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Abstract— Saliency detection plays important roles in many
image processing applications, such as regions of interest extrac-
tion and image resizing. Existing saliency detection models are
built in the uncompressed domain. Since most images over
Internet are typically stored in the compressed domain such
as joint photographic experts group (JPEG), we propose a
novel saliency detection model in the compressed domain in this
paper. The intensity, color, and texture features of the image
are extracted from discrete cosine transform (DCT) coefficients
in the JPEG bit-stream. Saliency value of each DCT block is
obtained based on the Hausdorff distance calculation and feature
map fusion. Based on the proposed saliency detection model, we
further design an adaptive image retargeting algorithm in the
compressed domain. The proposed image retargeting algorithm
utilizes multioperator operation comprised of the block-based
seam carving and the image scaling to resize images. A new
definition of texture homogeneity is given to determine the
amount of removal block-based seams. Thanks to the directly
derived accurate saliency information from the compressed
domain, the proposed image retargeting algorithm effectively
preserves the visually important regions for images, efficiently
removes the less crucial regions, and therefore significantly
outperforms the relevant state-of-the-art algorithms, as demon-
strated with the in-depth analysis in the extensive experiments.

Index Terms— Compressed domain, image retargeting, joint
photographic experts group (JPEG), saliency detection, texture
homogeneity.

I. INTRODUCTION

V
ISUAL attention is an important mechanism to process

visual information in the human visual system (HVS).

It is a cognitive process for selecting the significantly

visual information and filtering out other redundant visual

information for natural scenes. When observers look at a

natural scene, they will focus on the salient regions while

ignoring other non-salient regions. There are two approaches

in visual attention mechanism: bottom–up and top–down

approaches. Bottom–up approach, which is stimuli-driven
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and task-independent, is a perception process for automatic

saliency detection. On the contrary, top–down approach is a

recognition process influenced by the prior knowledge.

As to the bottom–up approach, studies have shown that the

salient regions in the visual field would first pop out for their

different low features from their surrounding [1], [2]. Based

on the feature-integration theory [1], many saliency detection

models have been proposed to extract the salient regions for

various image processing applications [3]–[11]. One popular

application is the image retargeting [12]–[16]. In some image

retargeting algorithms [12]–[16], the saliency map is used to

measure the visual importance of image pixels.

Existing saliency detection algorithms [3]–[10] and

image retargeting algorithms [12]–[15], [17]–[22] are all

implemented in the uncompressed domain. However, most

images over Internet are typically stored in the compressed

domain of joint photographic experts group (JPEG) [23].

The compressed JPEG images are widely used in various

Internet-based applications, since they reduce the storage

space and increase the downloading speed. In order to extract

features from the compressed JPEG images, the existing

saliency detection or image retargeting algorithms have to

decompress these JPEG images from the compressed domain

into the spatial domain. The full decompression from these

saliency detection or image retargeting algorithms is not

only computation-consuming but time-consuming as well.

Compared with the existing saliency detection and image

retargeting algorithms which operate in the uncompressed

domain, it is crucial to design the efficient saliency detection

and image retargeting algorithms in the compressed domain.

In this paper, we first propose a saliency detection model in

the compressed domain. Furthermore, based on the proposed

saliency detection model, we design an adaptive image retar-

geting algorithm in the compressed domain. As discrete cosine

transform (DCT) is used in JPEG compression at 8 × 8 block

level, the DCT coefficients are used to extract intensity, color,

and texture features for each 8×8 block for saliency detection.

Previous studies successfully extract various features by using

DCT coefficients for various image processing applications

[24]–[26]. In [24], the color and texture features are directly

extracted from DCT coefficients for object localization. In

[25], DCT coefficients in each macroblock are used for

object indexing. In [26], the color and texture features are

extracted from the DCT coefficients to measure the image

similarity by using the statistical graph matching method.

These studies have shown that the direct feature extraction

from the compressed domain can obtain useful information
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Fig. 1. Comparison of the different image retargeting algorithms (a) original image, (b) gradient map (used in [13] and [18]), (c) saliency map from Itti’s
model [3] (used in [14]), (d) saliency map from the model in [6] (used in [12]), (e) saliency map from our proposed model, and (f)–(j) retargeted images
from [12]–[14], [18] and our proposed algorithm, respectively. The width of the retargeted images is 75% of that from the original image.

in many applications. Here, we directly extract the intensity,

color, and texture features from the DCT coefficients for

saliency detection for JPEG images. Although the minimum

coded unit (MCU) blocks can be as large as 16 × 16 (for

4:2:0 component subsampling format) [23], [27], we perform

our saliency detection and retargeting at the 8 × 8 block level

for each DCT block. After obtaining the intensity, color, and

texture features from the compressed domain, the saliency map

for images is calculated based on weighted feature differences

between DCT blocks. In addition, we design an adaptive image

retargeting algorithm in the compressed domain based on the

proposed saliency detection model. The saliency map in the

compressed domain is used to determine the visual importance

of each 8 × 8 block in JPEG images. The multioperators

including the block-based seam carving and the image scaling

are utilized to perform image resizing. The number of the

removal block-based seams is determined by the texture homo-

geneity of images. Experimental results show the superior

performance of the proposed saliency detection model as well

as the proposed image retargeting algorithm.

The rest of this paper is organized as follows. In Section II,

we first introduce the relevant existing saliency detection and

image retargeting algorithms, respectively. Then we demon-

strate the contributions of our work. In Section III, we describe

the details of the proposed saliency detection and image retar-

geting algorithms. Section IV shows the experimental results

by comparing the proposed algorithms with other existing

ones. The final section concludes this paper.

II. RELATED WORK AND CONTRIBUTIONS OF OUR WORK

A. Saliency Detection

The classical saliency detection model proposed by Itti et al.

is designed based on the neuronal architecture of the primates’

early visual system [3]. In this paper, the saliency map

is calculated according to the multiscale center-surrounding

differences for three features: intensity, color, and orientation.

The linear combination between these three feature maps is

utilized to obtain the final saliency map. Based on Itti’s model,

Harel et al. proposed the graph-based visual saliency model

by using a graph-based dissimilarity measure [9]. Ma et al.

devised a saliency detection model based on the local contrast

analysis [10]. In this paper, a fuzzy growing algorithm is

adapted to extract the salient regions for images. In [16],

Goferman et al. built a content-aware saliency detection with

the consideration of the contrast from both local and global

perspectives. Liu et al. utilized the machine learning technique

to obtain the saliency map for images [4]. In this paper,

they used a set of features, including multiscale contrast,

center–surrounding histogram, and color spatial distribution to

obtain the salient objects locally, regionally, and globally [4].

Hou et al. used a concept called spectral residual to build a

saliency detection model in [5]. The authors claimed that the

saliency map was obtained based on the log spectra represen-

tation for images. Later, Guo et al. found that Hou’s model

was actually caused by the phase spectrum and they devised a

phase-based saliency detection algorithm [7]. This algorithm

obtains the final saliency map by using inverse Fourier trans-

form on a constant amplitude spectrum and the original phase

spectrum of the input image. In [28], Bruce et al. decided

saliency information based on the concept of information

maximization. The saliency map is obtained according to the

Shannon’s self-information measure. In addition, this saliency

detection algorithm is implemented in a neural circuit, which

is explained as similar with the circuitry existent in the primate

visual cortex [28]. Le Meur et al. proposed a visual attention

model based on the understanding of the HVS behavior [29].

The contrast sensitivity functions, perceptual decomposition,

visual masking, and center–surround interactions are utilized

for detecting salient regions in this paper [29].
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All these saliency detection models mentioned above are

implemented in the uncompressed domain. In this paper, we

propose a novel saliency detection model in the compressed

domain. We extract the intensity, color, and texture features

from DCT coefficients in the JPEG bit-stream to calculate

the block differences for saliency detection. The saliency map

obtained in the compressed domain is used to determine

the visual importance of each DCT block in the proposed

image retargeting algorithm. Thanks to the directly derived

saliency map from the compressed domain, the proposed

image retargeting algorithm effectively preserves the objects

of attention and remove the less crucial regions, as shown in

Fig. 1. From Fig. 1, we can see that our saliency map identifies

the salient regions more accurately than the gradient map and

the saliency maps from [3] and [6]. Therefore, the retargeted

image from our proposed algorithm is better than these from

other algorithms, as shown in Fig. 1(f)–(j). More details and

comparisons will be provided in the following sections.

B. Image Retargeting

One traditional image resizing method is to scale images

by downsampling. The problem with the image scaling is that

it will result in worse viewing experience and loss of some

detailed information as the salient objects turn to be smaller.

Image cropping is an alternative solution, which preserves

regions of interest in images by discarding other noninterest

regions. The defect of this technique is that the context infor-

mation in images will be lost [15], [17], [30], [31]. To over-

come the limitations of the image scaling and cropping, many

effective image retargeting algorithms [12]–[15], [17]–[22]

have been proposed. In these algorithms, the content awareness

is taken into consideration and the visual significance map is

designed for measuring the visual importance of each pixel for

image resizing operation. The visual significance maps used in

these algorithms are generally comprised of the gradient map,

the saliency map, and some high-level feature maps, such as

facial map, motion map, and so on [12]–[15], [17]–[22].

Avidan et al. proposed the popular image retargeting

algorithm named seam carving [17]. A seam is defined as

eight-connected path of low-energy pixels (from top to bottom

or left to right) in images. These pixels include only one pixel

in each row or column. The seam carving aims to reduce

the width (or height) by removing those unimportant seams.

A gradient map is used to determine the importance of each

pixel in images. Later, Rubinstein et al. extended this algo-

rithm to video retargeting by introducing the forward energy

method [18]. Some similar algorithms were also designed

based on seam carving [12], [20].

Other advanced image retargeting algorithms have also been

proposed. Wolf et al. introduced a video retargeting algorithm

through introducing a linear system to determine the new

pixel position [13]. In this paper, the visual importance of

each image pixel is measured by the visual importance map

comprised of local saliency detection, face detection, and

motion detection. Ren et al. proposed an image retargeting

algorithm based on global energy optimization, in which the

saliency map and face detection are combined to determine

the visual importance of each image pixel [14]. Jin et al.

presented a content-aware image resizing algorithm through

warping a triangular mesh over images by regarding salient

line features and curved features as important regions [19].

Guo et al. advanced an image retargeting algorithm through

utilizing saliency-based mesh parametrization [15].

Recently, Rubinstein et al. conducted a user study and found

that applying multioperators (such as seam carving, cropping,

and so on) can obtain better results than those from only single

operator in image retargeting [21]. In this paper, the authors

proposed a multioperator media retargeting algorithm that

combines the seam carving, scaling, and cropping operators

to resize images. The size amount for each operation is

determined by optimal result for maximizing the similarity

between the input image and the retargeted image. In [22],

Dong et al. introduced a image retargeting algorithm by

combining seam carving and scaling. The authors utilized a

bidirectional similarity function of image Euclidean distance, a

dominant color descriptor similarity, and seam energy variation

to determine the best number of seam carving operation.

All these image retargeting algorithms introduced above are

implemented in the spatial domain. As discussed in Section I,

it is crucial to design an image retargeting algorithm in

the compressed domain. In this paper, we design such

an image retargeting algorithm in the compressed domain

based on the proposed saliency detection model. We use

multioperators including the block-based seam carving and

the image scaling to perform image resizing. Different

from the existing algorithms using the image similarity to

determine the number of removal seams [21], [22], we define

the texture homogeneity to determine the number of the

removal block-based seams. Experimental results show our

proposed image retargeting algorithm in the compressed

domain outperforms the existing ones.

C. Contributions of Our Work

In this paper, we propose a saliency detection model and

an adaptive image retargeting algorithm in the compressed

domain. The saliency map is calculated based on the directly

extracted features from JPEG bit-stream. To demonstrate the

advantages and applications of the proposed saliency detection

model, we design a novel adaptive image retargeting algorithm

based on multioperators in the compressed domain. Our initial

work was published in [32]. The main contribution of this

paper include the following aspects.
1) We propose a novel saliency detection model in the

compressed domain. We present how to extract inten-

sity, color, and texture features directly from the JPEG

bit-steam. In addition, we design a new algorithm

for saliency detection based on DCT blocks in the

compressed domain.

2) We design a novel adaptive image retargeting algo-

rithm in the compressed domain. The block-based seam

carving and image scaling are used for image resizing

in the proposed algorithm. Different from the existing

image retargeting algorithms, the texture homogeneity

is defined to determine the number of the removal

block-based seams.
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Fig. 2. Syntax for DCT-based modes of operation in JPEG standard [27].

III. FRAMEWORK

In this section, we first describe how to extract the intensity,

color, and texture features for images in the compressed

domain. Then we introduce the proposed saliency detection

model based on these features. The adaptive image retargeting

algorithm based on the block-based seam carving and image

scaling is given in the final section.

A. Feature Extraction from the JPEG Bit-Stream

In this paper, we extract the saliency information for the

image from the JPEG bit-stream. The saliency information is

derived directly from the DCT coefficients rather than from the

fully decoded JPEG images. Therefore, we should obtain the

DCT coefficients from the JPEG bit-stream. We first introduce

how to obtain DCT coefficients from the JPEG bit-stream.

Then we give the description of the feature extraction based

on DCT coefficients.

1) Obtaining DCT Coefficients from the JPEG Bit-Stream:

The Baseline method of JPEG, which is implemented based

on DCT, is the most widely used compression method [23]. In

this paper, we mainly focus on the Baseline method of JPEG.

The entropy decoding is used to decode the JPEG bit-stream

to obtain the quantized DCT coefficients. As Huffman coding

is utilized to encode the quantized DCT coefficients in the

Baseline method of JPEG [23], [27], we should decode the

JPEG bit-stream into quantized DCT coefficients according to

the two sets of Huffman tables (one AC table and DC table

per set). Then the dequantization operation is applied on these

quantized DCT coefficients to obtain the DCT coefficients.

The syntax for DCT-based modes of operation in JPEG

standard is shown in Fig. 2. In the JPEG standard, markers are

used to identify various structural parts of the compressed data

formats. We obtain the marker “SOI” in the JPEG bit-stream

to identify the start of a compressed image. The frame header

presented at the start of a frame (JPEG image) specifies the

source image characteristics, the components in the frame, and

the sampling factors for each component, and specifies the

destinations from which the quantized tables to be used with

each component are retrieved. The parameter of T q in the

frame header specifies the quantization table destination from

which the quantization table to use for dequantization of DCT

coefficients.

Fig. 3. DCT coefficients and the zig–zig scanning in one 8 × 8 block.

Following the frame header, the scan header specifies

which components and which DCT quantized coefficients

are contained in the scan. The parameters T d j and T a j

in the scan header specify the DC and AC entropy coding

table destinations, respectively. The data following the scan

header includes the entropy-coded segment (ECS) and restart

marker (RST) data. Each ECS is comprised of a sequence

of entropy-coded MCUs. The RST is a conditional marker

placed between two ECSs only if restart is enabled. Detailed

information of the JPEG bit-stream can be found in [27].

Based on the above description, the JPEG bit-stream can be

decoded into quantized DCT coefficients based on the DC and

AC entropy coding tables (T d j and T a j ) from the scan header.

According to the quantization table from T q , the quantized

DCT coefficients are further decoded through dequantization

operation to get the DCT coefficients.

2) Feature Extraction Based on DCT Coefficients: Three

features including the intensity, color, and texture are extracted

based on the DCT coefficients to build the saliency detection

model. The DCT coefficients in one 8 × 8 block are shown

as Fig. 3. DCT coefficients in one block are comprised of the

DC coefficient and AC coefficients. In each block, the DC

coefficient is a measure of the average energy over all the

8×8 pixels, while the remaining 63 AC coefficients represent

the detailed frequency properties of this block. The JPEG

compression standard takes advantage of the fact that most

of the energy is included in the first several low-frequency

(LF) coefficients, which are in the left-upper corner of the

block in Fig. 3. The high-frequency (HF) coefficients from

the right-bottom of the block are almost close to zero and thus

they are neglected during the quantization of DCT coefficients.

The AC coefficients are ordered by zig–zag scanning from LF

to HF, as shown in Fig. 3.

The YCrCb color space is used to encode color images in

the JPEG standard. The Y channel represents the Luminance

information while the Cr and Cb channels include the

Chrominance information for JPEG images. As discussed

above, the DC coefficients represent the average energy of

each block including 8 × 8 pixels. Here, we first transfer

the DC coefficients from YCrCb color space to the RGB

color space to extract the intensity and color features for

JPEG images. We calculate the color and intensity features
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Fig. 4. Different types of DCT coefficients in one 8 × 8 block.

by the following steps: let r , g, and b denote the red, green,

and blue color components from DC coefficients, and four

broadly-tuned color channels are generated as R = r −(g +b)

for new red component, G = g − (r + b)/2 for new green

component, B = b − (r + g)/2 for new blue component, and

Y = (r + g)/2 − |r − b|/2 − b for new yellow component.

The intensity feature can be calculated as: I = (r + g + b)/3.

Each color channel is then decomposed into red/green and

blue/yellow double opponency according to the related prop-

erties of the human primary visual cortex [33]: Crg = R − G

and Cby = B − Y .

I , Crg , and Cby are the three extracted intensity and color

features for an 8 ×8 block in the JPEG image. It is noted that

a 16 × 16 MCU consists of four 8 × 8 Luminance blocks

and two 8 × 8 Chrominance blocks (one for Cb and the

other for Cr). Thus, four Luminance blocks share the same

Chrominance blocks in a typical 4:2:0 component subsampling

JPEG encoding system.

The AC coefficients include the detailed frequency informa-

tion for each image block, and previous studies have shown

that the AC coefficients can be used to represent the texture

information for images blocks [24], [26], [34]–[36]. Here, we

use the AC coefficients in YCrCb color space to extract the

texture feature for each 8 × 8 block. In YCrCb color space,

Cr and Cb components represent the color information and

their AC coefficients provide little information for texture. In

addition, a 16 × 16 MCU consists of more Luminance blocks

compared with those from Chrominance blocks in a typical

4:2:0 scheme. Thus, we use the AC coefficients from the Y

component only to extract the texture feature T . As to the

AC coefficients in one 8 × 8 DCT block, the LF components

capture much of the detailed information, while the HF

components include less information. Following the studies

in [37] and [38], we classify the AC coefficients into three

parts: LF, medium-frequency (MF), and HF parts, as shown in

Fig. 4. The coefficients in each part are summed as one value

to obtain three corresponding elements (tLF, tMF, and tHF) to

represent the texture feature for each DCT block. Therefore,

the texture feature T for each DCT block can be expressed as

follows:

T = {tLF, tMF, tHF} (1)

where tLF, tMF, and tHF is the sum of all the coefficients in

the LF, MF, and HF parts, respectively, in Fig. 4.

B. Saliency Detection in the Compressed Domain

From the above section, the intensity, color, and texture

features (I , Crg , Cby , and T ) can be extracted from the DCT

coefficients of each 8 × 8 block. In this paper, we use these

four features (one intensity, two color features, and one texture

feature) to obtain four feature maps, respectively. Then we use

the coherent normalization-based fusion method to combine

these four feature maps to get the saliency map for JPEG

images. The details of the saliency detection model are shown

in the following.
1) Feature Differences Between DCT Blocks: As to the

intensity and color features (I , Crg , and Cby), the feature

differences between blocks i and j can be computed as

Dk
i j = C

k
i − C

k
j (2)

where k = 1, 2, 3 represent the intensity and color features,

respectively (one intensity feature and two color features);

Ck ∈ {I, Crg , Cby}.
We use the vector T from (1) including three elements to

represent the texture feature for each DCT block in the JPEG

image. The Hausdorff distance [39] is used here to calculate

the difference between two vectors of texture feature from two

different blocks. Hausdorff distance is widely used to calculate

the dissimilarity between two point sets through examining the

fraction of points in one set that lie near points in the other set

(and perhaps vice versa). The texture difference D4
i j between

two blocks i and j can be computed as follows:

D4
i j = max(h(Ti , T j ), h(T j , Ti )) (3)

where 4 means the texture feature is the fourth feature (the

first three features include one intensity and two color features

described above); Ti and T j represent the vectors of texture

feature for blocks i and j , respectively. h(Ti , T j ) is calcu-

lated as

h(Ti , T j ) = max
ti ǫTi

min
t j ǫT j

‖ ti − t j ‖ (4)

where ‖ . ‖ is the L2 norm.
2) Feature Maps in the Compressed Domain: In this paper,

the saliency value for each DCT block in each feature map

is determined by two factors: one is the block differences

between this DCT block and all other DCT blocks of the

input image and the other is the weighting for these block

differences. If these differences between this DCT block and

all other DCT blocks are larger, then the saliency value for

this DCT block is larger. In addition, a Gaussian model

of the Euclidean distances between DCT blocks is used to

determine the weighting for these DCT block differences. We

use Gaussian model of the Euclidean distance for its generality.

Here, we use Sk
i to represent the saliency value calculated from

the kth feature for the DCT block i . The feature map for the

kth feature can be obtained as follows:

Sk
i =

∑

j �=i

1

σ
√

2π
e
−

d2
i j

2σ2 Dk
i j (5)

where σ is a parameter for the Gaussian model; di j is the

Euclidean distance between DCT blocks i and j ; Dk
i j is

calculated as (2) and (3). In this paper, we set σ = 5.
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From (5), the saliency value of DCT block i considers

all the block differences between this DCT block and the

other DCT blocks in the image. The saliency value of the

block i is larger with greater block differences from all other

blocks in the image. Here, we use a Gaussian model of the

Euclidean distances between DCT blocks to weight the block

differences. From (5), the weights of the block differences

from nearer neighbor blocks are larger compared with these

from farther neighbor blocks. Therefore, the contributions

of the block differences to the saliency value of the DCT

block i will decrease with larger-distance DCT blocks from

the DCT block i . On the contrary, the contributions of the

block differences to the saliency value of the DCT block i

will increase with smaller-distance DCT blocks from the DCT

block i .

According to (5), we can obtain four feature maps (one

intensity feature map, two color feature maps, and one texture

feature map) based on the intensity, color, and texture features.

The final saliency map is a combination of these four feature

maps. We will describe how to get the final saliency map for

images in the next section.

3) Final Saliency Map in the Compressed Domain: After

obtaining the four feature maps Sk(k ∈ {1, 2, 3, 4}), the

saliency map for the JPEG image can be obtained by inte-

grating these four feature maps. In this paper, we use the

coherent normalization-based fusion method to combine these

four feature maps into the saliency map S as follows:

S =
∑

γθ N(θ) + β
∏

N(θ) (6)

where N is the normalization operation; θ ∈ {Sk}; γθ and β

are parameters determining the weights for each components

in (6). In this paper, we set γθ = β = 1/5. The second term

in (6) represents these areas which all the four feature maps

Sk detect as salient areas.

C. Image Resizing Operation

As described above, we build a saliency detection model

in the compressed domain by extracting intensity, color, and

texture features from the DCT coefficients. To demonstrate

its advantages and applications, we design an novel adap-

tive image retargeting algorithm in the compressed domain.

The proposed saliency detection model is used to obtain

the saliency map to measure the visual importance of each

DCT block for the image retargeting algorithm. Multiopera-

tors including the block-based seam carving and the image

scaling are utilized to resize the JPEG images in the proposed

image retargeting algorithm. The number of block-based seam

carving is determined by the defined image homogeneity.

The image resizing operation steps are given as follows:

1) determine the number of block-based seam carving oper-

ation based on the defined image homogeneity; 2) use the

block-based seam carving operation to resize the original

image; and 3) use the image scaling operation to resize the

retargeted image from the block-based seam carving to obtain

the final retargeted image. The details will be described in the

following sections.
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Fig. 5. Comparison result of the ROC curves between different saliency
detection models.

1) Block-Based Seam Carving Operation: It is noted that

since our final saliency map is at block-level, each seam

indicates connected blocks instead of connected pixels in the

original image. We use DCT blocks with the size of 8 × 8 to

calculate the saliency map, thus the final saliency map is only

1/64 times of the original image and each value in the final

saliency map represent the saliency value for one 8 × 8 DCT

block. We design a block-based seam carving method based on

the forward energy [18] to determine the optimal block seams.

Based on the saliency map S in (6), the block-based seam

carving uses the following dynamic programming technique

to determine the optimal block-based seams:

M(i, j) = S(i, j) + min

⎧

⎨

⎩

M(i − 1, j − 1) + CL(i, j)

M(i − 1, j) + CU (i, j)

M(i − 1, j + 1) + CR(i, j)

(7)

where M(i, j) determines the position (i, j) of the saliency

map for the optimal block-based seams; CL(i, j), CU (i, j),

and CR(i, j) are the costs due to the generation of new

neighbor blocks separated by the removal seam previously.

These costs are calculated as follows:
⎧

⎪

⎨

⎪

⎩

CU (i, j) =
∥

∥S(i, j + 1) − S(i, j − 1)
∥

∥

CL(i, j) = CU (i, j) +
∥

∥S(i − 1, j) − S(i, j − 1)
∥

∥

CR(i, j) = CU (i, j) +
∥

∥S(i − 1, j) − S(i, j + 1)
∥

∥.

(8)

2) Adaptive Image Retargeting: The optimal block-based

seams can be determined by (7) and (8). As introduced

previously, the proposed image retargeting algorithm first

utilizes the block-based seam carving operation to resize the

image. Then the image scaling operation is used to obtain

the final retargeted images. In this paper, we propose to use

the image homogeneity to decide the number of removal

block-based seams. The number of removal block-based seams

in dimension p (horizontal or vertical) can be calculated as

follows:

ns
p =

λp

(

n p − nr
p

)

8
(9)

where ns
p is the number of removal block seams in dimension

p; λp represents the texture homogeneity of the image in

dimension p, which is used to determine the number of the
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

Fig. 6. Comparison of the different saliency detection algorithms. (a) Original images. (b)–(i) Saliency maps from [3], [5]–[7], [10], and [16], our proposed
algorithm and the ground truth, respectively.

removal block seams; n p is the length of the original image

in dimension p (width or height); nr
p is the length of the

retargeted image in dimension p (width or height). The value

of nr
p is decided by the size of the display screen of the client

based on the initial communication between the server and

client in real applications. As the proposed algorithm is based

on DCT blocks and the size of DCT blocks is 8 × 8, we

use the number eight to calculate the number of the removal

block-based seams in (9).

Texture homogeneity are widely used in various applications

[4], [40]–[42]. In this paper, we define a measurement for

texture homogeneity λ to determine the number of removal

block seams. The texture homogeneity defined here is depen-

dent on the energy spatial-distribution and the energy connect-

edness (here, the saliency map from the proposed saliency

detection model is regarded as the energy map). If the image

energy is more centralized and connected, there may be only

one or several small salient objects in the image with simple

background. In this case, we will use more seam carving

operation to remove the block-based seams. On the contrary,

with more disconnected and decentralized energy distribution,

the image may include one or several big salient objects, or

the context of the image is complex. In this case, we should

use more image scaling operation to resize the image for

preserving these salient objects or the context information.

The texture homogeneity of the image in dimension p

(horizontal or vertical) can be computed as follows:

λp = (1 − τp) ∗ υp (10)

where τp represents the spatial variance of the energy pixels

in dimension p; υp represents the connectedness of the

energy pixels in the dimension p. In this paper, the Otsu’s
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Fig. 7. Overall statistical result for retargeted images from four different
algorithms.

thresholding algorithm [43] is used to binarize the energy map

into energy pixels (the energy value is 1) and non-energy pixels

(the energy value is 0).

To simplify the description, we just demonstrate how to

calculate the horizontal variance of the energy pixels here. The

calculation process of vertical variance of the energy pixels is

similar. The horizontal variance of the energy pixels τ1 in the

image can be calculated as follows:

τ1 =
1

P

∑

(i, j )

|i − H |2 ∗ E(i, j ) (11)

H =
1

P

∑

(i, j )

i ∗ E(i, j ) (12)

where E(i, j ) is the energy value for the position (i, j); P

represents all the energy pixels in the image, P =
∑

(i, j ) E(i, j ).

From (12), we can see that H is the expected value of

the spatial location for the energy value in the image. Thus,

we can obtain the horizontal variance of the energy pixels

for the image based on (11) and (12). We set τ1 = 1 when

all the energy pixels are centralized into one square in the

image. In this case, the image texture is most homogeneous.

On the contrary, we set τ1 = 0 when all the energy pixels are

distributed uniformly over the image. In this case, the image

texture is considered the most inhomogeneous. We normalize

the τ1 from (11) based on these two cases and then use the

normalized τ1 to calculate λ1 in (10).

The connectedness of the energy pixels in the image is

measured by the number of the energy pixels in the neighbor-

hood of all energy pixels in the image. For each dimension

(horizontal or vertical) of the image, there are at most six

neighbor pixels for each energy pixel. The other two neighbor

pixels are from the other dimension and thus not considered.

We use υ i
p to represent the connectedness of the energy pixel

i for the dimension p. It can be computed as follows [40]:

υ i
p =

1

6

∑

z∈Mi

f (z) (13)

where Mi includes all six neighbor pixels around i ; f (z) is

the function to denote whether the neighbor pixel z is a energy

pixel or not.

The connectedness of the image energy in dimension p is

obtained as the sum of the connectedness of all energy pixels

Fig. 8. Detailed statistical result for retargeted images from four different
algorithms.

in the image as follows:

υp =
1

K

∑

i

υ i
p (14)

where K is the number of the energy pixels in the image.

We can obtain the connectedness of the image energy

according to (13) and (14). We set υp = 1 when the energy

pixels in the image are centralized as a connected square. In

this case, the image texture owns the greatest connectedness

with this amount of energy pixels. On the contrary, we set

υp = 0 when the energy pixels in the image are distributed

uniformly over the image. Based on these above two cases, the

υp from (13) is normalized between 0 and 1 as the relative

connectedness to be used in (10).

Therefore, the amount of removal block-based seams for

images can be obtained according to (9)–(14). After we

utilize the block-based seam carving to remove the optimal

block-based seams, the image scaling is used to scale the

retargeted image from the block-based seam carving to obtain

the final retargeted image.

IV. EXPERIMENTS

In this section, we evaluate the overall performance of the

proposed algorithm from two aspects: one is the performance

of the proposed saliency detection algorithm and the other is

the performance of the proposed image retargeting algorithm

in resizing images. The following two sections give the perfor-

mance comparisons between the proposed algorithms and the

existing ones from these two aspects, respectively.

A. Saliency Detection Evaluation

Saliency detection models are widely used to detect the

salient objects [4], [7], [8], for it can provide the posi-

tions of the salient objects in images. Therefore, a effi-

cient qualitative evaluation method for the performance of

saliency detection algorithms is to extract the salient objects in

images. Actually, salient object detection is widely utilized in

the performance evaluation of saliency detection algorithms

[3]–[7]. In this paper, we use the public database provided

by Achanta et al. [6] to evaluate the proposed saliency

detection algorithm. This database includes 1000 images with

accurately human-labeled ground truth for the salient objects.
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TABLE I

COMPARISON RESULT OF ROC AREAS BETWEEN DIFFERENT SALIENCY DETECTION MODELS

IT in [3] FT in [6] CA in [16] MR in [7] SR in [5] MZ in [10] Our model

ROC area 0.8028 0.8229 0.88834 0.8630 0.8025 0.7951 0.9397

(a) (b) (c) (d) (e) (f)

Fig. 9. Comparison of the different image retargeting algorithms. (a) Original images. (b)–(f) Retargeted images from [13], [14], [18], and [45], and our
proposed algorithm, respectively. The width of the retargeted images is 75% of the width of the original images.

We compare the proposed saliency detection algorithm with

other six existing ones: IT [3], FT [6], SR [5], CA [16],

MR [7], and MZ [10]. Three (FT, SR, and MR) of these

algorithms are implemented in the frequency domain while the

other three (IT, CA, and MZ) are built in the spatial domain. In

the public database [6], the sizes of the human-labeled ground

truth are the same as those of the original images. Therefore,

the saliency maps from all the saliency detection algorithms

are resized to the sizes of the original images for the fair

comparison.

Receiver operating characteristic (ROC) is widely used to

evaluate the performance of the saliency map [16], [7]. The

saliency map obtained by a computational saliency detection

model can be divided into the salient points and the non-salient

points through defining a threshold. The ground truth map

marked by subjects includes the target points and the back-

ground points. The percentage of target points falling into the

salient points from a computational saliency detection model

is true positive rate (TPR), while the percentage of background

points falling into the salient points is false positive rate

(FPR). The ROC curve for a specified saliency detection

algorithm can be achieved as the curve of TPR versus FPR

through choosing different thresholds. The overall quantitative

performance for this specified saliency detection algorithm can

be given by the area under the ROC curve, which is ROC

area. Generally, the larger the ROC area is, the better the

predication performance of the saliency detection algorithm

is for the salient object detection.

The ground truth map from the database [6] includes the

target points (the accurately labeled salient objects in images)

and the background points (the accurately labeled non-salient

areas), which can be shown in the Fig. 6(i). After obtaining

the saliency maps from different saliency detection models,

we choose different thresholds from 0 to 255 for these

saliency maps to get the ROC curves for different saliency

detection models. The ROC curves for different saliency

detection models are shown in Fig. 5. Table I shows the ROC

areas for all these saliency detection algorithms. From Fig. 5

and Table I, our proposed algorithm obviously outperforms

other existing ones. According to Table I, the ROC areas

from [7] and [16] are larger than those from [3], [5], and

[10]. This is coincident with the experimental results in the

studies [7] and [16].

We give some comparison results in Fig. 6. From Fig. 6(b)

and (g), we can see that the saliency maps from [3] and [10]

are mainly detect the contour of the salient objects. The reason

for this is that the saliency detection models in [3] and [10]

mainly consider the local contrast for calculating the saliency

map for the image. Furthermore, the saliency detection models

from [3] and [10] also detect some non-salient areas as

salient, as shown in saliency maps from Fig. 6(b) and (g).

The saliency maps in Fig. 6(c) and (f) are obtained from
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(a) (b) (c) (d) (e) (f)

Fig. 10. Comparison of the different image retargeting algorithms. (a) Original images. (b)–(f) Retargeted images from [13], [14], [18], and [45], and our
proposed algorithm, respectively. The height of the retargeted images is 75% of the height of the original images.

the phase-based saliency detection models [5], [7]. In these

models, the Fourier transform is used for images to obtain the

amplitude and phase first, then the saliency map is calculated

as the reconstructed image through inverse Fourier transform

on a constant amplitude (always set as 1) and the original

phase. These models obtain the saliency maps for images

mainly by the global contrast. Thus, the saliency maps from

Fig. 6(c) and (f) mainly include the HF areas (such as edges)

as salient. To improve the saliency detection model [3], the

authors in [6] built the saliency detection model by retaining

more frequency content for images. However, this model still

loses some visually important information in the saliency

map [saliency maps from the first, fifth, sixth, and seventh

columns in Fig. 6(d)] or detect some background areas as

salient [saliency maps from the second and fourth columns in

Fig. 6(d)]. Although the saliency maps in the fifth row seem

better than those from the models in [3], [5], [7], and [10], they

also suffer the defect that the contour of the salient objects is

much more salient than other parts of the salient objects in

images, as shown in Fig. 6(e). On the contrary, our proposed

saliency detection can obtain more accurate salient areas for

images, as shown from the saliency maps from the Fig. 6(h).

It is commonly accepted that the texture features for DCT

blocks will change in different compression ratios. However,

the change will not significantly affect the detected saliency

map of the image in the proposed algorithm. We have

conducted the experiments to investigate the influence of the

compression ratio. Experimental results demonstrate that the

image compression has little influence on the saliency map. On

the other hand, one recent study has shown that video coding

impairments would not disturb the visual attention regions

from observers [44]. Therefore, the normal image/video

compression will not change the saliency results from the

proposed algorithm and the observers. In addition, we have

also conducted the experiments for the images with different

sizes. Experimental results have shown that the saliency map

will not change greatly with the changed image sizes. In this

paper, the saliency value for each DCT block is calculated

through computing the weighted differences between this DCT

block and all other DCT blocks in the image. In the JPEG

standard, the size of each DCT block is 8 × 8 and the DCT

blocks are less in the images with smaller sizes. Therefore, the

computational cost will decrease with smaller image sizes. In

this paper, we do not provide the experimental results for

the saliency map of the images with different sizes and

compression ratios for the consideration of saving space.

B. Image Retargeting Evaluation

The performance of image retargeting algorithms greatly

depends on two factors: the visual significance map and the

image resizing operation. In this paper, the saliency map in

the compressed domain is used as the visual significance map

to measure the visual importance for each pixel in images.

The performance of the proposed saliency detection in the

compressed domain is demonstrated in the above experi-

ment. In this experiment, we compare the performance of

the proposed image resizing operation with that from other

existing ones.

To demonstrate the performance of our proposed image

retargeting algorithm in the compressed domain, we use an

image dataset including 25 images to conduct a user study.

The compression ratio is about 1.34 b/p for these images.

Three state-of-the-art image retargeting algorithms [13], [18],

[45] are adopted for comparisons. Eleven participants (four

are female while others are male) involve in this experiment.
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(a) (b) (c) (d) (e) (f)

Fig. 11. Comparison of the different image retargeting algorithms. (a) Original images. (b)–(f) Retargeted images from [13], [14], [18], and [45], and our
proposed algorithm, respectively. The width and height are 75% of the width and height of the original images, respectively.

The original images are used as reference images. The experi-

ments are conducted in the typical laboratory environment. All

retargeted images from four different algorithms are displayed

in the random order on the screen. Mean opinion scores

(1–5) are recorded by participants where 1 means bad viewing

experience and 5 means excellent viewing experience. Each

participant votes for this image dataset. The statistical results

for the retargeted images are shown in Figs. 7 and 8.

Fig. 7 shows the overall mean scores and variances from

four different image retargeted algorithms based on the

25 images. From this figure, we can see that the mean

score from our proposed algorithm is higher than those

from other three ones. This means that the overall viewing

experience from the retargeted images from our proposed

algorithm is better than those from others. Meanwhile, the

score variance from our proposed algorithm is lower than

those from others. This means that the retargeted results

from our proposed algorithm are more stable than those

from others. From this figure, we can see that the overall

viewing experience from the algorithm [45] is better than

other two algorithms [13], [18]. However, the stability from

the algorithm [45] is not as good as the other two [13], [18].

Fig. 8 presents the number of the retargeted images under each

score. From this figure, most of the retargeted images from

our proposed algorithm provide better viewing experience for

users.

Here, we give some visual comparison results in

Figs. 9–12. In these figures, we add the results of one

saliency-based image retargeting algorithm [14] for the

comparison. From Figs. 9–11, we can see that the retargeted

images from the algorithm [18] suffer serious distortion.

The viewing experience of the retargeted images from the

algorithms [13], [14] is better than that from algorithm [18].

However, there is still some distortion in these retargeted

images from [13] and [14], as shown in the first and third

rows in Fig. 9, and the second row in Fig. 11. The retargeted

coin from [13] and [14] in the second row of Fig. 11 obvi-

ously suffer serious distortion. In addition, compared with the

original images, the salient objects in the retargeted images

from [13] and [14] become much smaller, as shown in the

first row in Fig. 9 and the third row in Fig. 11. From

Figs. 9(d)–11(d), we can see that the retargeted images from

[45] obviously lose some important visually information. In

addition, there is some serious distortion in some retargeted

images from [45], as shown in the third row in Figs. 10 and 11.

On the contrary, the retargeted images from our proposed

image retargeting algorithm are obviously better than those

from other algorithms. In Fig. 12, the retargeted images with
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(a)

(b)

(c)

(d)

(e)

(f)

Fig. 12. Comparison of the different image retargeting algorithms. (a) Orig-
inal image. (b)–(f) Retargeted images from [13], [14], [18], and [45], and our
proposed algorithm, respectively. The width of the three retargeted images is
50%, 60%, and 80% of the width of the original image, respectively.

different sizes from one sample image are given for different

image retargeting algorithms. From this figure, we can see

that there is some distortion with the retargeted images from

[13], [14], and [18]. From the Fig. 12(d), the retargeted image

with 80% width from [45] can preserve the salient objects in

the image. However, the retargeted images with smaller width

sizes lose much important visually information, as shown

in the second and third retargeted images from [45] in the

Fig. 12(d).

V. CONCLUSION

Saliency detection was widely used in various image

processing applications. Existing saliency detection algorithms

were implemented in the uncompressed domain. However,

images over Internet were typically stored in the compressed

format of JPEG. In this paper, we proposed a novel saliency

detection model in the compressed domain. In addition, we

also design a novel adaptive image retargeting algorithm

in the compressed domain based on the proposed saliency

detection model.

First, we extracted the intensity, color, and texture features

from DCT coefficients in the JPEG bit-stream to calculate

the DCT block differences based on Hausdorff distance.

Combining the Gaussian model for the Euclidean distances

between the DCT blocks, we utilized the DCT block differ-

ences to obtain the saliency map for JPEG images. Exper-

imental results showed that the proposed saliency detection

model in the compressed domain outperforms the existing

ones.

Furthermore, based on the proposed saliency detection

model, we design a novel adaptive image retargeting algo-

rithm in the compressed domain. The saliency map from

our proposed saliency detection model was used as the

visual significance map for our image retargeting algorithm.

The multioperator operation including the block-based seam

carving and the image scaling is utilized for image resizing.

Different from the existing studies which use the image

similarity to determine the number of seam carving operation,

the texture homogeneity was defined to determine the number

of the removal block-based seams in this paper. Experimental

results showed that the performance of the proposed image

retargeting algorithm is better than those from existing ones.
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