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Abstract. Deep networks have been proved to encode high level seman-
tic features and delivered superior performance in saliency detection. In
this paper, we go one step further by developing a new saliency model
using recurrent fully convolutional networks (RFCNs). Compared with
existing deep network based methods, the proposed network is able to
incorporate saliency prior knowledge for more accurate inference. In addi-
tion, the recurrent architecture enables our method to automatically
learn to refine the saliency map by correcting its previous errors. To train
such a network with numerous parameters, we propose a pre-training
strategy using semantic segmentation data, which simultaneously lever-
ages the strong supervision of segmentation tasks for better training
and enables the network to capture generic representations of objects
for saliency detection. Through extensive experimental evaluations, we
demonstrate that the proposed method compares favorably against state-
of-the-art approaches, and that the proposed recurrent deep model as
well as the pre-training method can significantly improve performance.

Keywords: Saliency detection · Recurrent fully convolutional network

1 Introduction

Saliency detection can be generally divided into two subcategories: salient object
segmentation [12,16,38] and eye-fixation detection [7,26]. This paper mainly
focus on salient object segmentation, which aims to highlight the most con-
spicuous and eye-attracting object regions in images. It has been used as a
pre-processing step to facilitate a wide range of vision applications and received
increasingly more interest from the community. Although much progress has
been made, it is still a very challenging task to develop effective algorithms
capable of handling real world adverse scenarios.
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Image GT Ours RC MR

Fig. 1. Saliency detection results by different methods. From left to right: original
image, groundtruth mask, our proposed RFCN, RC [2], MR [36]

Most existing methods address saliency detection with hand-crafted models
and heuristic saliency priors. For instance, contrast prior formulates saliency
detection as center-surrounding contrast analysis and captures salient regions
either characterized by global rarity or locally standing out from their neighbors.
In addition, boundary prior regards boundary regions as background and detects
foreground objects by propagating background information to the rest image
areas. Although these saliency priors have been proved to be effective in some
cases (Fig. 1 first row), they are not robust enough to discover salient objects in
complex scenes (Fig. 1 second row). Furthermore, saliency prior based methods
mainly rely on low-level hand-crafted features which are incapable to capture the
semantic concept of objects. As demonstrated in the third row of Fig. 1, high-
level semantic information, in some cases, plays a central role in distinguishing
foreground objects from background with similar appearance.

Recently, deep convolutional neural networks (CNNs) have delivered record
breaking performance in many vision tasks, e.g. image classification [15,28],
object detection [5,27], object tracking [32,33], semantic segmentation [21,22],
etc. Existing methods suggest that deep CNNs can also benefit salinecy detec-
tion and are very effective to handle complex scenes by accurately identifying
semantically salient objects (Fig. 1 third row). Though better performance has
been achieved, there are still three major issues of prior CNN based saliency
detection methods. Firstly, saliency priors, which are shown to be effective in
previous work, are completely discarded by most CNN based methods. Sec-
ondly, CNNs predict the saliency label of a pixel only considering a limited size
of local image patch. They mostly fail to enforce spatial consistency and may
inevitably make incorrect predictions. However, with feed-forward architectures,
CNNs can hardly refine the output predictions. Lastly, saliency detection are
mainly formulated as binary classification problems, i.e., either foreground or
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background. Compared with image classification tasks with thousands of cate-
gories, the supervision of binary labels is relatively weak to effectively train a
deep CNN with a huge number of parameters.

To mitigate the above issues, we investigate recurrent fully convolutional net-
works (RFCNs) for saliency detection. In each time step, we feed forward both
the input RGB image and a saliency prior map through the RFCN to obtain
the predicted saliency map which in turn serves as the saliency prior map in the
next time step. The prior map in the first time step is initialized by incorporat-
ing saliency priors indicative of potential salient regions. Our RFCN architec-
ture has two advantages over existing CNN based methods: a) saliency priors
are exploited to make training deep models more easier and yield more accurate
prediction; b) in contrast to feed-forward networks, the output of our RFCN net-
work is provided as the feedback signal, such that the RFCN is capable to refine
the saliency prediction by correcting its previous mistakes until producing the
final prediction in the last time step. To train the RFCN for saliency detection,
a new pre-training strategy is developed, which leverage rich attribute informa-
tion of semantic segmentation data for supervision. Figure 2 demonstrates the
architecture overview of the proposed RFCN model.

In summary, the contributions of this work are three folds. Firstly, we propose
a saliency detection method using recurrent fully convolutional network which is
able to refine the previous predictions. Secondly, saliency priors are incorporated
into the network to facilitate training and inference. Thirdly, we design a RFCN
pre-training method for saliency detection using semantic segmentation data
to both leverage strong supervison from multiple object categories and capture
the intrinsic representation of generic objects. The proposed saliency detection
method yields more accurate saliency maps and outperforms state-of-the-art
approaches with a considerable margin on four benchmark data sets.

2 Related Work

Existing saliency detection methods can be mainly classified into two categories,
i.e., either hand-crafted models or learning based approaches. Most hand-crafted
methods ca be traced back to the feature-integration theory [30], where impor-
tant visual features are selected and combined to model visual attention. Later
on, Itti et al. [8] propose to measure saliency by center-surround contrast of color,
intensity and orientation features. Xie et al. [34] formulate saliency detection in
a Bayesian framework and estimate visual saliency by a likelihood probabil-
ity. In [3], a soft image abstraction is developed by considering both appear-
ance similarity and spatial distribution of image pixels for saliency measure-
ment. Meanwhile, background prior is also commonly used by many hand-crafted
models [6,10,36,38], where the fundamental hypothesis is that image boundary
regions are more likely to be background. Salient regions can then be recognized
by label propagation using boundary regions as background seeds.

Hand-crafted saliency methods are efficient and effective, however they are
not robust in handling complex scenarios. Recently, learning based methods have
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Fig. 2. Architecture overview of our RFCN model.

received more attention from the community. These methods can automatically
learn to detect saliency by training detectors (e.g., random forests [12,19], deep
networks [17,31,37] etc.) on image data with annotations. Among others, deep
networks based saliency models have shown very competitive performance. For
instance, Wang et al. [31] propose to detect salient region by training a DNN-
L and a DNN-G network for local estimation and global search, respectively.
In [16], a fully connected network is trained to regress the saliency degree of
each superpixel by taking multi-scale CNN features of the surrounding region.
Both methods conduct patch-by-patch scanning in order to obtain the saliency
map of the input image, which is very computational expensive. In addition,
they directly train deep models on saliency detection data sets and ignore the
problem of weak supervision from binary labels. To address the above issues, Li
et al. [17] propose to detect saliency using a fully convolutional network (FCN)
trained under a multi-task learning framework. Though bears a similar spirit, our
method significantly differs from [17] in three aspects. Firstly, saliency priors are
leveraged for network training and inference, which are ignored in [17]. Secondly,
instead of using the feed-forward architecture in [17], we design a recurrent archi-
tecture capable of refining the generated predictions. Thirdly, our pre-training
method for deep network allows to learn both class specific features and generic
object representations using segmentation data. In contrast, [17] trains the net-
work on segmentation data only for the task of distinguishing objects of different
categories, which is essentially different from the task of salient object detection.

Recurrent neural networks (RNNs) have been applied to many vision
tasks [20,25]. The recurrent architecture in our method mainly serves as a refine-
ment mechanism to correct previous errors. Compared to existing RNNs that
strongly rely on hidden units from last step, RFCN takes only the final output
of last step as prior. Hence, it takes fewer steps to converge and is more easier
to train.



Saliency Detection with Recurrent Fully Convolutional Networks 829

3 Saliency Prediction by Recurrent Networks

A conventional CNN used for image classification consists of convolutional layers
followed by fully connected layers, which takes an image of fixed spatial size as
input and produces a label vector indicating the category of the input image.
For tasks requiring spatial labels, like segmentation, depth prediction etc., some
methods apply CNNs for dense predictions in a patch-by-patch scanning manner.
However, the overlap between patches leads to redundant computations and
thus significantly increases computational overhead. Unlike existing methods, we
consider the fully convolutional network (FCN) architecture [22] for our recurrent
model, which generates predictions with the same size of the input image. In
Sect. 3.1, we formally introduce FCN network for saliency detection. Section 3.2
presents our saliency methods based on RFCN network. Finally, we show how
to train the RFCN network for saliency detection in Sect. 3.3.

3.1 Fully Convolutional Networks for Saliency Detection

Convolutional layers as building blocks of CNNs are defined on a translation
invariance basis and have shared weights across different spatial locations. Both
the input and the output of convolutional layers are 3D tensors called feature
maps, where output feature map is obtained by convolving convolution kernels
on the input feature map as

fs(X;W , b) = W ∗s X + b, (1)

where X is the input feature map; W and b denote kernel and bias, respectively;
∗s represents convolution operation with stride s. As a result, the resolution of
the output feature map fs(X;W , b) is downsampled by a factor of s. Typically,
convolutional layers are interleaved with max pooling layers and non-linear units
(e.g., ReLUs) to further improve translation invariance and representation capa-
bility. The output feature map of the last convolutional layer can then be fed
into a stack of fully connected layers which discard the spatial coordinates of the
input and generates a global label for the input image (See Fig. 3 (a)).

For efficient dense inference, [22] converts CNNs to fully convolutional net-
works (FCNs) (Fig. 3(b)) by casting fully connected layers into convolutional
layers with kernels that cover their entire input regions. This allows the network
to take input images of arbitrary sizes and generate spatial output by one for-
ward pass. However, due to the stride of convolutional and pooling layers, the
final output feature maps are still coarse and downsampled from the input image
by a factor of the total stride of the network. To map the coarse feature map
into a pixelwise prediction of the input image, FCN upsamples the coarse map
via a stack of deconvolution layers (Fig. 3(c))

Ŷ = US (FS(I;θ);ψ) , (2)

where I is the input image; FS(·;θ) denotes the output feature map generated
by the convolutional layers of FCN with total stride of S and parameterized
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Fig. 3. Comparison of different deep models. (a) Convolution network. (b) Fully convo-
lution network. (c) Fully convolution network with deconvolution layers. (d)(e) Recur-
rent fully convolution networks with different recurrent architectures.

by θ; US(·;ψ) denotes the deconvolution layers of FCN networks parameterized
by ψ that upsamples the input by a factor of S to ensure the same spatial size of
the output prediction Ŷ and the input image I. Different from simple bilinear
interpolation, the parameters ψ of deconvolution layers are jointly learned. To
explore the fine-scaled local appearance of the input image, the skip architec-
ture [22] can also be employed to combine output feature maps of both lower
convolutional layers and the final convolutional layer for more accurate inference.

In the context of saliency detection, we are interested in measuring the
saliency degree of each pixel in an image. To this end, the FCN takes the
RGB image I of size h × w × 3 as input and generates the output feature map
Ŷ = US (FS(I;θ);ψ) of size h×w×2. We denote the two output channels of Ŷ

as background map B̂ and salient foreground map Ĥ, indicating the scores of all
the pixels being background and foreground, respectively. By applying softmax
function, these two scores are transformed into foreground probability as

p(li,j = fg |θ,ψ) =
exp(Ĥi,j)

exp(Ĥi,j) + exp(B̂i,j)
, (3)

where li,j ∈ {fg , bg} indicates the foreground/background label of the pixel
indexed by (i, j). The background probability p(li,j = bg |θ,ψ) can be com-
puted in a similar way. Given the training set {Z = (I,C)}N

1 containing both
training image I and its pixelwise saliency annotation C, the FCN network can
be trained end-to-end for saliency detection by minimizing the following loss

arg min
θ,ψ

−
∑

Z

∑

i,j

1(Ci,j = fg) ln p(li,j = fg |θ,ψ)

+ 1(Ci,j = bg) ln p(li,j = bg |θ,ψ), (4)

where 1(·) is the indicator function. The network parameters θ and ψ can then
be iteratively updated using stochastic gradient descent (SGD) algorithm.
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(a) (b) (c) (d)

Fig. 4. Saliency maps generated by our model. (a) Original images. (b) Ground truth.
(c)(d) Saliency maps without and with prior maps, respectively.

3.2 Recurrent Network for Saliency Detection

The above FCN network is trained to approximate the direct nonlinear mapping
from raw pixels to saliency values and ignores the saliency priors which are
widely used in existing methods. Although, heuristic saliency priors have their
limitations, they are easy to compute and shown to be very effective under a
variety of cases. Thus, we believe that leveraging saliency prior information can
facilitate faster training and more accurate inference. This has been verified by
our experiments. We also note that the output prediction by FCN may be very
noisy and lack of label consistency. However, the feed forward architecture of
FCN fails to consider feedback information, which makes it impossible to correct
prediction errors. Based on these observations, we make two improvements over
the FCN network and design the RFCN by: (i) incorporating saliency prior into
both training and inference; and (ii) recurrently refining the output prediction
(Fig. 4).

Saliency Prior Maps. We encode prior knowledge into a saliency prior map
which serves as the input to the network. We first oversegment the input image
into M superpixels, {si}

M
1 . The color contrast prior for si is calculated by

G(si) =
1

Γi

M
∑

j=1

‖µsi
− µsj

‖2 exp(−
‖psi

− psj
‖2

2δ2
), (5)

where µ and p denote the mean RGB value and the center position of a super-
pixel, respectively; Γi is the normalization factor; and δ is a scale parameter
(fixed to 0.5). The intensity contrast I(si) and orientation feature contrast O(si)
can be computed in a similar way by replacing the color values in (5) with cor-
responding feature values. The saliency prior map P is obtained by

P (si) = U(si) × (G(si) + I(si) + O(si)), (6)
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where P (si) denotes the saliency prior value of superpixel si; and the central
prior [11] U(si) penalizes0 the distance from superpixel si to the image center.

Recurrent Architecture. To incorporate the saliency prior maps into our app-
roach, we consider two recurrent architectures for RFCN network. As in Sect. 3.1,
we divide the network into two parts, i.e., convolution part F (·,θ) and deconvo-
lution part U(·,ψ). Our first recurrent architecture (Fig. 3 (d)) incorporates the
saliency prior map P into the convolution part by modifying the first convolution
layer as

f(I) = W I ∗ I + W P ∗ P + b, (7)

where I and P denote input image and saliency prior,respectively; W I and
W P represent corresponding convolution kernels; b is bias parameter. In the
first time step, the RFCN network takes the input image and saliency prior map

as input and produces the final feature map Ŷ
1

= U (F (I,P ;θ);ψ) comprising

both foreground map Ĥ
1

and background map B̂
1
. In the following each time

step, the foreground map Ĥ
t−1

generated in the last time step is fed back as
saliency prior map to the input. The RFCN then refine the saliency prediction
by considering both the input image and the last prediction as

Ŷt = U
(

F (I, Ĥ
t−1

;θ);ψ
)

. (8)

For the above recurrent architecture, forward propagation of the whole net-
work is conducted in every time step, which is very expensive in terms of both
computation and memory. An alternative recurrent architecture is to incorporate
the saliency prior maps into the deconvolution part ((Figure 3 (e))). Specifically,
in the first time step, we feed the input image I into the convolution part to
obtain the convolution feature map F (I;θ). The deconvolution part then takes
the convolution feature map as well as saliency prior map P as input to infer

the saliency prediction Ŷ
1

= U (F (I;θ),P ;ψ). In the t-th time step, the pre-

dicted foreground map Ĥ
t−1

in the last time step serves as saliency prior map.
The deconvolution part takes the convolution feature map F (I;θ) as well as the

foreground map Ĥ
t−1

to refine the saliency prediction Ŷ
t
:

Ŷ
t
= U

(

F (I;θ), Ĥ
t−1

;ψ
)

. (9)

Note that, for each input image, forward propagation of deconvolution part is
repeatedly conducted in each time step, whereas the convolution part is only
required to be fed forward once in the first time step. Since the deconvolution
part has approximately 10 times fewer parameters than the convolution part,
this recurrent architecture can effectively reduce computational complexity and
save memory. However, we find in our preliminary experiments that the second
recurrent architecture can only achieve similar performance compared to the
FCN based approach (i.e., without recurrent). This may be attributed to the fact
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(a) (b) (c) (d) (e)

Fig. 5. Saliency maps predicted by the proposed RFCN in different time steps.
(a) Original images. (b) Ground truth. (c)–(e) Saliency maps predicted by RFCN in
the 1st–3rd time step, respectively.

that the prior saliency map is severely downsampled to the same spatial size of
the last convolution feature map F (I;θ) (downsampled by a factor of 1/32 from
the input). With less prior information, the downsampled prior saliency map
can hardly facilitate network inference. Therefore, we adopt the first recurrent
architecture in this work. In our experiments, we observe that the accuracy of the
saliency maps almost converges after the second time step (Compare Fig. 5(a)
and (e)). Therefore, we set the total time step of the RFCN to T = 2.

3.3 Training RFCN for Saliency Detection

Our RFCN training approach consists of two stages: pre-training and fine-tuning.
Pre-training is conducted on the PASCAL VOC 2010 semantic segmentation
data set. Saliency detection and semantic segmentation are highly correlated but
essentially different in that saliency detection aims at separating generic salient
objects from background, whereas semantic segmentation focuses on distin-
guishing objects of different categories. Our pre-training approach enjoys strong
supervision from segmentation data and also enables the network to learn gen-
eral representation of foreground objects. Specifically, for each training pair
Z = (I,S) containing image I and pixelwise semantic annotation S, we gener-
ate an object map G to label each pixel as either foreground (fg) or background
(bg) as follow

Gi,j =

{

bg if Si,j = 0

fg otherwise
, (10)

where Si,j ∈ {0, 1, . . . , C} denotes the semantic class label of pixel (i, j), and
Si,j = 0 indicates the pixel belonging to background. In the pre-training stage,

the final feature map Ŷ
t

(Sect. 3.1) generated by the RFCN consists of C + 3
channels, where the first C+1 channels correspond to the class scores for seman-

tic segmentation and the last 2 channels, i.e., Ĥ
t

and B̂
t

(Sect. 3.1), denotes
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(a) (b) (c) (d) (e)

Fig. 6. Saliency detection results on different stages. (a) Original images. (b) ground
truth. (c) results of pre-trained RFCN. (d) results of fine-tuned RFCN. (e) result after
post-processing.

the foreground/background scores. By applying softmax function, we obtain the

conditional probability p(ci,j |I, Ĥ
t−1

,θ,ψ) and p(li,j |I, Ĥ
t−1

,θ,ψ) predicted
by the RFCN for segmentation and foreground detection, respectively. The loss
function for pre-training across all time steps is defined as

L(θ,ψ) = −
T

∑

t=1

∑

Z

∑

i,j

ln p(ci,j = Si,j |I, Ĥ
t−1

,θ,ψ)

+ ln p(li,j = Gi,j |I, Ĥ
t−1

,θ,ψ), (11)

where T is the total time step and Ĥ
0

is initialized by the saliency prior map
P (Sect. 3.2). Pre-training is conducted via back propagation through time.

After pre-training, we modify the RFCN network architecture by removing
the first C + 1 channels of the last feature map and only maintaining the last
two channels, i.e., the predicted foreground and background maps. Finally, we
fine-tune the RFCN network on the saliency detection data set as described
in Sect. 3.2. As demonstrated in Fig. 6(c), the pre-trained model, supervised by
semantic labels of multiple object categories, captures generic object features
and can already discriminate foreground objects (of unseen categories in pre-
training) from background. Fine-tuning on the saliency data set can further
improve the performance of the RFCN network (Fig. 6(d)).

3.4 Post-processing

The trained RFCN network is able to accurately identify salient objects. To
more precisely delineate the compact and boundary-preserving object regions,
we adopt an efficient post-processing approach. Given the final saliency score

map Ĥ
T

predicted by the RFCN, we first segment the image into foreground and

background regions by thresholding Ĥ
T

with its mean saliency score. A spatial
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confidence SCi,j and a color confidence CCi,j are computed for each pixel (i, j).
The spatial confidence is defined considering the spatial distance of the pixel to
the center of the foreground region

SCi,j = exp(−
‖loci,j − locs‖2

σ
), (12)

where loci,j and locs denote the coordinates the pixel (i, j) and the center of
foreground, respectively; σ is a scale parameter. The color confidence is defined
to measure the similarity of the pixel to foreground region in RGB color space

CCi,j =
Ni,j

Ns

, (13)

where Ni,j is the number of foreground pixels that have the same color feature
with pixel (i, j) and Ns is the total number of foreground pixels.

We then weight the predicted saliency scores by spatial and color confidences
to dilate the foreground region

H̃i,j = SCi,j × CCi,j × Ĥ
T
. (14)

After an edge-aware erosion procedure [4] on the dilated saliency score map
H̃, we obtain the final saliency map. As demonstrated in Fig. 6 (e), the post-
processing step can improve the detection precision to a certain degree.

4 Experiments

4.1 Experimental Setup

Detailed architecture of the proposed RFCN can be found in the supplementary
materials1. We pre-train the RFCN on the PASCAL VOC 2010 semantic seg-
mentation data set with 10103 training images belonging to 20 object classes.
The pre-training is converged after 200k iterations of SGD. We then fine-tune
the pre-trained model for saliency detection on the THUS10K [2] data set for
100k iterations. In the test stage, we apply the trained RFCN in three different
scales and fuse all the results into the final saliency maps [12]. Our method is
implemented in MATLAB with the Caffe [9] wrapper and runs at 4.6 s per image
on a PC with a 3.4 GHz CPU and a TITANX GPU. The source code will be
released (see footnote 1).

We evaluate the proposed algorithm (RFCN) on five benchmark data sets:
SOD [24], ECSSD [35], PASCAL-S [19], SED1 [1], and SED2 [1]. The evaluation
result on SED2 and additional analysis on the impact of recurrent time step are
included in the supplementary materials. Three metrics are utilized to measure
the performance, including precision-recall (PR) curves, F-measure and area
under ROC curve (AUC). The precision and recall are computed by thresholding

1 http://ice.dlut.edu.cn/lu/index.html.

http://ice.dlut.edu.cn/lu/index.html
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(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k)

Fig. 7. Comparisons of saliency maps. Top, middle and bottom two rows are images
from the SOD, ECSSD, PASCAL-S and SED1 data sets, respectively.(a) Original
images, (b) ground truth, (c) our RFCN method, (d) LEGS, (e) MDF, (f) DRFI,
(g) wCtr, (h) HDCT, (i) DSR, (j) MR, (k) HS.

Recall

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
r
e
c
is

io
n

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

BL
DRFI
DSR
HDCT
HS
LEGS
MDF
MR
wCtr
PCA
UFO
RFCN

Recall

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
r
e
c
is

io
n

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

BL
DRFI
DSR
HDCT
HS
LEGS
MDF
MR
wCtr
PCA
UFO
RFCN

Recall

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
r
e

c
is

io
n

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

BL
DRFI
DSR
HDCT
HS
LEGS
MDF
MR
wCtr
PCA
UFO
RFCN

Recall

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
r
e

c
is

io
n

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

BL
DRFI
DSR
HDCT
HS
LEGS
MDF
MR
wCtr
PCA
RFCN

BL DRFI DSR HDCT HS LEGS MDF MR wCtr PCA UFO RFCN
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Precision
Recall
Fmeasure
AUC

BL DRFI DSR HDCT HS LEGS MDF MR wCtr PCA UFO RFCN
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Precision
Recall
Fmeasure
AUC

BL DRFI DSR HDCT HS LEGS MDF MR wCtr PCA UFO RFCN
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Precision
Recall
Fmeasure
AUC

BL DRFI DSR HDCT HS LEGS MDF MR wCtr PCA RFCN
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Precision
Recall
Fmeasure
AUC

(a) SOD (b) ECSSD (c) PASCAL-S (d) SED1

Fig. 8. Performance of the proposed algorithm compared with other state-of-the-art
methods on the SOD, ECSSD, PASCAL-S and SED1 databases, respectively.
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Table 1. F-measure and AUC (Area Under ROC Curve) on the SOD, ECSSD,
PASCAL-S and SED1 data sets. The best two results are shown in italic and bold
fonts respectively. The proposed methods rank first and second on the four data sets.

* SOD ECSSD PASCAL-S SED1

F-measure AUC F-measure AUC F-measure AUC F-measure AUC

RFCN 0.7426 0.9053 0.8340 0.9714 0.7468 0.9453 0.8502 0.9640

MTDS 0.6978 0.9233 0.7589 0.9009 0.7310 0.9287 - -

LEGS 0.6492 0.8117 0.7887 0.9230 0.6951 0.8857 0.8414 0.9328

MDF 0.6966 0.8532 0.7557 0.9180 0.6562 0.8806 0.8194 0.9710

BL 0.5723 0.8503 0.6825 0.9147 0.5668 0.8633 0.7675 0.9528

DRFI 0.6031 0.8464 0.7337 0.9391 0.6159 0.8913 0.8024 0.9528

wCtr 0.5978 0.8014 0.6774 0.8779 0.5972 0.8433 0.7889 0.9159

DSR 0.5968 0.8210 0.6636 0.8604 0.5513 0.8079 0.7877 0.9086

MR 0.5697 0.7899 0.6932 0.8820 0.5881 0.8205 0.8255 0.9223

HS 0.5210 0.8145 0.6363 0.8821 0.5278 0.8330 0.7426 0.9161

PCA 0.5370 0.8212 0.5796 0.8737 0.5298 0.8371 0.6256 0.9030

UFO 0.5480 0.7840 0.6442 0.8587 0.5502 0.8088 - -

the saliency map, and comparing the binary map with the ground truth. The PR
curves demonstrate the mean precision and recall of saliency maps at different

thresholds. The F-measure can be calculated by Fβ = (1+β2)Precision×Recall

β2×Precision+Recall
,

where Precision and Recall are obtained using twice the mean saliency value
of saliency maps as the threshold, and set β2 = 0.3.

4.2 Performance Comparison with State-of-the-art

We compare the proposed algorithm (RFCN) with twelve state-of-the-art meth-
ods, including MTDS [17], LEGS [31], MDF [16], BL [29], DRFI [12], UFO [13],
PCA [23], HS [35], wCtr [38], MR [36], DSR [18] and HDCT [14]. We use either
the implementations or the saliency maps provided by the authors for fair com-
parison. Note that MTDS, LEGS and MDF are deep learning based methods.
Among others, MTDS exploits fully convolution network for saliency detection
and leverages segmentation data for multi-task training. As demonstrated in
Fig. 8 and Table 1, the proposed RFCN method can consistently outperform
existing methods across almost all the data sets with a considerable margin in
terms of PR curves, F-measure as well as AUC scores. Compared with other deep
learning based methods, the three contributions of our method (i.e., integration
of saliency priors, recurrent architecture and pre-training approach) ensures more
accurate saliency detection. Figure 7 shows that our saliency maps can reliably
highlight the salient objects in various challenging scenarios.
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Table 2. Different settings of variants of the proposed RFCN method. “Pre-train”
denotes that the network is pre-trained on segmentation data only for semantic seg-
mentation task. “Pre-train+” indicates the proposed pre-training method using seg-
mentation data for both semantic segmentation and foreground background separation.

Settings FCN FCNp RFCN-A RFCN-B RFCN

Prior map
√ √ √ √

Feed-forward
√ √

Recurrent
√ √ √

Pre-train
√ √ √

Pre-train+

√ √

Post-processing
√

Table 3. Comparison of the proposed approach. The best results are shown in bold
fonts.

* SOD ECSSD PASCAL-S SED1

F-measure AUC F-measure AUC F-measure AUC F-measure AUC

FCN 0.6985 0.7810 0.8116 0.8864 0.7179 0.8387 0.7924 0.8452

FCNp 0.7248 0.8210 0.8252 0.9145 0.7315 0.8733 0.8335 0.8823

RFCN-A 0.7276 0.8213 0.8312 0.9119 0.7372 0.8784 0.8500 0.8967

RFCN-B 0.7487 0.8331 0.8534 0.9310 0.7734 0.9028 0.8527 0.9006

RFCN 0.7426 0.9053 0.8340 0.9714 0.7468 0.9453 0.8502 0.9640

4.3 Ablation Studies

To analyze the relative contributions of different components of our methods,
we evaluate four variants of the proposed RFCN method with different settings
as demonstrated in Table 2. The performance in terms of F-measure and AUC
are reported in Table 3. The comparison between FCN and FCNp suggests that
saliency priors ignored by existing deep learning based methods can indeed bene-
fit network training and inference. The comparison between FCNp and RFCN-A
indicates that the proposed recurrent architecture is capable of correcting pre-
vious errors and refining the output saliency maps. In addition, the RFCN-B
method with the proposed pre-training strategy can significantly outperform
the RFCN-A method simply pre-trained for segmentation, which verifies that
our pre-training method can effectively leverage the strong supervision of seg-
mentation and simultaneously enable the network to caputre generic feature
representation of foreground objects. After the proposed post-processing step,
our RFCN method achieves considerable improvements over RFCN-B in terms
of AUC scores with a slight performance degrade in terms of F-measure.
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5 Conclusions

In this paper, we propose a recurrent fully convolutional network based saliency
detection methods. Heuristic saliency priors are incorporated into the network to
facilitate training and inference. The recurrent architecture enables our method
to refine saliency maps based on previous output and yield more accurate pre-
dictions. A pre-training strategy is also developed to exploit the strong super-
vision of segmentation data sets and explicitly enforce the network to learn
generic feature representation for saliency detection. Extensive evaluations ver-
ify that the above three contributions can significantly improve performance of
saliency detection. State-of-the-art performance has been achieved by the pro-
posed method in five widely adopted data sets.
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