
Saliency Detection on Light Field

Nianyi Li1 Jinwei Ye1 Yu Ji1 Haibin Ling2 Jingyi Yu1

1University of Delaware, Newark, DE, USA. {nianyi,jye,yuji,yu}@eecis.udel.edu
2Temple University, Philadelphia, PA, USA. hbling@temple.edu

Abstract

Existing saliency detection approaches use images as in-

puts and are sensitive to foreground/background similari-

ties, complex background textures, and occlusions. We ex-

plore the problem of using light fields as input for saliency

detection. Our technique is enabled by the availability of

commercial plenoptic cameras that capture the light field of

a scene in a single shot. We show that the unique refocusing

capability of light fields provides useful focusness, depths,

and objectness cues. We further develop a new saliency de-

tection algorithm tailored for light fields. To validate our

approach, we acquire a light field database of a range of

indoor and outdoor scenes and generate the ground truth

saliency map. Experiments show that our saliency detection

scheme can robustly handle challenging scenarios such as

similar foreground and background, cluttered background,

complex occlusions, etc., and achieve high accuracy and

robustness.

1. Introduction

Salient region detection is a long standing problem in

computer vision. It aims to locate pixels or regions in an

image that most attract human’s visual attention. Accurate

and reliable saliency detection can benefit numerous tasks

ranging from tracking and recognition in vision to image

manipulation in graphics. For example, successful salien-

cy object detection algorithms facilitate automated image

segmentation [27], more reliable object detection [11], ef-

fective image thumbnailling [30] and retargeting [28].

State-of-the-art solutions have focused on integrating

low-level features (pixels or superpixels) and high-level de-

scriptors (regions or objects). However, existing solution-

s have many underlying assumptions, e.g., the foreground

should have a different color from the background, the

background should be relatively simple and smooth, the

foreground is occlusion free, etc. In reality, many real im-

ages violate one or multiple assumptions as shown in Fig. 1.
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Figure 1. Light field vs. traditional saliency detection. Similar

foreground and background or complex background imposes chal-

lenges on state-of-the-art algorithms (e.g., GBMR [35]). Using

light field as inputs, our saliency detection scheme is able to ro-

bustly handle these cases.

By far, nearly all existing saliency detection algorithms

utilize images acquired by a regular camera. In this paper,

we explore the salient object detection problem by using a

completely different input: the light field of a scene. A light

field [6] can be essentially viewed as an array of images cap-

tured by a grid of cameras towards the scene. Commercial

light field cameras can now capture reasonable quality light

fields in a single shot. Lytro, for example, mounts a lenslet

array in front of the sensor (as shown in Fig. 2) to acquire a

light field at a 360×360 (upsampled to 1080×1080) spatial

resolution and 10× 10 angular resolution. The Raytrix R11

camera can produce a higher spatial resolution at the cost

of lower angular resolution. The multi-view nature of the

light field has enabled new generations of stereo matching

[17] and object segmentation algorithms [32]. In this paper,

we explore how to conduct salient object detection using a

light field camera.

Conceptually, the light field data can benefit saliency de-

tection in a number of ways. First, the light field has a u-

nique capability of post-capture refocusing [25], i.e., it can

synthesize a stack of images focusing at different depths.

The availability of a focal stack is inline with the recent-

ly proposed “focusness" metric [16]. It is the reciprocal of

blurriness and can be estimated in terms of edge scales via

scale-space analysis. Second, a light field provides an ap-
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proximation to scene depth and occlusions. In saliency de-

tection, even a moderately accurate depth map can greatly

help distinguish the foreground from the background. This

is also inline with the “objectness" [16], i.e., a salient region

should complete objects instead of cutting them into pieces.

In addition to focusness and objectness, we also exploit

the recent background prior [33]. Instead of directly de-

tecting salient regions, these algorithms aim to first find the

background and then use it to prune non-saliency objects.

Robust background detection, however, is challenging, es-

pecially when the foreground and background have similar

appearance or the background is cluttered. To resolve this

problem, we utilize the focusness and objectness to more

reliably choose the background and select the foreground

saliency candidates. Specifically, we compute a foreground

likelihood score (FLS) and a background likelihood score

(BLS) by measuring the focusness of pixels/regions. We s-

elect the layer with the highest BLS as the background and

use it to estimate the background regions. In addition, we

choose regions with a high FLS as candidate salient object-

s. Finally, we conduct contrast-based saliency detection on

the all-focus image and combine its estimation with the de-

tected foreground saliency candidates.

For validation, we acquire a light field database of a

range of indoor and outdoor scenes and generate the ground

truth saliency map. Experiments show that our saliency de-

tection scheme can robustly handle challenging scenarios

such as similar foreground and background, cluttered back-

ground, and images with multiple depth layers and with

heavy occlusions, etc., and achieve high accuracy and ro-

bustness.

2. Related Work

The saliency detection literature is huge and existing so-

lutions can be classified in terms of top-down vs. bottom-

up, center vs. background prior, with vs. without depth

cue, etc. Readers can refer to [4] for a comprehensive com-

parisons on state-of-the-art solutions. We discuss the most

relevant ones.

Top-down vs. Bottom-up. Top-down approaches [22,

34] use visual knowledge commonly acquired through

learning to detect saliency. Approaches in this category are

highly effective on task-specified saliency detection, e.g., i-

dentifying human activities [24]. However, a large number

of annotated images need to be used for training. Bottom-up

methods do not require training and rely on low-level fea-

tures such as color contrast [14], pixel/patch locations [29],

histogram [10], etc., for saliency detection. Our approach

falls into the category of bottom-up approaches where we

add an additional class of focus-related cues.

Center vs. Background Priors. Many saliency detec-

tion schemes exploit contrast cues, i.e., salient objects are

lens
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Figure 2. A Lytro light field camera can capture a light field to-

wards the scene in a single shot. The results can be then used to

synthesize a focal stack and further a all-focus image.

expected to exhibit high contrast within certain context.

Koch and Itti [14] are the first to use center-surround con-

trast of low level features to detect saliency. Motivated by

their work, many existing approaches compute the center-

surround contrast either locally or globally. Local methods

compute the contrast within a small neighborhood of pix-

els by using color difference [5], edge orientations [21], or

curvatures [31]. Global methods consider statistics of the

entire image and rely on features such as power spectrum

[12], color histogram [7], and element distributions [29].

Although the center-surround approaches are proven

highly effective, Wei et al. [33] suggested that background

priors are equally important. In fact, one can eliminate the

background to significantly improve foreground detection.

Yang et al. [35] observed that connectivity is an important

characteristics of background and used a graph-based rank-

ing scheme to measure patch similarities. Since most exist-

ing approaches rely on color contrast, when the foreground

and background have similar color, these approaches can

easily fail. Our approach resolves this issue by combining

color contrast, background prior, and focusness prior w.r.t.

different depth layers obtain from the light field.

Depth Cue. Recent studies on human perception [18]

have shown that depth cue plays a important role in deter-

mining salient regions. However, only a handful of works

incorporate depth maps into saliency models. Maki et al.

[23, 24] used depth cue to detect human motions. Their

depth features are highly task-dependent and the detection

is performed in a top-down fashion. Niu et al. [26] comput-

ed saliency based on the global disparity contrast in a pair

of stereo images. Lang et al. [18] used a Kinect sensor to

capture the scene depth. Ciptadi et al. [8] used 3D layout-

s and shape features from depth maps. In this paper, we

exploit rich depth information embedded in the light field.

Specifically, we use coarse depth information embedded in

a focal stack to guide saliency detection. In addition, com-



pared with Kinect or stereo cameras, Lytro or Raytrix light

field cameras have a much smaller form factor, i.e., nearly

the same size as a webcam.

3. Computing Light Field Saliency Cues

Fig. 3 shows our saliency detection approach using the

light field. We first generate a focal stack and an all-focus

image through light field rendering. For each image in the

focal stack, we detect the in-focus regions and use them as

the focusness measure. Next, we combine the focusness

measure with the location prior to extract the background

and the foreground salient candidates. We further couple

the background prior with contrast-based saliency detection

for detecting saliency candidates in the all-focus image. Fi-

nally, we use the objectness as weights for combining the

saliency candidates from the all-focus image and from the

focal stack as the final saliency map.

3.1. Focal Stack and All­Focus Images

A unique capability of light field is after-capture refo-

cusing. Here we briefly reiterate its mechanism. A light

field stores regularly sampled views looking towards the

scene on a 2D sampling plane. These views form a 4D

ray database and new views can be synthesized by query-

ing existing rays. Given the light field of a scene, one can

synthesize a Depth-of-Field (DoF) effects by selecting ap-

propriate rays from the views and blending them, as shown

in Fig. 2. Isaksen et al. [13] proposed to render DoF by

reparameterizing the rays onto the focal plane and blending

them via a wide aperture filter. Ng et al. [25] proposed a

similar technique in the Fourier space and the solution has

been adopted in the Lytro light field camera. Using the fo-

cal stack, we can fuse an all-focus image, e.g., through pho-

tomontage [2]. We refer the readers to the comprehensive

survey on light field imaging [19, 36] for more details about

the refocusing algorithm.

In this paper, we use the Lytro camera as the main imag-

ing device to acquire the light field. The Lytro camera us-

es an array of 360 × 360 microlenses mounted on an 11

megapixel sensor, where each microlens resembles a pin-

hole camera. It can produce the refocused results at a reso-

lution of 360× 360.

We compose an all-focus image by focus fusion using

existing online-tools 1 from the focal stack so that the all-

focus image has the same resolution as the focal stack. In

addition, it is worth noting that DoF effect is not significant

in Lytro focal stack due to small microlens baseline. As

a result, each slice is just slightly defocused. Therefore,

brute-force approaches such as applying saliency detection

on each slice and then combine the results are not directly

applicable since all slices will produce similar results.

1http://code.behnam.es/python-lfp-reader/
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Figure 3. Processing pipeline of our saliency detection algorithm

for light fields.

Before proceeding, we explain our notation. We denote

{Ii}, i = 1, ..., N as the focal stack synthesized from the

light field and I∗ the all-focus image by fusing the focused

regions of {Ii}. Our goal is to compute a saliency map w.r.t.

I∗. We segment each slice {Ii} and I∗ into a set of small

non-overlapping regions (superpixels) using the mean-shift

algorithm [9]. This segmentation helps to preserve edge

consistency and maintain proper granularity. We use (x, y)
index a pixel and r to index to a region.

3.2. Focusness Measure

We start with detecting the in-focus regions in each fo-

cal stack image Ii and use them as the focusness prior. In

the recent focusness-based saliency detection work, Jiang et

al. [16] measured focusness via edge sharpness. However,

edge-based in-focus detection is only reliable when the out-

of-focus regions appear severely blurred. In our case, the D-

oF of Lytro is not as shallow as the one in DSLR. Therefore,

edges in out-of-focus regions are not as blurred as in the

classical datasets, as shown in Fig. 2. It is hence difficult to

use spatial algorithms to separate the in-focus/out-of-focus

regions. Our approach is to analyze the image statistics in

the frequency domain.

Given an n × n image I , we first transform I into fre-

quency domain by the Discrete Cosine Transform (DCT)

D(u, v) =

n−1∑

x=0

n−1∑

y=0

cos(
πu

2n
(2x+ 1)) cos(

πv

2n
(2y + 1))I(x, y)

(1)

Next, we compute the image’s response with respect to

different frequency components. We first apply a series

of M bandpass filters {Pm}, m = 1, ...,M on D(u, v)
for decomposing the signal and then transform the decom-

posed results back via the inverse DCT. Recall that out-of-

focus blurs will remove certain high frequency components.

Therefore, only regions with a sharp focus will have high re-

sponses at all frequencies. In our implementation, we use

a sliding window of 8 × 8 pixels and compute the variance

τm within each patch with respect to filter Pm. To ensure

reliable focusness measurements, we use the harmonic vari-

http://code.behnam.es/python-lfp-reader/


ance [20] to measure the overall variance over all M filters:

F(x, y) =

[

1

M − 1

M
∑

m=1

1

τ2m(x, y)

]−1

(2)

We use F(x, y) as the focusness measure at pixel (x, y).
Under this formulation, only when the response of all filters

are high, the harmonic variance F(x, y) will be high. Any

small τm will result in low F . Therefore, this formulation

ensures that only local windows preserving all frequency

components would be deemed as in-focus. Since both DCT

and harmonic variance computations are effective, we com-

pute F for every pixel in the image. Finally, to measure the

focusness of a region, we simply compute the average of all

pixels within a region r

F(r) =
∑

(x,y)∈r

F(x, y)

Ar

(3)

where Ar is the total number of pixels in r. We will use

this region-based focusness prior F(r) for selecting back-

ground and saliency candidates in Section 3.3 and 3.4. It is

worth noting that more sophisticated focusness estimation

techniques such as scanning through the focal volume can

be used. In practice, our measure is sufficient for the task of

saliency detection and is much faster.

3.3. Background Selection

Next, we set out to find the background slice. Notice

that the background slice is not equivalent to the farthest s-

lice in the focal stack. Recall that we synthesize the focal

stack without any knowledge on scene depth range. There-

fore, the farthest slice may not contain anything in focus

and hence provides little cues. Second, the slice that have

the farthest object in focus does not necessarily translate to

the background slice, e.g., the object may be isolated from

majority of the background and should be treated as an out-

lier.

Our approach is to analyze both the distribution of the

in-focus objects with respect to their locations in the image:

if the majority of in-focus objects (pixels) lies near the bor-

der of the image, then they are more likely to belong to the

background. Further, if the corresponding depth layer is far

away, its in-focus objects are also more likely to be back-

ground. We therefore scan through all focal slices. For each

slice Ii, we integrate (project) the focusness measure F of

all pixels along the x and y axes respectively to form two

1D focusness distributions as

Dx =
1

α

h
∑

y=1

F(x, y), Dy =
1

α

w
∑

x=1

F(x, y). (4)

where w and h are the width and height of the image and

α =
∑

x

∑

y F(x, y) is the normalization factor.

A common assumption in saliency detection is that an

salient object is more likely to lie at the central area sur-

rounded by the background [33]. If a focal slice correspond-

s to the background, its Dx and Dy should be high near the

endpoints but low in the middle. To quantitatively measure

it, we define a "U-shaped" 1D band suppression filter

U(x,w) = (
1

√

1 + (x/η)2
+

1
√

1 + ((w − x)/η)2
) (5)

where η controls the suppression bandwidth in U depending

on the image size/resolution, i.e., a high resolution image

should have a high η. The Lytro focal stack images have a

uniform resolution of 360 × 360 and we use η = 28 in all

experiments.
Finally, we scale the focusness distribution by the sup-

pression filter to compute a Background Likelihood Score
(BLS) for each focal slice Ii

BLS(Ii) = ρ · [
w∑

x=1

D
i
x(x) · U(x,w) +

h∑

y=1

D
i
y(y) · U(y, h)]

(6)

where ρ = exp(λ·i
N
) is the weighting factor of layer i in

terms of depth, N is the total number of slices in the focus

stack and λ = 0.2. We choose the slice with the highest

BLS as the background slice IB . It is important to note that

each focal slice has a corresponding BLS even though it is

not chosen as IB .

3.4. Objectness and Foreground Measures

Alexe et al. [3] suggested that a salient object should be

complete instead of being broken into pieces and refer to

this property as the objectness. Given a focal stack image

Ii, we measure the objectness of its focused region using a

1D gaussian filter with mean µ and variance σ as

G(x) = exp(−
x− µ

2σ2
) (7)

µ corresponds to the centroid of the object and σ as its

size. Recall that we have already computed the focusness

distributions Dx or Dy . Therefore, we can directly obtain

µ = xp or yp, that corresponds to the peak location of Dx

or Dy respectively. If multiple peaks exist, we simply take

their average.
Next we estimate σ as the size of the object. If σ is too

small, isolated small superpixels would be treated as an ob-
ject. If σ is too large, i.e., it would treat the entire image as
an object. In our implementation, we choose σ = 45, i.e.
50% Gaussian covers half of the Dx or Dy . We compute
the objectness score (OS) for each focal slice

OS(Ii) =

w∑

x=1

D
i
x(x) · G(x,w) +

h∑

y=1

D
i
y(y) · G(y, h) (8)

Conceptually, if an object in a given slice is salient, it

should have a low BLS and high OS, indicating it belongs to
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Figure 4. Separating the foreground and background using fo-

cusness cues. Left: the computed foreground likelihood score

(FLS) and the background likelihood score (BLS) computed on

different focal slices. Right: Examples on computing objectness

measure (up) and background measure (bottom). Green curve is

corresponding filter (U-shape or Gaussian); blue curve is sample

Dx/Dy; red curve is the scaled distribution by the filter.

the foreground. We therefore define a foreground likelihood

score (FLS) as

FLS(Ii) = OS(Ii) · (1−BLS(Ii)) (9)

Same as how we select the background slice IB , we

choose the foreground slices {IF } as one with the higher

FLS (FLS > 0.7×max(FLS)). Fig. 4 illustrates the pro-

cess of finding the background and foreground slices on a

sample image.

4. Saliency Detection

Finally, we combine the cues obtained from the light

field focal stack to detect saliency in the all-focus image

I∗.

Location Cues. We first locate the background regions

in I∗ using the focusness measure FB(r) of the estimat-

ed background slice IB . To incorporate the location prior

[29], we scale the focusness measure for each region Rr in

terms of its distance to the center of the image and use it as

a new background cue

BC(r) =
1

γ
[FB(r) · ||pr − c||2] (10)

where γ is a normalization factor, pr is the centroid of r
and c is image center. We further threshold the BC for

determining the background regions {Br′}, r′ = 1, ...,K
in I∗ (where K is the total number of background regions).

We can then compute the Location cue as:

LC(r) = exp(−β ·BC(r)) (11)

In our experiment, we use β = 10.

Contrast Cues. Once we obtain the background regions,

we apply the color-contrast based saliency detection on the

non-background region. For each non-background region

r and background region r′ in I∗, we calculate their col-

or difference δ(r, r′) w.r.t. r′ as δ(r, r′) = max{|red(r) −
red(r′)|2, |green(r)− green(r′)|2, |blue(r)− blue(r′)|2}.

To improve robustness, we use compute the harmonic vari-

ance of all δ(r, r′) for r

HV (r) =

[

1

K

K
∑

r′=1

1

δ(r, r′)

]−1

(12)

Combining the harmonic variance of color difference

HV with location cue LC, we obtain a color contrast based

saliency map as

SC(r) = HV (r) · LC(r) (13)

Foreground Cues. From the detected foreground salient

candidates {IFj }, j = 1, ..., L via focusness analysis (where

L is the total number of foreground slices), we compute the

foreground cues the combining the focusness maps FF
j (r)

and the location cue LC:

Sj
F (r) = FF

j (r) · LC(r) (14)

Combine. Finally, We use the objectness measure as

weight for combining the contrast based salience map

SC(r) and foreground maps Sj
F (r) as:

S(r) =

L
∑

j=1

ωj · S
j
F (r) + ωC · SC(r) (15)

where {ωj} and ωC are the objectness weights calculated

by Eqn. 8.

5. Experiments

Recall that most previous approaches use a single image

as input where as our approach uses the light fields. Since

a light field captures much richer information of the scene

than a single image, our comparisons do not intend to show

that our technique outperforms the state-of-the-art as any

such comparisons would be unfair. Rather, our goal is to

show that the additional information provided by the light

field can greatly improve saliency detection tasks.

Further, traditional benchmark data sets [21, 1] are all

single images and cannot be used to test our solution. We

therefore first collect a dataset of 100 light fields using the

Lytro light field camera. The dataset consists of 60 indoor

scenes and 40 outdoor scenes. For each data, we ask three

individuals to manually segment the saliency regions from

the all-focus image. The results are deemed ground truth
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Figure 5. Visual Comparisons of different saliency detection algorithms vs. ours on our light field dataset.
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Figure 6. (a) PRC comparisons on our light field dataset; (b) PRC comparisons using different cues in our approach.

only when all three results are consistent (i.e., they have an

overlap of over 90%).

We show our light field saliency detection results and

the results using a range of unsupervised schemes on

the all-focus image. These include algorithms based on

spectral residual (SR [12]), spatiotemporal-cues (LC[37]),

graph-based saliency (GB [15]), frequency-tuning (FT [1]),

global-contrast (HC and RC [7]), Low Rank Matrix Recov-

ery (LRMR [29]), Graph-Based Manifold Ranking (GBMR

[35]), focusness-based (UFO [16]) and Hierarchical Salien-

cy (HS [34]). All these methods have open source code and

we use the default parameter.



To quantitatively compare different methods, we use the

canonical precision-recall curve (PRC) to evaluate the sim-

ilarity between the detected saliency maps and the ground

truth. Precision corresponds to the percentage of salient pix-

els that are correctly assigned and recall refers to the frac-

tion of detected salient region w.r.t. the ground truth salien-

cy. Fig 6(a) shows the PRC comparison result on our light

field dataset. Our experiment follows the settings in [7],

i.e., we binarize the saliency map at each possible threshold

within [0, 255].

Notice that the PRC are less smooth than they appear in

traditional saliency works. This is due to the small amount

of data in our dataset (100 light field sets vs. 1000 images

in classical benchmarks), although the curves still provide

useful insights on the performance. Also note that a large

number of scenes in our light field dataset is highly chal-

lenging to previous techniques, i.e., many have complex

background or similar foreground and background. Fig. 5

shows sample in-focus images of these difficult scenes. We

observe that SR, HS, LC and HC produce a very low pre-

cision (0.3 0.4) whereas the recently proposed GBMR [35]

and HS [34] can still achieve reasonable performance. This

is partially due to the background connectivity prior used

in GBMR and the multi-scale features used in HS. Result-

s using our technique produces the highest precision in the

entire recall range. This illustrates the importance of fo-

cusness and objectness prior provided by the light field.

In Fig. 5, we show the saliency detection results for visu-

al comparisons. For very challenging scenes such as the

blue bird (second row) , our approach produces much better

results than single-based techniques.

We further compare the saliency components obtained

using different cues, i.e., color contrast, location and focus-

ness cues. Fig. 6(b) shows the PRC comparisons using indi-

vidual vs. combined cues. The plot illustrates that each cue

has its unique contribution to saliency detection, although

in some cases, an image can be dominated by a specific

cue as shown in Fig. 7. In the first row, color contrast pro-

vides most valuable cues and the estimated saliency from

it resembles the final one. This is mainly because the blue

mug lacks texture and hence is not robustly detected as the

foreground object to provide focusness cues. In contrast, in

the flower scene in the second row, the color contrast result

treats both the foreground flower and the background clutter

as saliency. The focusness cue, however, manages to correct

the errors by removing the background. In the last example,

the color contrast result misses the foreground bottle and

the focusness cue manages to add it back.

Limitations. The performance of our algorithm is largely

dependent on the quality of the acquired light field. Lytro,

however, has a much narrow Field-of-View than regular

cameras. Therefore, objects in our light fields generally

(a) (b) (c) (d)

Figure 7. Saliency detection using different cues. (a) All-focus

images; (b) Detected saliency using focusness cues; (c) Detected

saliency using color contrast. (d) Saliency results by combining

(b) and (c).

appear “bigger" than in other benchmarks. With emerg-

ing interest on light field camera designs, we expect next-

generation models to overcome this limitation.

There are also alternative approaches to use the light field

for saliency detection. For example, one can potentially first

construct a depth map using stereo matching. However, the

quality of stereo matching depends largely on scene compo-

sition. Nevertheless, even a low quality depth map may pro-

vide useful cues comparable to the focusness cue. Further-

more, it is also possible to first conduct saliency detection

on the all-focus image and then use the results to improve

the quality and speed of light field stereo matching.

6. Conclusions

We have presented a saliency detection algorithm tai-

lored for light fields. We believe this is the first light field

saliency detection scheme. The key advantage of using a

light field instead of a single image is that it provides both

focusness and depth cues. In recent works [26, 16], these

new cues have shown great success in improving accuracy

and robustness in saliency detection. Our solution echoes

these observations and also provides an alternative and more

robust method to extract these cues through the analysis of

light fields. Experiments show that our technique can han-

dle many challenging scenarios that cast problems on tradi-

tional single-image-based algorithms. Another contribution

of our work is the construction of the light field saliency

dataset which consists of the raw light field data, the syn-

thesized focal stacks and all-focus images, and the ground

truth saliency maps. Our immediate future work is to build

a much larger and comprehensive database and share it with

the community.
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