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Abstract

We propose a new saliency detection model by combining global information from

frequency domain analysis and local information from spatial domain analysis. In the fre-

quency domain analysis, instead of modeling salient regions, we model the nonsalient re-

gions using global information; these so-called repeating patterns that are not distinctive

in the scene are suppressed by using spectrum smoothing. In spatial domain analysis, we

enhance those regions that are more informative by using a center-surround mechanism

similar to that found in the visual cortex. Finally, the outputs from these two channels are

combined to produce the saliency map. We demonstrate that the proposed model has the

ability to highlight both small and large salient regions in cluttered scenes and to inhibit

repeating objects. Experimental results also show that the proposed model outperforms

existing algorithms in predicting objects regions where human pay more attention.

1 Introduction

As a component of low-level vision processing, saliency detection facilitates subsequent

processing such as object detection or recognition by reducing computational cost, which

is a key consideration in real-time applications. For object detection, this would always be

more efficient than dense sampling, provided one could ensure the accuracy of the attentional

mechanism. Visual saliency has received extensive attention by both psychologists and com-

puter vision researchers [3, 8, 10, 12]. Bottom-up saliency for selecting attentional regions

is the focus of this paper. Many such computational models have appeared in the literature.

There are several other models proposed which utilize the local information. Itti and Koch’s

saliency model [11, 12] is the milestone in saliency detection and is usually used for compar-

ison. Gao et al. [5] proposed a bottom-up saliency model by using Kullback-CLeibler (KL)

divergence to measure the difference between a location and its surrounding area. Recently,

several models have been proposed to compute saliency by using global information. In [1],

the authors first transform the input color image into the Lab space (an opponent color space),
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and then define the saliency at each location as the difference between the Lab pixel value

and the mean Lab value of the entire image. Harel et al. [8] proposed a graph-based solution

which uses local computation to obtain a saliency map which is everywhere dependent on

global information. Hou and Zhang [9] proposed a Fourier Transform based saliency model,

called the spectrum residual (SR). Successively, the phase spectrum of Fourier Transform

(PFT) was presented, which achieved nearly the same performance as SR [4].

In this paper, we argue that a reasonable saliency detector should have the ability to:

(1) Detect both small and large saliency regions. The size of salient regions vary greatly.

As shown in row 2 of Fig.7, the yellow flower definitely attracts the most attention, and

the fixation points should be distributed more or less uniformly throughout the whole salient

region. However, because center-surround algorithms mainly use local information, they will

respond heavily in boundary regions, where the texture, intensity or other features are locally

different. (2) Detect saliency in cluttered scenes. Another drawback of local information

based saliency models is that heavily textured regions are always highlighted. Cluttered

scene are still a challenge for models based on local information and some based on global

information[1, 7, 9]. (3) Inhibit repeating patterns. Objects in scenes viewed by the human

visual system are thought to compete with each other to selectively focus attention on a

subset [13]. These repeating patterns will suppress each other and then be inhibited.

In this paper, inspired by [9, 10, 14], we propose a new saliency model based on both

frequency and spatial domain analysis, which utilizes both local and global information of

the image. We show experimentally that the proposed model has the ability to highlight both

small and large salient regions and to inhibit repeating patterns in cluttered scenes.

2 Related work

Recently, the simple and fast algorithm, Spectrum Residual (SR), was proposed [9]. This

paper argued that the spectrum residual corresponded to image saliency. Thus given an image

f (x,y), it was first transformed into the frequency domain: f (x,y)
F
−−→ F ( f )(u,v) and the

amplitude, A (u,v) = |F ( f )|, and phase, P(u,v) = angle(F ( f )) ,spectra calculated, where

F ( f ) is the Fourier Transformation (FT) of f (x,y). The log amplitude spectrum is given by

L (u,v) = log(A (u,v)). Given these definitions, the spectrum residual was defined as:

R(u,v) = L (u,v)−hn ∗L (u,v), (1)

and the saliency map S (x,y) of the original image as:

S (x,y) = F
−1[exp(R(u,v)+ i.P(u,v))], (2)

In order to obtain a better visual display, the final saliency map was actually given as:

S (x,y) = g∗ |F−1[exp(R(u,v)+ i.P(u,v))]|2, (3)

where F and F−1 denote the Fourier and inverse Fourier Transforms, respectively; hn and

g are low-pass filters; i is the imaginary unit; P(u,v) denotes the phase spectrum of the

image, which is assumed to be preserved during this process. (1-3) are from [9]. The authors

argued that it is this residual, combined with the original phase spectrum, that corresponded

to image saliency. However, in this paper, we will show that: 1) the spectrum residual is of

little significance; 2) for natural images, SR and PFT [7]) are, to some extent, equivalent to

a gradient operator; and 3) SR works in certain cases only.
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Figure 1: Analysis of Spectrum Residual. (a) Obviously, the original image is reproduced

by performing the inverse FT using the original amplitude and phase spectra. (b) In SR, it

is argued that saliency map can be obtained by replacing the log(A (u,v)) by the Spectrum

Residual R(u,v). (c) If we replace the log amplitude spectrum logA (u,v) by random white

noise, we can obtain nearly the same saliency map.

For convenience, we rewrite the standard inverse Fourier Transformation as:

f (x,y) = F
−1[exp(logA (u,v)+ i.P(u,v))] (4)

⇔ f (x,y) = F
−1[A (u,v).exp(i.P(u,v))] (5)

Thus we can rewrite (2) as:

S (x,y) = F
−1[exp(R(u,v).exp(i.P(u,v))], (6)

Define exp(R(u,v)) as ASR(u,v), so that (6) can be rewritten as:

S (x,y) = F
−1[ASR(u,v).exp(i.P(u,v))]. (7)

Then comparing (5) and (7), we observe that if we replace the amplitude spectrum A (u,v)
by the exponential of the R(u,v), the saliency map is obtained1(See Fig. 1(a,b)). In order

to illustrate that the spectrum residual is of little significance, we generate a 2D white noise

W (u,v), which has the same average value and maximum as the spectrum residual R(u,v).
We then use W (u,v) to replace the spectrum residual and perform the inverse FT as follows:

S (x,y) = F
−1[exp(W (u,v).exp(i.P(u,v))], (8)

Fig.1(c) illustrates this process. Defining exp(W (u,v)) as AW (u,v), (8) can be rewritten as:

S (x,y) = F
−1[AW (u,v).exp(i.P(u,v))]. (9)

Surprisingly, we can obtain nearly the same saliency map when we replace the spectrum

residual by white noise. This result very clearly shows that the spectrum residual is of little

1The phase spectra will no longer be plotted in the remaining figures in this paper, although, obviously they exist

and are required for computing the transforms.
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significance. Why is this the case? Examining both (7) and (9), we find that the ampli-

tude spectra used to perform the inverse Fourier Transform are ASR(u,v) and AW (u,v). As

shown in the third columns of Fig.1(b,c), both ASR(u,v) and AW (u,v) are horizontal planes

compared with A (u,v) shown in Fig.1(a). That is to say, in both (7) and (9), the amplitude

information has been totally abandoned and only phase information has been used.

Two questions arise: (1) Why does SR yield a saliency map using only phase informa-

tion? (2) Is there any information corresponding to image saliency contained in the ampli-

tude spectrum? For the first question, our answer is that it only works for detecting small

salient regions on an uncluttered background. Consider [4, 7] where the authors propose a

new saliency model called Phase Fourier Transform (PFT), where The saliency is computed

using only phase information. What does using the inverse Fourier Transform solely with

phase information imply? In fact, it implies a gradient operation. We argue that for natural

images, both SR and PFT are, to some extent, equivalent to a gradient operator combined

with Gaussian post-processing (like the g in (3)). This is because the amplitude spectrum

of natural images always have higher values at low rather than at high frequencies. Thus,

if the amplitude spectrum is replaced by a horizontal plane, we are treating all of the fre-

quencies equally. That is to say, the lower frequencies are suppressed and the higher ones

are enhanced. Obviously, this implies a gradient enhancement operation. Based on the

above discussion, we conclude that both SR and PFT will enhance the object boundaries and

textured parts in an image. So why is the performance of these models not good enough?

Because the information contained in the amplitude spectrum has been totally abandoned!

Next, we will illustrate in section.3 that the amplitude spectrum contains very important

information and will develop a new framework for saliency detection in which we make full

use of both amplitude and phase information.

3 The methodology

The human visual systems pays different attention to different regions in a scene. For exam-

ple, a region that contain a unique and well defined target may be allocated more attention,

while numerous and similar regions could be given less attention. A saliency map produced

by a detection algorithm should assign a saliency probability for each location in a similar

manner. The authors in [14] use a Bayesian framework to formalize the visual saliency in

this way. Thus the saliency value at a location z in an image is defined as the probability that

this point belongs to a salient region (C = 1), given the location L, the feature F at this point,

local information Il and global information Ig. The saliency is defined as logsz, and we have:

logsz =−logp(F, Il , Ig)
︸ ︷︷ ︸

Bottom up saliency

+ logp(F, Il , Ig|C = 1)
︸ ︷︷ ︸

Top down knowledge

+ logp(C = 1|L)
︸ ︷︷ ︸

Center bias

. (10)

There are three items on the right side of (10). The last item is the location prior, which is

also called the center bias in saliency detection. This concept was first discussed theoretically

in [14]. In this paper, we will take it into account in the evaluation of experiments in section

4. The second item constitutes the top-down knowledge. However, in this paper, we will

focus on task-independent saliency (free viewing), so this will be omitted. The first item

corresponds to the bottom-up saliency. From this item, we know that, given the features at a

position, bottom-up saliency is determined by two factors: local and global information. In

this section, we will discuss a model of bottom-up saliency that combines global information

from the frequency domain analysis and local information from spatial domain analysis.
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Figure 2: Repeating and anomalous pat-

terns. Left: A natural image; right: Col-

lection of fragments from the image.
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Figure 3: Repeating patterns lead to sharp

spikes. Left: Signals with repeating cycles;

right: Corresponding amplitude.

3.1 Frequency domain analysis

Frequency analysis presents an opportunity to deal with the global information in an image.

In the proposed model, we investigate the relationship between the amplitude spectrum and

non-salient regions in the image. In the existing models in the literature, salient regions

are usually assumed to be distinctive or irregular patterns, which possess a distinct feature

distribution compared with the rest of the image. In this paper, instead of searching for these

so-called distinctive patterns, we model regular patterns that would not attract much attention

by our visual system. We refer to these as being non-salient. The analysis is based solely on

the Fourier Transform.

Suppressing repeating patterns for saliency pop-out. In our model, it is assumed that

a natural image consists of several salient and many common (non-salient) regions. All of

these (whether distinct or not) may be considered as visual stimuli that compete for attention

in the visual cortex. As shown in left part of Fig.2, if we divide the image into patches (at any

scale), we find that some are distinctive, while many are quite similar to each other (blue sky

and ground). The right part of Fig.2 shows the complete collection of patches. We observe

that several patterns appear many times in the image and refer to them as repeating patterns,

which is consistent with the human visual system, which treats these as being non-salient. In

the next section, we model the repeating patterns and then suppress them to achieve pop-out,

thereby yielding the salient regions.

Spikes in the amplitude spectrum correspond to repeating patterns. It is argued in

[9] that the spectrum residual corresponds to the saliency in an image, while contradictorily

in [7], the amplitude information was totally abandoned. However, in this paper, we will

illustrate that the amplitude spectrum also contains important information corresponding to

image saliency. To be more exact, spikes in the amplitude spectrum correspond to repeating

patterns, which should be suppressed for saliency detection.

For natural images, repeating patterns always lead to spikes in the amplitude spectrum.

Taking a 1-D periodic signal f (t) as an example, suppose that it can be represented by

f (t) = ∑
∞
n=−∞ F(n)e jnω1t , where Fn = 1

T

∫ T/2

−T/2
f (t)e− jnω1tdt. Then its Fourier transform

is given by: F(w) = 2π ∑
∞
n=−∞ F(n)δ (ω − nω1). From the latter, we can conclude that

the spectrum of a periodic signal (repeating cycles) is a set of impulse functions (spikes).

We note that this is based on the assumption that the periodic signal is infinite in extent.

Therefore, given a more realistic finite length periodic signal, the shape of the spectrum will

obviously be different but not degraded greatly. From Fig.3(b) we note that, the larger the

number of repeating cycles, the sharper the spectrum. Thus one can conclude that repeating

patterns lead to sharp spikes in the amplitude spectrum. Besides the sinusoid, other repeating

signals also have this characteristic.
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Figure 4: Suppression of repeated pat-

terns using spectrum filtering.

Figure 5: Saliency maps computed by smoothing

the image amplitude spectrum at different scales.

The best result is indicated by a dashed box.

As a simple illustrative example, suppose there is one salient part that is embedded in

a finite length periodic signal (see the original signals in Fig.4). We will illustrate that this

salient part will not largely influence the spikes in the spectrum. That is to say, 1) The

spikes will remain, even though a salient part is embedded in the signal; 2) The embedded

salient part will not lead to very sharp spikes in the amplitude spectrum. The signal to be

analyzed is defined as follows: f (t) = g(t)+gσ (t)+ s(t), where g(t) = p(t)if t ∈ (0,L), else

g(t) = 0 gσ (t) =−p(t) ·W (t), s(t) =−ps(t) ·W (t); s(t) is the salient part of f (t), which for

convenience is also defined as a portion of yet another periodic function −ps(t); p(t) and

−ps(t) are periodic functions with frequencies f and fs, respectively; W (t) is a rectangular

window function that equals 1 inside the interval (t0, t0+σ) and 0 elsewhere; we also assume

that (t0, t0 +σ) ∈ (0,L) and σ ≪ L. Thus the Fourier Transform of f (t) can be represented

as follows:

F ( f )(ω) =
∫ L

0
g(t)e− jωtdt +

∫ t0+σ

t0

gσ (t)e
− jωtdt +

∫ t0+σ

t0

s(t)e− jωtdt. (11)

From (11), the spectrum of f (t) consists of three terms. Since σ ≪ L, the first term will

exhibit very sharp spikes in the amplitude spectrum, while this is not true of the second and

third terms. In order to illustrate this, we define a notion of "sharpness" of an amplitude

spectrum X . Suppose that we smooth an amplitude spectrum, containing several spikes,

using a low-pass filter. Then we will find that the sharper the original spike, the more its peak

height will be reduced. Therefore, we describe the "sharpness" of X as follows: S(X) =‖X −
X ∗h ‖∞, where h is a Gaussian kernel at scale σ . Taking gσ (t) as an example, we compute

the point-wise product of a periodic signal −p(t) and a rectangular window function W (t).
According to the convolution theorem, F (gσ )(ω) equals the convolution of −F (p)(ω)

with F (W )(ω). Since F (W )(ω) = 2sin(σ/2)
ω

e jω(t0+σ/2) is a low-pass filter, the spikes in the

amplitude of −F (p)(ω) will be greatly suppressed. This also occurs for the third term.

As discussed above, the "sharpness" of F ( f )(ω) is mainly determined by g(t), while

the latter two terms in (11) do not contribute much to the spikes in the spectrum. In other

words, since the first term corresponds to repeated patterns that lead to spikes, they can be

suppressed by smoothing the spikes in the amplitude spectrum of F ( f )(ω).
Suppressing repeated patterns using spectrum smoothing. A Gaussian kernel h can

be employed to suppress spikes in the amplitude spectrum2 as follows:

AS (u,v) = |F{ f (x,y)}|⋆h, (12)

2In the computer implementation of this, we found that suppressing spikes in the log amplitude spectrum rather

than the amplitude spectrum yielded better results.
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where h is a Gassian kernel with a scale σ and |F{ f}| is the amplitude spectrum of f (x,y).
The resulting smoothed amplitude spectrum AS (u,v) and the original phase spectrum are

combined to produce the inverse Transform, which in turn, yields the saliency map:

S = F
−1{AS (u,v)ei·P(u,v)}. (13)

In order to improve the visual display of saliency, we define it hereafter as:

S = g⋆ |F−1{AS (u,v)ei·P(u,v)}|2. (14)

Again consider the very simple illustrative example shown in Fig.4. The input signal (row

1) is periodic, but there is a short segment for which a different frequency signal is apparent.

The short segment is quite distinct from the background for human vision, so a saliency de-

tector should be able to highlight it. Row 2 shows the amplitude spectrum: there are three

very sharp spikes (Labeled by solid boxes) which correspond to the constant at zero fre-

quency plus two which correspond to the periodic background. In addition, there are two

rounded maxima (labeled by a dashed box) corresponding to the salient parts. The complete

amplitude spectrum is then smoothed by a Gaussian kernel (row 3), and the signal is re-

constructed in the spatial domain using the smoothed amplitude and original phase spectrum

(row 4). It is clear that both the periodic background and the near zero-frequency components

are largely suppressed while the salient segment is well preserved. Row 5 shows the (spa-

tial domain) saliency map after enhancing the signal shown in row 4 using post-processing.

Row 6 illustrates the components actually removed by the previous operations. We find that

the non-salient and uniform parts are properly suppressed using amplitude filtering. This

process suggests that convolution in the frequency domain of the amplitude spectrum with a

Gaussian kernel produces the saliency pop-out in an image using only global information.

Spectrum scale-space analysis: choose the best scale for the Gaussian kernel. Re-

peating patterns can be suppressed by smoothing the amplitude spectrum using a Gaussian

kernel. However, which scale is the best? We propose a Spectrum Scale-Space (SSS) for

handling amplitude spectra at different scales, yielding a one-parameter family of smoothed

spectra parameterized by the scale of the Gaussian kernel. Given an amplitude spectrum,

A(u,v), of an image, the SSS is a family of derived signals L(u,v;k) defined by the convolu-

tion of A(u,v) with the Gaussian kernel g(u,v;k) = 1
2kt0

e−(u2+v2)/(2k+1t0), where k is the scale

parameter, k = 1, ...,K. K is determined by the image size: K = ⌈log2min{X ,Y}⌉, where X

and Y indicate the width and height, of the image. Thus scale-space is defined as:

L (u,v;k) = (g(., .;k)∗A )(u,v). (15)

Fig.5 shows saliency results obtained using different kernel scales, increasing from left

to right.. The best saliency map is labeled by a dashed red box. As shown in Fig.5, if the

kernel scale is too small, the repeating patterns cannot be suppressed sufficiently, while if the

kernel scale is too large, only the boundaries of the salient region are highlighted (see rows

1 and 2 in the figure). Therefore it is important to select a proper scale. Entropy is used to

determine the best scale. the appropriate scale kp is defined as:

kp = argmin(entropy(saliencymap(k)), (16)

where entropy is given by H(x)=−∑
n
i=1 pilogpi. The explanation for using entropy to select

the best scale is as follows. If a saliency map is good enough, the salient region will pop out

from the image, while the common regions will be greatly suppressed. Thus the histogram

of the saliency map must cluster around certain values, yielding a very small entropy for the

signal. Thus we can find the best scale by finding the map with the smallest entropy value.
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3.2 Spatial domain analysis

In this section, we model salient pixels and regions locally. A center-surround template

is usually employed to evaluate the distinctiveness of a local area by measuring the local

contrast [3, 6].

Use the independent components of natural scenes as the center-surround filters.

Difference of Gaussian (DOG) and Gabor filters are commonly used to measure the local

contrast. However, recently, researchers have also used Independent Component Analysis

(ICA) bases as the filters [6, 10, 14]. It has been shown that by training on tens of thousands

of natural image patches, the resulting filters turn out to be quite similar to receptive fields

found in the visual cortex [2]. In this paper, we use the 192 color features from [10] as the

filters and obtain192 response maps.

Use entropy to assign a weight to each response map. Given the 192 response maps,

we calculate a weighted sum to obtain a single saliency map. Thus the saliency is defined

as:

S(x,y) = ∑wi( f (x,y)∗hi), (17)

where the hi are the local filters obtained by ICA and wi is given by the following: wi =
entropy( f (x,y)∗hi)

−1.
Unlike frequency domain analysis which highlights saliency using global information,

spatial domain analysis will enhance only those salient regions that exhibit strong local con-

trast. Such a "center-surround" model has been adopted in previous work [10, 14].

3.3 The final saliency map

As we have two processing channels (frequency and spatial), we obtain two saliency maps.

For convenience, we denote them as Sg, Sl respectively here. Sg is obtained as follows: (1)

we first decompose the input color image into a opponent color space: I = max{r,g,b},

RG = r−g and BY = b− r+g
2

− min(r,c)
2

. Then we can compute saliency map in each channel

as introduced in section 3.1. The entropy values of these three best saliency maps are also

used as weights for combining them into the Sg. In the spatial analysis channel, the Sl is

computed according to 17. With Sg and Sl , the final saliency map S f is given by: S f =

Sg + k.
entropy(Sg)
entropy(Sl)

Sl . Here, k is a free parameter.

4 Experimental results

Psychological patterns such as those shown in Fig.6 are widely used to evaluate saliency

detectors. In row 1, the red bar has a salient color, and our algorithm detects this region

properly; row 2 shows a salient region in which there is a bar with a different orientation

from others; rows 3-5 show typical patterns used in Gestalt studies and both our algorithm

and SR can detect these regions properly; row 6 shows an example of asymmetry and row 7

a salient region where the item is missing. Our algorithm works well in both these examples.

In section 1 we indicated that a good saliency detector should be capable of detecting both

small and large salient regions confounded by a cluttered background as well as suppress-

ing repeating objects. Fig.7 presents some results and compares them to important methods

in the literature. Row 1 show examples in which the salient regions are quite small. Most

existing algorithms work well in this case. However, large salient regions will present a chal-

lenge for most algorithms, (see row 2). Our algorithm highlights the flower nearly uniformly.
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Figure 6: Responses to psycho. patterns Figure 7: Responses to natural images

Method ROC (large) DSC (large) ROC (small) DSC (small) ROC (overall) DSC (overall)

Our model Sg 0.9293 0.6980 0.9072 0.3421 0.9172 0.5039

Our model S f 0.9266 0.7103 0.9124 0.3680 0.9189 0.5236

Itti’s 0.9020 0.6171 0.9071 0.3344 0.9048 0.4629

SR 0.8152 0.5087 0.9245 0.3637 0.8748 0.4296

Table 1: Comparison between the proposed model with SR[9] and Itti’s model [12].

However, the other algorithms only enhance the boundary regions. Row 3-4 show images

with cluttered backgrounds. In this case, only the proposed algorithm and GBVS work well,

while the other approaches always highlight highly textured backgrounds or other distrac-

tors. In row 5, there are five cards in the image. Among these, there is one card that is more

distinctive. All of the algorithms can detect these five cards. However, only the proposed

method can highlight the most salient card.

Quantitative evaluation was also performed. There are two kinds of categories in our

database, one containing 50 images with larger salient regions (labeled as large in the ta-

ble) and the other 60 images with smaller salient regions (labeled as small in the table).

Groundtruth images were labeled by 19 subjects using a method similar to [9]. To evalu-

ate the different models, we used both the Receiver Operator Curve score (area under the

curve) and the DSC value (peak value of the Dice Similarity Coefficient curve). DSC curve

is defined as DSC = 2T P/(T P+FP+T ) and is obtained by sliding the threshold across the

whole range, where TP is true positive, FP is false positive and T is the positive in the ground

truth. From Table.1, we find that our global model, (Sg), is improved when local and global

information are combined (see S f ) . Comparing our model to IttiâĂŹs and SR, we note that

the proposed model produces superior performance.

5 Conclusions

In this paper, we argue that, besides predicting human fixation, a reasonable saliency de-

tector should possess the ability to detect both small and large salient regions in cluttered
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backgrounds and inhibit repeating objects. Based on these considerations, we propose a new

bottom-up saliency model that combines global information from frequency domain analy-

sis and local information from spatial domain analysis. In the frequency domain analysis,

instead of modelling the salient regions, we model the common regions (non-salient regions)

using global information. Then these so-called repeating patterns that are not distinctive in

the scene are suppressed by using spectrum smoothing. In the spatial domain analysis, we

enhance those points or regions that are more informative by using a centre-surround mech-

anism. We demonstrate experimentally that the proposed model has the ability to highlight

both small and large salient regions and to inhibit repeating patterns in images. In addition,

the model also properly detects saliency in cluttered background images.
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