used in the challenge [57]. There 

were 726 images diagnosed as benign and 174 as melanomas. 

ISIC dataset contains images with various artifacts such as 

colour calibration chart and ruler.  

Compared with another common dataset [2], both of these 

datasets contain a greater number of images with complex 

backgrounds and complicated skin conditions [13]. Manually 

annotated lesions from expert dermatologists were available 

from both datasets and were used as the ground truth for the 

segmentation results. There were 1100 dermoscopic images 

that we used for quantitative evaluation. 

B. Experiments Setup and Implementation Details 

We compared our RSSLS with six ‘state-of-the-art’ 

unsupervised lesion segmentation methods including: C-LS [6], 

SRG [25], NDM [13] (semi-automated), AT [6], SSLS [25], 

and CA [24] (fully-automated). We applied hair removal, as a 

pre-processing step for PH2 and ISIC datasets. We used the 

following settings for all the segmentation methods. For 

RSSLS, there were three main parameters: the number of 

clusters 𝐾1, 𝐾2 and the weight factor 𝜏 in Section II.E, Eq. 8, 

and Eq. 9. We empirically derived 𝐾1 =4, 𝐾2 = 8, and 𝜏 = 0.5. 

The K-mean algorithm was initialized using random seeds and 

the best performance was achieved using 𝐾1= 4 (𝐾1 = [2-10]). 

Variations to other two main parameters, (𝐾2 = [2-10], and 𝜏 = 

[0.1-0.9]) on the other hand, were insensitive to the final results. 

The parameters 𝜎𝑐𝑙𝑟  in Eq. 3 and ⋋ in Eq. 6 were set to 10 and 

0.01, consistent with other research [25, 39]. The superpixels at 

𝑁𝑠 = 8 different scales were created ranging from 50 to 400 

segments. For C-LS and SRG, an initial starting seed point was 

necessary: C-LS was initialized with a number of small circular 

masks across the whole image which generated the most 

accurate results [58]. The maximum number of iterations for 

C-LS was empirically set at 500, which ensured the 

convergence. For SRG, the seed point was manually set to be 

the centre of the skin lesion. For AT and C-LS, we initially used 

the same parameters for each method as used by Silveira et al 

[6] and empirically fine-tuned the parameters to obtain the best 

performance. For NDM, we used the results reported in the 

paper [13]. The CA method is one of our previous segmentation 

approach; we also tested it with the extreme cases from the PH2 

and ISIC datasets.  We replaced the colour calibration charts in 

ISIC dataset with the neighbourhood pixels as a pre-processing 

step for all of the methods. We applied basic post-processing 

such as noise removal (noise with isolated objects or pixels) 

and region filling (dark pixels completely-surrounded by 

lighter pixels) to all methods.  

We also compared our RSSLS to seven unsupervised 

state-of-the-art saliency detection methods including GC[59], 

RC[35], HSD[36], (foreground-based), MC[40], MR[37], 

RBD[39], and RRWR[38] (background-based). All of these 

approaches were implemented using the source code provided 

from the authors’ websites. The thresholding method proposed 

by Li et al. [54] was used to convert the gray-scale saliency 

map to a final binary image for all the methods. 

We conducted 4 different comparative experiments. At 

baseline: 1) The 160 general cases from the PH2 dataset were 

used. 2) The 40 extreme cases from PH2 were used to evaluate 

the effectiveness of our background detection. 3) We evaluated 

our RSSLS on the ISIC dataset (900 images). 4) We compared 

our RSSLS to other state-of-the-art unsupervised saliency 

detection methods. We implemented our algorithm in Matlab 

on a standard PC (Intel i5 CPU 2.4Ghz RAM 8GB). A Matlab 

implementation takes, on average, 28.7 seconds to process each 

image. Most (26.2 seconds) of the computation time was taken 

to generate superpixels at eight different scales. 

C. Evaluation Metrics 

We used the 3 standard metrics that have been reported by 

many other researchers [13, 24, 63] to assess the performance 

of the segmentation results. We defined these metrics as 

follows:  

The Dice similarity coefficient (DSC) [60]: 

 

𝐷𝑆𝐶(𝐴, 𝐵) =  
2𝑁(𝐴∩𝐵)

𝑁(𝐴)+𝑁(𝐵)
 ,                       (15) 

where A denotes the segmentation result and B is the ground 

truth; N represents the number of pixels in the corresponding 

set. A higher DSC score corresponds to a better result. 

The Hammoude distance (HM) [61] and XOR [62] measure 

the dissimilarity between the result of segmentation and the 

ground truth, defined as: 

 

𝐻𝑀(𝐴, 𝐵) =  
𝑁(𝐴 ∪ 𝐵)− 𝑁(𝐴 ∩ 𝐵)

𝑁(𝐴 ∪ 𝐵)
 ,                       (16) 

𝑋𝑂𝑅(𝐴, 𝐵) =  
𝑁(𝐴 ∪ 𝐵)− 𝑁(𝐴 ∩ 𝐵)

𝑁(𝐵)
 .                       (17) 

Lower scores for HM and XOR correspond to better results. We 

also evaluated the robustness of our algorithm by measuring its 

ability to correctly detect the lesion among all the images in the 

datasets.  

D. Results 

The results for the 160 general cases from PH2 dataset for all 

methods are shown in Table II. We show the results for four 

selected images of varing image conditions in Figure 3 with 

general cases in the 1st and 2nd rows and the extreme cases in 

the 3rd and 4th rows. Our RSSLS generated higher scores, and 

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/JBHI.2017.2653179

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



had the best overall DSC average (93.12%) and the best HM 

(12.52%) accuracy.  

The results from the extreme 40 cases are shown in Table III 

and they show that our approach had the lowest XOR value 

(28.21%) and the best DSC (82.75%) and HM (27.34%) scores. 

We show a summary of the results from all methods over the 

1100 imges in Table IV. For the PH2 dataset our approach had 

the highest DSC score with an overall average of 91.05%; it 

consistently had the lowest values for HM (15.49%) and XOR 

(16.45%). For the ISIC dataset our scores were DSC of 83.41% 

with the lowest HM of 25.67% and XOR scores of 36.21%.   

IV. DISCUSSION 

A. Evaluation with the PH2 dataset 

Our findings indicate that our RSSLS approach improves 

segmentation accuracy, is robust, and can accurately locate the 

lesion and its proximity to image boundaries (See Fig 3). Over 

the 160 general cases the next best method was our own 

CA-based method. The CA method, however, is expensive 

computationally because of the time needed to learn the model 

for seed selection. The high accuracy for all the methods can be 

attributed to several images having relative simple lesions with 

high contrast to the background regions (see Fig 3, row 1). The 

C-LS and NDM methods were the next closest to ours in overall 

DSC and XOR indices. C-LS was not able, however, to 

segment lesions when the lesion borders and the surrounding 

regions were indistinct (Fig 3(d), row 2). NDM also required 

manual initialization. 

Upon review of the recent literature, recent segmentation 

approaches [13, 24] only used general cases from the PH2 

dataset and they excluded the 40 extreme cases. Our approach 

was the best technique for the extreme cases with a 20% 

improvement when compared with our previous approach, 

which further supports this contribution to the body of research. 

Our new approach was able to identify the overall shape and 

edge of the lesions, which we attribute to the Bayesian 

framework. Over-segmentation of lesions was often evident 

with AT and SRG. Further, AT and C-LS were unable to 

identify lesion edges across all the images. AT, with a DSC of 

80.1% and a HM of 31.9%, had the closest results to ours, 

which we suggest is because AT is prone to over-segmentation 

and it benefited from 7 images in the PH2 dataset where the 

entire image was a lesion.  

B. Evaluation with the ISIC dataset 

The ISIC dataset images were obtained from different 

imaging devices and so, in comparison to the PH2 dataset, they 

had more complex variations in lesion location, lighting 

condition and were subject to non-uniform vignetting [27]. As a 

consequence, the overall performance of all the algorithms was 

reduced when compared to the performance on the PH2 dataset. 

Nevertheless, our approach still performed well with a DSC of 

83.41% and the lowest HM of 25.67% and XOR of 36.21% (see 

Table IV).  

C. Evaluation of the different saliency detection models 

Table V, VI, and VII show the segmentation results for all 

the methods with both datasets. Our approach consistently 

outperformed the other approaches. Although the other 

methods were not designed for lesion segmentation of 

dermoscopic images, our findings indicate the value of 

saliency-based models in this setting. 

D. Extending saliency based algorithms for lesion 

segmentation 

Our results suggest that other saliency-based methods would 

benefit from our applications of a Bayesian framework. We 

suggest that our framework could serve as a saliency 

optimisation algorithm. Hence we applied our framework to 

three comparable and high-performing approaches – the 

 

 
 

Fig 4. Average DSC scores of original MR, RBD, RRWR, and RSSLS 
methods and improved DSC scores with our Bayesian framework using PH2 

dataset and ISIC dataset. 

 

TABLE II. The segmentation results measured by DSC, HM, and XOR– 

160 general cases from PH2 dataset. 

Mean% AT C-LS SRG SSLS NDM CA RSSLS 

DSC 82.36 87.02 61.24 91.33 N/A 92.49 93.12 

HM 27.78 21.65 50.28 15.28 N/A 13.71 12.52 

XOR 41.09 26.76 51.57 17.48 13.92 14.99 13.52 

TABLE III. The segmentation results measured from the  extreme 40 

cases from PH2 dataset by DSC, HM, and XOR  

Mean% AT C-LS SRG SSLS CA RSSLS 

DSC 80.13 76.05 64.10 61.39 74.46 82.75 

HM 31.91 36.32 46.77 53.49 36.53 27.34 

XOR 33.09 37.62 47.51 56.40 39.31 28.21 

TABLE IV. The segmentation results measured by DSC, HM, and XOR– 
total 200 images and the 900 images from PH2 dataset and ISIC dataset 

respectivley. 

Mean% AT C-LS SRG SSLS CA RSSLS 

DSC1 81.91 84.82 61.23 85.34 88.89 91.05 

DSC2 70.90 79.61 77.55 80.61 76.30 83.41 

HM1 28.61 24.58 49.30 22.92 19.86 15.49 

HM2 41.12 30.00 32.95 29.78 45.97 25.67 

XOR1 39.49 28.93 49.98 25.27 18.27 16.45 

XOR2 63.44 50.58 45.60 38.40 35.36 36.21 

1Total 200 images from the PH2 dataset.  
2The 900 images from the ISIC dataset. 
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RRWR, RBD, and MR. The results, which are shown in Table 

VII, indicate that the segmentation performances of three 

methods were notably improved as shown in Fig 4. MR, with a 

DSC score of 83.59%, and RRWR with a DSC of 83.83%, both 

had a > 3% improvement in segmentation performance using 

ISIC dataset. We attribute this to the Bayesian framework 

allowing better detection of the shape and boundaries of a 

lesion. We note that MR, RBD, and RRWR had a greater 

improvement when using the more challenging ISIC dataset.  

E. Limitation 

Our approach detects skin lesion accurately, however, it has 

some limitations, as we show in images where the skin lesion is 

very small, not visually distinctive and located at the image 

boundary. In these instances our background estimation can 

mistakenly detect skin lesion as part of normal background 

regions. Nevertheless, such cases are uncommon and our 

approach prevails over other state-of-the-art methods.  

V. CONCLUSIONS 

In this work we have implemented a major advance on our 

previous work using a saliency-based segmentation framework 

for the identification and characterisation of skin lesions in 

dermoscopic images. We compared our approach to other 

methods on 2 large public datasets and show that our approach 

outperformed the other methods and, further, our framework 

can be used as a saliency optimisation algorithm for lesion 

segmentation in dermoscopic images.  
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