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School of Computer and Communication Sciences (IC)
Ecole Polytechnique Fédérale de Lausanne (EPFL)

ABSTRACT

Detection of visually salient image regions is useful for applications

like object segmentation, adaptive compression, and object recogni-

tion. Recently, full-resolution salient maps that retain well-defined

boundaries have attracted attention. In these maps, boundaries are

preserved by retaining substantially more frequency content from

the original image than older techniques. However, if the salient

regions comprise more than half the pixels of the image, or if the

background is complex, the background gets highlighted instead of

the salient object. In this paper, we introduce a method for salient

region detection that retains the advantages of such saliency maps

while overcoming their shortcomings. Our method exploits fea-

tures of color and luminance, is simple to implement and is com-

putationally efficient. We compare our algorithm to six state-of-the-

art salient region detection methods using publicly available ground

truth. Our method outperforms the six algorithms by achieving both

higher precision and better recall. We also show application of our

saliency maps in an automatic salient object segmentation scheme

using graph-cuts.

Index Terms— Image saliency, segmentation, content-aware

image re-targeting, seam carving.

1. INTRODUCTION

Visual saliency is the perceptual quality that makes an object, per-

son, or pixel stand out relative to its neighbors and thus capture

our attention. The focus of this paper is the automatic detection

of visually salient regions in images. This has applications such

as adaptive content delivery [1], adaptive region-of-interest based

image compression, image segmentation [2], object recognition, and

content aware image resizing [3]. Our algorithm finds low-level, pre-

attentive, bottom-up saliency. It is inspired by the biological concept

of center-surround contrast, but is not based on any biological model.

Current methods of saliency detection can be computationally

expensive and often generate saliency maps that have low resolution

or poorly defined borders. In addition, some methods produce higher

saliency values in the vicinity of object edges instead of generating

maps that uniformly cover the whole object. These drawbacks of-

ten arise from failing to exploit appropriate spatial frequency con-

tent of the original image, as analyzed by Achanta et al [4]. They

introduce a frequency-tuned approach to estimate center-surround

contrast using color and luminance features that offers three advan-

tages over existing methods: uniformly highlighted salient regions

with well-defined boundaries, full resolution, and computational ef-

ficiency. This leads to a global saliency estimation approach that
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Fig. 1. Top row images are original images. Bottom row images are

the corresponding saliency maps using our algorithm.

relies on the premise that there is no information available about the

scale of the object. While this method outperforms several existing

methods in terms of precision, recall and speed, in the presence of

large salient objects or complex backgrounds, it may fail to correctly

highlight the salient regions.

In this paper we rely on the hypothesis that with respect to the

image borders we can make assumptions about the scale of an ob-

ject. We thus vary the bandwidth of the center surround-filtering near

image borders using symmetric surrounds. Our algorithm retains the

advantages of accuracy, speed, and simplicity, while at the same time

overcoming the drawbacks of existing methods. We prove its effec-

tiveness by performing a precision-recall comparison with six other

methods on a publicly available ground truth database of 1000 im-

ages and in a graph-based segmentation scheme.

2. SALIENCY COMPUTATION METHODS

Saliency has been referred to as visual attention [5, 1], unpredictabil-

ity, rarity, or surprise [6]. Saliency estimation methods can broadly

be classified as biologically based, purely computational, or those

that combine the two ideas. In general, most methods employ a low-

level approach of determining contrast of image regions relative to

their surroundings using one or more features of intensity, color, and

orientation.

Itti et al. [7] base their method on the biologically plausible

architecture proposed by Koch and Ullman [8]. They determine

center-surround contrast using a Difference of Gaussians (DoG) ap-

proach. Frintrop et al. [9] present a method inspired by Itti’s method,

but they compute center-surround differences with square filters and

use integral images to speed up the calculations.

Some methods are purely computational [1, 10, 11, 12] and

are not explicitly based on biological vision principles. Ma and

Zhang [1] and Achanta et al. [12, 4] estimate saliency using center-

surround feature distances. Hu et al. [10] estimate saliency by

applying heuristic measures on initial saliency measures obtained by

histogram thresholding of feature maps. Gao and Vasconcelos [13]

maximize the mutual information between the feature distributions
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Fig. 2. Band-pass filtering output with progressively increasing bandwidth from left to right (values in brackets show spatial frequency range).

The high frequency cut-off is kept the same while the low-frequency cut-off is reduced. Pixels that are far removed from the salient object’s

boundaries need small cut-off frequencies to be successfully detected as salient.

of center and surround regions in an image, while Hou and Zhang

[11] rely on frequency domain processing.

The third category of methods are those that incorporate ideas

that are partly based on biological models and partly on computa-

tional ones. For instance, Harel et al. [14] create feature maps with

Itti’s method but perform their normalization using a graph based

approach. Other methods use a computational approach like maxi-

mization of information [15] that represents a biologically plausible

model of saliency detection.

Some algorithms take a multi-scale approach [7, 12], while oth-

ers operate on a single scale [1, 10]. Depending on the features used,

either feature maps are created separately and combined to obtain

the final saliency map [1, 10, 9, 16], or a combined saliency map is

obtained directly [1, 12].

3. LIMITATIONS OF EXISTING METHODS

The saliency maps generated by several methods suffer from low

resolution [7, 1, 14, 9, 11]. Itti’s method produces saliency maps

that are 1/256th the original image size in pixels, while Hou and

Zhang [11] output maps of size 64 × 64 pixels for any input image

size. Some exceptions are the algorithms presented by Achanta et al.

[12, 4] that output saliency maps of the same size as the input image.

Some methods may generate maps that have ill-defined object

boundaries [7, 14, 9], limiting their usefulness in certain applica-

tions. Some others highlight the salient object boundaries but fail to

highlight the entire salient region [1, 11], or, highlight smaller salient

regions better than larger ones [12].

These limitations are explained from a frequency domain per-

spective by Achanta et al. [4] to be the consequence of limiting

the range of spatial frequency content retained from the original im-

age. The authors then propose a frequency-tuned algorithm for com-

puting saliency maps that exploits almost all of the low frequency

content and most of the high frequency content to obtain high qual-

ity saliency maps using color and intensity features. Their saliency

map is obtained by computing the Euclidean distance of the aver-

age CIELAB vector of all pixels of an input image with each pixel

(also a CIELAB vector) of a Gaussian blurred version (using a

3 × 3 or 5 × 5 binomial kernel) of the same input image:

S(x, y) = ‖Iµ − If (x, y)‖ (1)

where S(x, y) is the pixel saliency value at position (x, y), Iµ is the

average of all CIELAB pixel vectors of the image, If (x, y) is the

corresponding CIELAB image pixel vector in the Gaussian filtered

version of the original image, and ‖‖ is the L2 norm (i.e. Euclidean

distance in CIELAB color space). The CIELAB color space is

used since Euclidean distances in this color space are approximately

perceptually uniform.

The resulting saliency maps have uniformly highlighted salient

regions with well-defined boundaries, which are proven to be an

improvement over several state-of-the-art methods [4] for the given

ground truth based database. However, in images where the salient

region is very large, or the background is complex, the saliency maps

highlight the background instead. This happens because in comput-

ing the average CIELAB vector for the image in Eq. 1, the salient

region contributes more to the image average than the rest of the im-

age, thereby generating lower S(x, y) values than the pixels of the

background.

4. OUR SALIENCY DETECTION ALGORITHM

Achanta et al. [4] treat the entire image as the common surround (ab-

stracted as the average image CIELAB color vector) for any given

pixel. The implicit premise is that in the absence of any knowl-

edge of the scale of the salient object, it is best to pass all the low-

frequency content. We base our new saliency detection algorithm

on the premise that we can make assumptions about the scale of the

object of detection based on its position in the image.

In Fig. 2 we note that the more central a pixel is within the salient

object, the smaller has to be the low-frequency cut-off for detecting

it. However, how central a pixel can be inside an object is limited by

how far the pixel is from the boundary. That is, a pixel belonging to a

salient object near the boundary will be less central inside the object.

Therefore, assuming the salient object is fully within the image, and

not cut-off by the image borders, we can afford to vary the bandwidth

of the center-surround filter by increasing the low-frequency cut-off

as we approach the image borders.

(A) (B)

Fig. 3. (A) In the method of [4], for a pixel at the center (red) or

elsewhere (blue), the surround regions used for computing saliency

remains the same, namely the whole image area. (B) Our new al-

gorithm uses surround regions (sub-images) that are symmetric w.r.t

the pixel whose saliency needs to be computed. This leads to varying

center-surround bandwidth depending on the distance of the pixel

from the image borders.

In effect, as we approach the image borders we should use a

more local surround region. We choose to do this by making the

surround symmetric around the center with respect to the image bor-

ders as illustrated in Fig. 3 (B). This increases the low-frequency



cut-off of the center-surround filter. By choosing a symmetric sur-

round for each pixel (as the center), we implicitly treat each pixel to

be at the center of its own sub-image (see Fig. 3 (B)). This is dif-

ferent from the method of Achanta et al. [4], where the entire image

is used as the common global surround (abstracted as the average

image CIELAB color vector) for any given pixel, resulting in an

asymmetric surround for pixels that are not at the center of the im-

age. This is explained graphically in Fig. 3 (A). Thus, for an input

image of width w and height h, the symmetric surround saliency

value at the given pixel Sss(x, y) is obtained as:

Sss(x, y) = ‖Iµ(x, y) − If (x, y)‖ (2)

where Iµ(x, y) is the average CIELAB vector of the sub-image

whose center pixel is at position (x, y) as given by:

Iµ(x, y) =
1

A

x+xo∑

i=x−xo

y+yo∑

j=y−yo

I(i, j) (3)

with offsets xo, yo, and area A of the sub-image computed as:

xo = min(x, w − x) (4)

yo = min(y, h − y)

A = (2xo + 1)(2yo + 1)

The sub-images obtained in Eq. 3 using Eq. 4 are the maximum

possible symmetric surround regions for a given pixel at the center.

Consequently, the closer a pixel is to the edges, the narrower is its

surround. To compute the CIELAB averages of these sub-images,

we take the computationally efficient approach of using integral im-

ages as done by [12, 9]. Examples of our saliency maps using our

algorithm are shown in Figures 1 and 4. The advantage of narrowing

the bandwidth near the borders is that the background is usually less

highlighted. The disadvantage though is that if the salient object is

cut by the image borders, i.e it is not completely inside the image, it

is treated as background and is less likely to be detected.

Orig. IT98 MA03 HA06 HO07 AC08 AC09 MSSS

Fig. 4. Visual comparison of saliency maps. Our method MSSS pro-

duces saliency maps that have well-defined borders, highlight whole

object regions, and suppress the background better than most meth-

ods even in the presence of complex backgrounds or when the salient

object is very large.
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Fig. 5. Precision-recall curve using groundtruth. Our new method

MSSS shows the best precision-recall performance.

5. COMPARISON WITH STATE-OF-THE ART

We compare the our saliency maps with six state-of-the-art methods.

The six saliency detectors are Itti et al. [7], Ma and Zhang [1], Harel

et al. [14], Hou and Zhang [11], Achanta et al. [12], and Achanta et

al. [4], hereby referred to as IT98, MA03, HA06, HO07, AC08, and

AC09, respectively. We refer to our proposed method as MSSS (for

maximum symmetric surround saliency)1.

In order to perform an objective comparison of the quality of the

saliency maps with other methods, we use the precision-recall based

method used by Achanta et al. [4]. For a given saliency map, with

saliency values in the range [0, 255], we perform simple binarization

at each threshold value from 0 to 255, and compute the precision and

recall values with respect to the ground truth data2 from Achanta et

al. [4]. The resulting precision versus recall curve is shown in Fig.

5. The algorithmic complexity of MSSS is linear in the number of

pixels, i.e. O(N). It is only marginally slower than AC09, which is

the fastest full-resolution saliency detection algorithm to our knowl-

edge.

6. GRAPH BASED SEGMENTATION

Graph cuts based methods are popular for image segmentation ap-

plications. Boykov and Jolly [17] perform interactive segmentation

using graph cuts. They require a user to provide scribble based input

to indicate foreground and background regions. A graph cuts based

algorithm then segments foreground from background. We use a

similar approach, however, instead of the user indicating the back-

ground and foreground pixels using scribbles, we use the saliency

map to assign these pixels automatically.

As in the graph cuts formulation proposed by Boykov and Jolly

[17], we assign binary values of salient or non-salient to a vector

V = [V1, V2....V|P |] of size |P |, the number of pixels in an image.

We seek an optimal cut between pixels belonging to salient and non-

1Source code for our method MSSS can be downloaded at http://
ivrg.epfl.ch/supplementary_material/RK_ICIP2010

2http://ivrg.epfl.ch/supplementary_material/RK_

CVPR09



salient regions. We use graph cuts to minimize the energy E(V ):

E(V ) = λE1(V ) + E2(V ) (5)

where E1(V ) accounts for the saliency value as obtained using

Eq. 2, and E2(V ) (Eq. 6) promotes coherence among similar pixel

neighbors. λ ≥ 0 specifies the relative importance of saliency value

versus pixel similarity. E2(V ) penalizes the assignment of different

labels to neighboring pixels with similar CIELAB vectors.

E2(V ) =
∑

{p,q}∈N

exp
−(‖I(p)−I(q)‖)

2σ2 ×
1

dist(p, q)
(6)

where N is the set of 8-connected neighboring pixels q around each

pixel p of the image and dist is the spatial distance between the

pixels. We use λ = 1.0 and σ = 10.0 in our work. A few exam-

ple results of segmentation are shown in Fig. 6. The segmentation

scheme strongly depends on the quality of the saliency map. The

output is better if the boundaries are well defined, the salient region

is well highlighted, and the background is well suppressed. Thus,

our method MSSS has an advantage over other saliency detection

techniques for such an application.

Fig. 6. Salient object segmentation using graph cuts. From left to

right, original image followed by output obtained using IT98, MA03,

HA06, HO07, AC08, AC09, and MSSS. Our method MSSS is well

suited for object segmentation using graph cuts.

7. CONCLUSIONS

We present a novel saliency detection algorithm based on the idea of

maximum symmetric surround. This method improves upon six ex-

isting state-of-the-art algorithms in precision and recall with respect

to a ground truth database. Our algorithm uses low-level features of

color and luminance. It is computationally efficient, easy to imple-

ment, and provides full resolution saliency maps that successfully

suppress the background. We demonstrate the use of our saliency

maps in salient object segmentation using graph-cuts.
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