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Abstract—Weakly supervised semantic segmentation with only
image-level labels aims to reduce annotation costs for the
segmentation task. Existing approaches generally leverage class
activation maps (CAMs) to locate the object regions for pseudo
label generation. However, CAMs can only discover the most
discriminative parts of objects, thus leading to inferior pixel-
level pseudo labels. To address this issue, we propose a saliency
guided Inter- and Intra-Class Relation Constrained (I2CRC)
framework to assist the expansion of the activated object regions
in CAMs. Specifically, we propose a saliency guided class-
agnostic distance module to pull the intra-category features
closer by aligning features to their class prototypes. Further,
we propose a class-specific distance module to push the inter-
class features apart and encourage the object region to have
a higher activation than the background. Besides strengthening
the capability of the classification network to activate more
integral object regions in CAMs, we also introduce an object
guided label refinement module to take a full use of both
the segmentation prediction and the initial labels for obtaining
superior pseudo-labels. Extensive experiments on PASCAL VOC
2012 and COCO datasets demonstrate well the effectiveness
of I2’CRC over other state-of-the-art counterparts. The source
codes, models, and data have been made available at https:
//github.com/NUST-Machine-Intelligence-Laboratory/I2CRC,

Index Terms—semantic segmentation, weak

saliency guidance, relation constraint.

supervision,

I. INTRODUCTION

EMANTIC segmentation with the goal to label each pixel
S of an image is a fundamental task in computer vision. With
the recent development of deep neural networks, semantic
segmentation has achieved remarkable progress. However, the
training of a segmentation network requires a large-scale
dataset annotated with pixel-level labels [1[|-[5]. Obtaining
such a training dataset is quite labor-intensive and time-
consuming. For example, it takes about 90 minutes to an-
notate each image in the Cityscapes dataset [6]]. Therefore,
researchers recently turn to weakly supervised learning to alle-
viate the burden of collecting dense annotations. Various types
of weaker labels have been explored to provide supervision
for the segmentation task in a weakly supervised setting, e.g.,
image-level class labels [[7]-[14]], bounding boxes [15]—[17],
scribbles [18], [19], and points [20]. Since labeling image-
level labels takes only one second per class [20], collecting
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Fig. 1. Visual comparisons of localization maps produced by CAM [21]] and
ours. (a) Input image. (b) Saliency map. (c) Localization maps produced by
CAM only identify the most discriminative part of the object, e.g., the head of
a person. (d) Localization maps produced by ours can discover more compact
and integral object regions. Best viewed in color.

class labels becomes the cheapest and most popular option.
In this paper, we aim to address weakly supervised semantic
segmentation (WSSS) with the supervision of image-level
class labels.

Though image-level labels can indicate the existence of a
specific category of objects, they do not provide any clue
about their locations or boundaries. Therefore, it is difficult
to directly use them to train segmentation networks. With
only image-level class labels, existing works typically train
a classification network and rely on class activation maps
(CAMs) [21], [22] to generate pseudo labels for learning
a fully supervised semantic segmentation model. However,
as illustrated in Fig. [ CAMs can only locate the most
discriminative parts of objects. The small and sparse activated
regions bring difficulties in obtaining high-quality pixel-level
labels. Therefore, recent research for the WSSS task mainly
focuses on enlarging the activated areas in CAMs to cover the
entire objects. For example, Jiang et al. [|14]] propose an online
attention accumulation strategy to gradually identify the inte-
gral object regions as the training goes. To further strengthen
the lower attention values of target object regions, they also
train an integral attention model regarding the cumulative
attention maps as supervision. However, when expanding the
most discriminative parts to cover more object regions, the
background areas around the objects will also be activated
inevitably. Therefore, saliency maps [23] have been widely
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adopted in the WSSS task to provide background clues when
producing pseudo labels with CAMs. However, the current
usage of saliency maps during the label generation step only
provides boundary information of the conspicuous area rather
than objects [14], [24]-[27]. In other words, the saliency maps
cannot help separate objects of different categories within the
salient area and identify the boundaries of objects outside the
salient region. Therefore, it is crucial to exploit the potential of
saliency maps further to assist the expansion of the activated
object regions in CAMs during training while helping regress
the integral and compact object area.

In this paper, we propose a saliency guided inter- and
intra-class relation constrained (I?CRC) framework for tack-
ling weakly supervised semantic segmentation. We focus on
exploiting the potential of saliency maps while training the
classification network to activate more compact and integral
object regions in CAMs. Specifically, we propose a saliency
guided class-agnostic distance module to explicitly enforce the
network to learn consistent and compact feature representa-
tions within the salient area. We assume that for the simple
images containing only a single category of object(s), as
illustrated in the first row of Fig.[I] their saliency maps can be
approximated as the ground truth mask for the objects existing
in the image. Therefore, with the class-agnostic saliency mask,
we can extract the class prototype with masked averaging
pooling. We then propose a pixel-level class-agnostic distance
(CAD) loss to align salient region features to the object
class prototype, which explicitly minimizes the intra-category
feature variance. This encourages the classification network
to activate more object regions, helping mine the integral
objects with CAMs. To prevent the network from learning a
tricky position offset for the discriminative region activation
to circumvent the intra-category relation constraint, we also
apply our saliency guided class-agnostic distance module to
the background region with an inversed saliency map. Encour-
aging the learning of more compact and consistent background
features can also help reduce the false activation of irrelevant
background regions. To further encourage the object region
to have higher activation than the background, we propose a
class-specific distance module to push the inter-class features
apart. With image-level class labels, we design a prototype-
based class-specific distance (CSD) loss to maximize the inter-
category feature variance. Echoing with the expectation of
higher object activation in CAMs, we explicitly encourage the
class-specific object prototype to have a larger value than the
background prototype. Note that both CAD loss and CSD loss
are only applied to the above mentioned simple images. For
complex images having two or more categories of objects,
as illustrated in the second and third rows of Fig. [I] the
approximation of the saliency map and object mask does not
hold. Though inter- and intra-class relation constraints are
only applied to simple images, the typical classification loss
is applied to both simple and complex images, which endows
the network with the ability to distinguish multiple categories
in complex images. As shown in Fig. [I] our method can
effectively activate more compact and integral object regions
for both simple and complex images.

After training a segmentation network with pseudo labels, it

is natural to think about leveraging the network prediction to
help retrain a more robust segmentation model. We notice that
the network predictions and the initial pseudo labels obtained
from CAMs can be complementary. Though initial pseudo
labels suffer from the loss of boundary information, benefiting
from the localization ability of CAMs, they can identify more
object instances than the network predictions. In contrast, if
the network predictions detect the object instances success-
fully, they can provide more accurate boundary information.
Therefore, we devise an object guided label refinement module
to take a full use of the segmentation predictions and initial
pseudo labels for deriving higher quality labels. Specifically,
we take the segmentation predictions as the basis and change
part of their background to object or unreliable labels under
the guidance of initial pseudo labels. With the image-level
annotations, we also adjust the pixel labels that are predicted
as the categories that should not exist in the image and further
mine the missed classes in the network predictions.

Our contributions can be summarized as follows:

o We propose a saliency guided inter- and intra-class re-
lation constrained (I?CRC) framework for weakly su-
pervised semantic segmentation. We propose a saliency
guided class-agnostic distance module and a class-
specific distance module to drive the intra-category fea-
tures closer and the inter-category features apart, respec-
tively.

« We propose an object guided label refinement module
to exploit the potentials of segmentation predictions and
initial labels for generating high-quality pseudo-labels.

o Extensive experiments on PASCAL VOC 2012 and
COCO datasets demonstrate state-of-the-art results com-
pared to current methods.

II. RELATED WORK
A. Semantic Segmentation

Semantic segmentation is the task of assigning a seman-
tic label to every pixel in an image. Based on the fully
convolutional network (FCN) [28]], numerous deep methods
have been proposed to promote the development of seman-
tic segmentation [29]-[37]. For example, the early work of
SegNet [30] proposed a deep convolutional encoder-decoder
architecture to recover the spatial resolution of the input image.
Then dilated convolution [31] was proposed to effectively
enlarge the receptive field of filters to incorporate larger
context without loss of resolution. To produce high-resolution
segmentation maps, Lin et al. [38|] proposed a generic multi-
path refinement network to combine low-resolution semantic
features and fine-grained low-level features in a recursive man-
ner. Recently, self-attention was explored in the works of [39]-
[41] to integrate local features with their global dependencies
adaptively. While the work of [39]] leveraged non-local neural
networks to capture long-range dependencies, DANet [40]]
proposed both position attention module and channel attention
module to learn the spatial and channel interdependencies of
features. CCNet [41] proposed a novel criss-cross attention
module to capture contextual information on the criss-cross
path. By taking a further recurrent operation, each pixel can



finally capture the long-range dependencies from all pixels.
Pyramid vision transformer [42]] without convolutions was also
proposed for semantic segmentation. Progressive shrinking
pyramid and spatial-reduction attention were designed to make
the pure transformer backbone flexible to learn multi-scale and
high-resolution features.

B. Weakly Supervised Semantic Segmentation

Considering the difficulty of collecting pixel-level labels,
researchers resort to address the semantic segmentation task
in a weakly supervised setting. Compared to bounding boxes
[15]-[17], points [20], and scribbles [18]], [[19], image-level
labels [7]-[14]have attracted the most attention due to their
easy availability. Recently, with the localization ability of
CAMs [21]], the performance of weakly supervised semantic
segmentation has been significantly improved. With image-
level labels, recent methods usually train a classification
network and exploit CAMs to discover the most discriminative
object regions. However, the object regions highlighted in
CAMs are usually small and sparse. Therefore, recent research
for the WSSS task mainly focuses on enlarging the activated
areas in CAMs to discover entire object regions. For example,
the early work of AE-PSL [43]] proposed an adversarial
erasing approach to sequentially discover new and complement
object regions by erasing the current mined areas. To prohibit
attentions from spreading to unexpected background regions,
SeeNet [44] introduced a self-erasing network to promote the
quality of object attention. The work of RDC [13|] designed
convolutional blocks of different dilated rates to transfer the
surrounding discriminative information to non-discriminative
object regions. Ahn and Kwak [12] leveraged the initial incom-
plete discriminative part segmentation to train an AffinityNet
for realizing semantic propagation by a random walk with the
learned affinities. Sun et al. [27] incorporated two neural co-
attentions into the classifier to capture cross-image semantic
relations for comprehensive object pattern mining. Li et al.
[45] further proposed a novel group-wise learning framework
with a graph neural network operated on a group of images
to explore their semantic relations for representation learning.
While these methods expanded the most discriminative parts
to cover more object regions, the background areas around
the objects would also be activated inevitably. Therefore, they
leveraged saliency maps to provide background clues when
producing pseudo labels with CAMs. However, the current
usage of saliency maps during the label generation step only
provides boundary information of the conspicuous area rather
than objects. To further exploit the potential of saliency maps
for the regression of the integral object region during training,
in this work, we propose a saliency guided inter- and intra-
class relation constrained framework to assist the expansion
of the activated object regions in CAMs.

III. THE PROPOSED APPROACH

In this paper, we propose a saliency guided inter- and intra-
class relation constrained (I?°CRC) framework for tackling the
weakly supervised semantic segmentation task. The framework
is illustrated in Fig. 2] Given the image-level weak labels, we

train a classification network and leverage the CAMs derived
from the attention maps to locate the object regions and
generate pseudo labels for the segmentation network training.
To enlarge object regions activated in CAMs, we propose
a class-agnostic distance module to explicitly minimize the
intra-category feature variance. We further maximize the inter-
category feature variance with a class-specific distance module
to push the object and background features apart. Besides
strengthening the classification network’s ability to activate
more compact and integral object regions in CAMs, we
also propose an object guided label refinement module in
Section [[lT-D]to take a full use of the segmentation predictions
and initial labels for retraining the segmentation network with
high-quality pseudo-labels.

A. CAM Generation

As in many other weakly supervised semantic segmentation
approaches, we locate the object with CAMs, which typically
highlight the most discriminative parts of objects. We generate
CAMs from the C-channel attention map F' of the last class-
aware convolutional layer, which is proven by [46] to be
identical to the attention generation process in the original
CAMs [21]]. Here C is the number of classes. Therefore, each
channel of the attention maps corresponds to the CAM for a
specific category. The base classification network architecture
is illustrated at the bottom of Fig.[2](b). Finally, global average
pooling (GAP) is adopted to get the prediction ¢¢ for the c-
th category. For the training of the classification network, we
adopt the multi-label soft margin loss as follows:

C
1 ‘ , ‘ ,
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Here, o () is the sigmoid function. y¢ is the image-level label
for the c-th class. Its value is 1 if the class is present in the
image; otherwise, its value is 0.

To obtain CAM for each target category ¢, we feed attention
map F'¢ into a ReLU layer and then normalize it to range from
0to 1:

_ ReLU (F°)

AT = max (F¢) @

We then discover the discriminative image regions for a
particular class following the work of OAA [14]]. These regions
are further thresholded to generate pixel-level pseudo ground-
truths for the segmentation network training.

B. Class-Agnostic Distance Module

Though CAMs can locate objects in the image, they only
activate the most discriminative regions. Besides, without
boundary clues, the object activation in CAMs will be spread
into the background area as well. These defects of CAMs
pose a challenge to the generation of pixel-level pseudo labels
for training a segmentation network. Specifically, with the
guidance of the saliency maps, we propose a class-agnostic
distance module to minimize the intra-category feature vari-
ance within the salient region.
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Fig. 2. The architecture of I?°CRC framework. While training a classification network, we leverage our proposed saliency guided inter- and intra-class relation
constraints to expand activated object regions in the localization map. Specifically, a class-agnostic distance module is proposed to align object and background
features to their class prototypes. This helps spread the attention of the most discriminative parts into adjacent non-discriminative object regions and alleviates
the irrelevant activation of background regions around objects. Besides, to activate a more compact object region and encourage it to have higher activation
than the background, we propose a class-specific distance module to push inter-class features apart.

Our proposed class-agnostic distance module is illustrated
in Fig. 2] (a). For the simple image that contains only a
single category of object(s), we approximate the class-agnostic
saliency map as its object mask. Then masked average pooling
is applied with the object mask to obtain the class prototype
vector from features. We up-sample the attention maps F' to
the same size of the mask M, and then the c-th element of
prototype p is calculated as:

h,w
c Zl_l,j 1 M F
- h,w
Dic =1 Mij

Here, h and w are the height and width of the saliency
map. We then align object features to the class prototype to
encourage the network to learn more compact and consistent
feature representations within the object region, leading to
more integral object activation in CAMs. We up-sample the
prototype vector to the same spatial size of the attention map
for element-wise subtraction to obtain the feature distance D.
We then define a class-agnostic distance loss for the object
region with a masked averaging operation as follows:
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Here, b/, w’, and C are the height, width, and channel number
of the attention map. The benefit of our proposed class-
agnostic distance module is twofold. First, reducing the intra-
category feature variance encourages the network to activate
the whole object region identified by the saliency area. Second,

aligning these features to the prototype will depress peak
values of the most discriminative region in CAMs, which
forces the network to further activate other less discriminative
regions to maintain the network’s classification ability. How-
ever, with only intra-class relation constraint for object regions,
the network might learn a tricky position offset to shift object
activation into background regions and impair the localization
ability of CAMs. Therefore, as illustrated in Fig. |Z| (b), we
also apply our proposed class-agnostic distance module with
the inversed saliency map to encourage the compactness and
consistency of background features. Similar to Eq. (3)), the ¢-th
element of background prototype p is calculated as follows:

h,w v c
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Here, the inversed saliency map M = 1— M. After obtaining
the background feature distance D with its prototype, the

class-agnostic distance loss for the background area can be
defined similarly to Eq. @) as follows:
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C. Class-Specific Distance Module

Through the intra-class relation constraint of the above
class-agnostic distance module, we effectively minimize the
feature variance inside or outside the salient region. However,
the more consistent intra-category features do not guaran-
tee that activation of the object region is higher than the



background area. There are two other possible situations: 1)
the network generates smooth features and results in similar
activation for both object and background regions; 2) the
network activates the background region more than the object
region. To alleviate the above issue, we propose a class-specific
distance module to drive object and background features apart
and encourage the object region to have higher activation than
the background. As illustrated in Fig. 2| (b), after obtaining
the class prototypes of object and background from the class-
agnostic distance module, we leverage the image-level label
y to locate the channel related to the specific class that exists
in the image. We then define a class-specific distance loss to
explicitly encourage the network to generate higher attention
values for the object prototype than the background one as
follows:

Lcsd:y'ﬁfy'zx (N

Here, p and p are the object and background prototypes defined
in Eq. () and Eq. (§), respectively.

With our proposed saliency guided inter- and intra-class re-
lation constraints, the overall training loss of the classification
network is as follows:

L= Lcls + )\ochad_ob + )\bchad_bg + )\cdecsd~ (8)

Here, Aoy, Apg and Ac4q are the hyperparameters that control
the relative importance of class-agnostic distance losses for
object and background, and class-specific distance loss.

D. Object Guided Label Refinement

After leveraging the pseudo labels derived from CAMs to
train a segmentation network, the natural idea is to utilize the
segmentation model to generate high-quality pseudo labels.
However, directly leveraging the model predictions to retrain
the network does not improve performance, indicating the
quality of the model prediction is inferior to the initial pseudo
labels. However, the segmentation predictions and the initial
pseudo labels obtained from CAMs can be complementary.
Though initial pseudo labels suffer from the loss of boundary
information, benefiting from the localization ability of CAMs,
they can identify more object instances than the network
predictions. In contrast, the network predictions can provide
more accurate boundary information. Therefore, we devise an
object guided label refinement module to take advantage of
them for generating high-quality labels. First, with image-level
label y. that denotes the existence of categories, we can filter
out the object labels that should not exist in the segmentation
prediction P as follows:

Pij—{ 255 1fPZ-j:c,yC:0'

P;;  otherwise
The wrong object labels corrected as 255 will be ignored dur-
ing training, which will help discard the gradients generated by
the misleading information. Then we relabel the prediction’s
background pixels which are not consistent with the initial
pseudo label L:

Pij = {

€))

Li;j if P;=0,Li; #0

P;;  otherwise (10)

This adjustment is based on the observation that only pixels
within the salient region or with high activation in CAMs are
identified as the non-background area in the initial pseudo
label. Therefore, we suppose these pixels are reliable and
should not be treated as background. Finally, we further mine
the objects that are missed in the network prediction and initial
label as follows:

PH_{ 255
iy =
(11)

131' .

We traverse all categories in the image-level label and check
whether any class of object is missed in P. Since we do not
have any clue to correct the object pixels currently labeled as
background, we set all the background as unreliable labels
to be ignored during training. We focus on reducing the
false-negative rate of pseudo labels and relying on the self-
correction ability of the segmentation network to discover the
missed objects.

if P; =0,3¢,st. yo=1,Y(¢,4), P # ¢
otherwise ’

IV. EXPERIMENTS
A. Implementation Details

For the classification network, we adopt the VGG-16 model
[47] as our backbone, which is pre-trained on ImageNet
[48]]. Following previous works [[14]], [45], we remove all
fully connected layers and add three convolutional layers
with 512 channels and kernel size 3 x 3 on the top of
the fully-convolutional backbone. A ReLU layer follows each
convolutional layer for nonlinear transformation. Then, a class-
aware convolutional layer of C' channels with kernel size 1 x
1 is adopted as the pixel-wise classifier to generate attention
maps. The momentum and weight decay of the SGD optimizer
are 0.9 and 5 x 10~%. The initial learning rate is set to 1073
and is divided by 10 after epoch 5 and 10. We train the
classification network for 30 epochs with batch size = 5. The
saliency maps used in this paper are provided by the work
of OAA [14], which are generated by a pretrained saliency
detection model [23].

For the segmentation network, following [26], [45]], [49]—
[52], we adopt the DeepLab-v2 [31] framework. Both the
VGG-16 [47] and ResNet-101 [53] backbones are pre-trained
on ImageNet [48]. We use atrous spatial pyramid pooling
(ASPP) [31] as the final classifier and apply an up-sampling
layer along with the softmax output to match the size of the
input image. The momentum and weight decay of the SGD
optimizer are 0.9 and 10~*. The initial learning rate is set to
2.5 x 107* and is decreased using polynomial decay with a
power of 0.9. The segmentation network is trained for 10,000
iterations with batch size = 10.

B. Datasets and Evaluation Metrics

Following previous works, we evaluate our approach on
the PASCAL VOC 2012 dataset [3]] and COCO dataset [4]].
As the most popular benchmark for WSSS, the PASCAL
VOC 2012 dataset contains 21 classes (20 object categories
and the background) for semantic segmentation. There are
10,582 training images, which are expanded by [54], 1,449
validation images, and 1,456 test images. COCO dataset is



TABLE I
QUANTITATIVE COMPARISONS TO PREVIOUS STATE-OF-THE-ART
APPROACHES ON PASCAL VOC 2012 VALIDATION AND TEST SET WITH
VGG BACKBONE. I: IMAGE-LEVEL LABELS, S: SALIENCY MAPS.

Methods Publication Sup. Val Test
STC [8] TPAMI17 I+S 49.8 51.2
AE-PSL [43] CVPR17 I+S 55.0 55.7
WebS-i2 [56] CVPR17 I+S 534 55.3
Hong et al. [9] CVPR17 I 58.1 58.7
DCSP [10] BMVC17 I+S 58.6 59.2
TPL [57] Iccvi7 I+S 53.1 53.8
GAIN [58] CVPR18 I+S 55.3 56.8
DSRG [11] CVPR18 I+S 59.0 60.4
MCOF [59] CVPRI18 I+S 56.2 57.6
AffinityNet [12] CVPRI8 I 58.4 60.5
RDC [13] CVPRI8 I+S 60.4 60.8
SeeNet [44] NIPS18 I+S 63.1 62.8
SSNet [[60] ICCV19 I+S 571 58.6
OAA [14] ICCV19 I+S 63.1 62.8
IAL [55] 1ICV20 I+S 62.0 62.4
ICD [25] CVPR20 I 64.0 63.9
BES [51] ECCV20 I 60.1 61.1
Zhang et al. [50] ECCV20 I+S 63.7 64.5
MCIS [27] ECCV20 I+S 63.5 63.6
Li et al. [45] AAAI21 I+S 63.3 63.6
ECS-Net [61] ICCV21 I 62.1 63.4
12CRC (Ours) - I+S 64.3 65.4

a more challenging benchmark with 80 semantic classes and
the background. Following previous works [45], [55], we use
the default train/val splits (80k images for training and 40k
for validation) in the experiment. For all the experiments, we
only adopt the image-level class labels for training. Standard
mean intersection over union (mloU) is taken as the evaluation
metric for the semantic segmentation task.

C. Comparisons to the State-of-the-arts

a) Baselines: In this part, we compare our proposed
method with the following state-of-the-art approaches that
leverage image-level labels for weakly supervised semantic
segmentation: BFBP [62]], SEC [7], STC [8]], AE-PSL [43]],
WebS-i2 [56], Hong et al. [9]], DCSP [10]], TPL [57], GAIN
[58]], DSRG [11]], MCOF [59], AffinityNet [12], RDC [13],
SeeNet [44], SSNet [60], OAA [14], IAL [55], ICD [25], BES
[51]], Fan et al. [26], Zhang et al. [50], MCIS [27]], IRN [63]],
FickleNet [24], SSDD [64], SEAM [65]], SCE [49]], CONTA
[52]], LIID [66]], Li et al. [45]], NSROM [67]], ECS-Net [61].

b) Experimental Results on PASCAL VOC 2012:
We present our results on PASCAL VOC 2012 dataset for
the backbone of VGG and ResNet in Table [ and Table
respectively. As can be seen, our proposed method achieves
better results than other state-of-the-art approaches for both
VGG and ResNet backbones. For the VGG backbone, we can
get 64.3% on the validation set and 65.4% on the test set. Com-
pared with the methods of STC [8]], WebS-i2 [56] and Hong et
al. [9]] that utilize additional training images, our method can
improve their results by more than +6.7% mloU. Our approach
outperforms the second-best method proposed by Zhang et al.
[50] by +0.9% mloU on the test set. For the more powerful
ResNet backbone, our segmentation results reach 69.3% and
69.5% on the validation and test set, respectively. Compared to

TABLE II
QUANTITATIVE COMPARISONS TO PREVIOUS STATE-OF-THE-ART
APPROACHES ON PASCAL VOC 2012 VALIDATION AND TEST SET WITH
RESNET BACKBONE. I: IMAGE-LEVEL LABELS, S: SALIENCY MAPS.

Methods Publication Sup. Val Test
DCSP [10] BMVC17 I+S 60.8 61.9
DSRG [11] CVPR18 I+S 61.4 63.2
MCOF [59] CVPR18 I+S 60.3 61.2
AffinityNet [12] CVPR18 I 61.7 63.7
SeeNet [44] NIPS18 I+S 63.1 62.8
IRN [63] CVPR19 I 63.5 64.8
FickleNet [24] CVPR19 I+S 64.9 65.3
SSNet [60] ICCV19 I+S 63.3 64.3
OAA [14] ICCV19 I+S 65.2 66.4
SSDD [64] ICCV19 I+S 64.9 65.5
IAL [55] ICcv20 I+S 64.3 65.4
SEAM [65] CVPR20 I+S 64.5 65.7
SCE [49] CVPR20 I 66.1 65.9
ICD [25] CVPR20 I+S 67.8 68.0
Zhang et al. [50] ECCV20 I+S 66.6 66.7
Fan et al. [26] ECCV20 I+S 67.2 66.7
MCIS [27] ECCV20 I+S 66.2 66.9
BES [51] ECCV20 I 65.7 66.6
CONTA [52] NIPS20 I 66.1 66.7
LIID [66] TPAMI20 I 66.5 67.5
Li et al. [45] AAAI2I I+S 68.2 68.5
NSROM [67] CVPR21 I+S 68.3 68.5
ECS-Net [61]] ICCV21 I 66.6 67.6
I2CRC (Ours) - +S 693 695

R (b) Ground Truth

.(a) Image (c) LIID (d) Ours

Fig. 3. Visual comparisons with LIID [66] on PASCAL VOC 2012 validation
set. For each (a) image, we show the (b) ground truth, the result of (c) LIID
[66] and (d) our method. Best viewed in color.

DSRG [11] and CONTA [52] that also leverage the prediction
of the model to help train the segmentation network, our
approach has +2.8% performance gain. Compared to the work
of LIID [66] that can tackle both instance and semantic
segmentation tasks with weak labels, our proposed approach
outperforms it by +2.8% and +2.0% on the validation and test
set, respectively. The visual comparisons with LIID [66] is
illustrated in Fig. [3] As can be seen, though both LIID [66]
and our proposed method can successfully detect each instance
in the image, our proposed method can lead to more accurate
segmentation at the boundary. Compared to the current leading
approach of NSROM [67]], our method can outperform it by
+1.0%.
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Fig. 4. Visual comparisons about CAMs for the PASCAL VOC 2012 training set. For each (a) image, we show the (b) saliency map, attention maps produced
by (c) baseline, (d) CAD - bg, (e) CAD, and (f) CAD + CSD. CAD: Class-Agnostic Distance Module; CSD: Class-Specific Distance Module. The first four
columns of images contain objects of only one category, and the other four columns of images contain objects of multiple categories. Best viewed in color.

TABLE III
QUANTITATIVE COMPARISONS TO PREVIOUS STATE-OF-THE-ART
APPROACHES ON COCO VALIDATION SET WITH VGG BACKBONE. I:
IMAGE-LEVEL LABELS, S: SALIENCY MAPS.

Methods Publication Sup. Val
BFBP [62] ECCV16 I 20.4
SEC [[7] ECCV16 I 224
DSRG [11] CVPR18 I+S 26.0
CONTA [52] NIPS20 I 23.7
IAL [55] 1JICV20 I+S 27.7
Li et al. [45] AAAI21 I+S 28.4
I2CRC (Ours) - +S 312

c) Experimental Results on COCO: To further examine
the performance of our proposed approach, we conduct exper-
iments on the more challenging COCO dataset. We present
our results for the backbone of VGG in Table As can be
seen, our proposed algorithm achieves the best performance
of 31.2% on the validation set. It significantly outperforms
the second-best result reported in the work of Li et al. [45]
by +2.8% mloU, which demonstrates the superiority of our
approach.

D. Ablation Studies

a) Element-Wise Component Analysis: In this part, we
demonstrate the contribution of each component proposed in

our approach. Visual comparisons about CAMs are illustrated
in Fig. ] For each image, we show the saliency map, and
attention maps produced by (c) baseline: the original method
of CAMs [21], [46]; (d) CAD - bg: CAD only applied
to the object region without the background constraint; (e)
CAD: our default setting of applying CAD to both the object
and background area; and (f) CAD + CSD: our proposed
saliency guided inter- and intra-class relation constraints with
both CAD and CSD. As shown in Fig. [] (c), attention
maps produced by the baseline method only locate the most
discriminative regions of the object, e.g., the eyes of the
cat. From Fig. [] (d), we can notice that aligning the object
features to their prototype can minimize the intra-category
variance. However, as shown in the 3rd to 5th columns,
to circumvent the intra-class relation constraint, the network
might also learn a tricky position offset to shift activation
of the most discriminative region into the background area,
which impairs the localization ability of CAMs. From Fig. @]
(e), we can notice that applying CAD to both object and
background regions can address this activation shift issue and
enlarge the activated object region. However, as demonstrated
in the 2nd to 5th columns, the network will also expand the
object activation to the background when generating smooth
features for both object and background area around the object.
Finally, with our proposed CSD, we successfully drive object
and background features apart and encourage object regions to



TABLE IV
ELEMENT-WISE COMPONENT ANALYSIS ON PASCAL VOC 2012
VALIDATION SET WITH RESNET BACKBONE. CAD: CLASS-AGNOSTIC
DISTANCE MODULE; CSD: CLASS-SPECIFIC DISTANCE MODULE; LR:
OBJECT GUIDED LABEL REFINEMENT MODULE.

Methods Val
baseline 63.5
+ CAD 65.4
+ CSD 433
+ CAD + CSD 68.0
+ CAD + CSD + retrain  67.2
+ CAD + CSD + LR 69.3

have higher activation than background. As shown in Fig. [
(f), our approach can effectively activate more compact and
integral object regions for both simple and complex images.

The experimental results on the validation set of PASCAL
VOC for the ResNet backbone are given in Table As
can be seen, by leveraging our proposed CAD to minimize
the intra-category feature variance for both object and back-
ground regions, we can improve the baseline result from
63.5% to 65.4%. In our experiment, we notice that if CAD
is only applied to the object region without the background
constraint, the performance will drop significantly to 61.5%
due to the activation shifting issue illustrated in Fig. [ (d).
This highlights the importance of applying CAD to both the
object and background area, which maintains the localization
ability of CAMs and enlarges the object activation region. By
utilizing CSD to drive object and background features apart,
we obtain another +2.6% performance gain and get the mloU
of 68.0%. We can also note that if CSD is applied alone, the
performance drops significantly to 43.3%. Without the CAD
loss, the network cannot benefit from the object boundary
information provided by the saliency map and thus leads to
inaccurate object activation. Specifically, the network tends to
activate more background regions to meet the constraint of
CSD loss. This highlights the importance of CAD loss that
helps learn compact and consistent features for both object
and background. As we can see, after learning a segmentation
model with pseudo labels, if we directly retrain the network
with its prediction, the performance drops from 68.0% to
67.2%. In contrast, with the higher quality labels generated
from our proposed object guided label refinement module,
retraining the segmentation network can further improve the
performance to the mloU of 69.3%.

To further verify the effectiveness of our proposed label
refinement module, we also evaluate the quality of the pseudo
mask on the PASCAL VOC 2012 train set with and without
our proposed object guided label refinement module (LR). As
can be seen in Table M without LR, the mloU of the pseudo
mask is only 70.7%. After object guided label refinement, the
quality of the newly generated pseudo mask can reach 76.1%.

Some qualitative segmentation examples on the PASCAL
VOC 2012 validation set can be viewed in Fig. 5] As shown
in the first two columns of Fig. [§] (d), after enlarging object
regions with CAD, we can accordingly segment out more
integral objects than the baseline method. Given the more

TABLE V
EVALUATION OF THE PSEUDO MASK (MASK) ON PASCAL VOC 2012
TRAIN SET WITH AND WITHOUT OUR PROPOSED OBJECT GUIDED LABEL
REFINEMENT MODULE (LR).

Methods Mask
Ours w/o LR 70.7
Ours w/ LR 76.1

TABLE VI

EVALUATION OF THE PSEUDO MASK GENERATED FOR SIMPLE IMAGES
(MASK-S) oOF PASCAL VOC 2012 TRAIN SET FROM SALIENCY MAPS

AND CAMS.
Methods Mask-S Val
Saliency 69.1 66.4
CAM 76.6 68.0

compact object region activated with our saliency guided inter-
and intra-class relation constraints (CAD + CSD), as shown
in the 3rd to 5th columns of Fig. E] (e), we obtain more
refined objects from the segmentation map. Finally, exploiting
the potential of segmentation prediction and initial labels for
generating higher quality pseudo labels, we can correct part
of the wrong prediction in images of the 6th and 7th columns
and discover the missed sofa in the image of the last column.

b) Comparisons of Pseudo Mask Generated from
Saliency Maps and CAMs: In this paper, we assume that for
the simple images, their saliency maps can be approximated
as the ground truth. Based on the assumption, it seems like
there is no need to generate pseudo ground truth from CAM for
simple images. In Table [VI] we compare the quality of pseudo
labels generated for simple images of the PASCAL VOC 2012
train set from saliency maps and CAMs. As can be seen, the
mloU between saliency maps for simple images and ground
truth is 69.1%. If generated from CAMs, the quality of pseudo
labels for simple images can be improved to 76.6%. We also
compare the performance of using pseudo ground-truth for
complex images and saliency maps for simple images to train
the segmentation network with our default setting (which trains
the network with pseudo labels all generated from CAMs).
Note that the results on PASCAL VOC 2012 validation set are
reported without our object guided label refinement module.
As shown in Table compared with using saliency maps
for simple images, leveraging pseudo labels all generated from
CAMs can obtain 1.6% performance gain.

c¢) The Number of Simple Images: In Table we
show the performance of our method when our proposed losses
are applied to the subset of simple images. Note that the
results on PASCAL VOC 2012 validation set are reported
without our object guided label refinement module. As can
be seen, when computing the proposed losses only on 80%,
50%, 20% of the simple images in the PASCAL VOC dataset,
the performance drops from 68.0 to 67.8, 67.8, and 67.7,
respectively. Reducing the number of simple images only
slightly affects the performance, demonstrating the robustness
of our proposed losses.
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Fig. 5. Example results on PASCAL VOC 2012 validation set. For each (a) image, we show the (b) ground truth, the result of (c) baseline, (d) CAD, (e)
CAD + CSD, and (f) our full method. CAD: Class-Agnostic Distance Module; CSD: Class-Specific Distance Module. Best viewed in color.

TABLE VII
COMPARISONS OF MIOU SCORES ON PASCAL VOC 2012 VALIDATION
SET WHEN OUR PROPOSED LOSSES ARE APPLIED ON DIFFERENT NUMBER
OF SIMPLE IMAGES. NOTE THAT IMAGES ARE SELECTED RANDOMLY.
#IMAGES-S AND PROPORTION-S DENOTE THE NUMBER AND PERCENTAGE
OF SIMPLE IMAGES.

#Images-S Proportion-S Val
1349 20% 67.7
3373 50% 67.8
5397 80% 67.8
6746 100% 68.0

d) Parameter Analysis: We further conduct parameter
analysis on the PASCAL VOC 2012 validation set to verify
the effectiveness of the essential modules in our approach.
We use ResNetlO1 as the default backbone. Note that the
results are reported without our object guided label refinement
module. The baseline result is given in the first row and
the performance with default parameters reported in this
paper for Eq. is given in the last row of Table
We first investigate the effect of \,,, which controls the
relative importance of class-agnostic distance loss for object
region. As shown in Table [VITI, we can get better mloU
score when )\, varies between 0.01 to 0.015. A larger or
smaller \,, may not improve the results very much. For
the parameter that controls the relative importance of class-

TABLE VIII
THE PARAMETER SENSITIVITY OF Aopj, Abg AND Acgd. RESULTS ARE
REPORTED ON PASCAL VOC 2012 VALIDATION SET WITH THE RESNET

BACKBONE.
Parameters | Val
Aoy = 0 | Mg=0 | Asa=0 | 635
Ay = 0.0075 66.8
Aob = 0.015 Apg = 0.025 Aesad = 0.1 67.6
Aoy = 0.02 66.3
Apg = 0.02 67.3
~ Apg = 0.03 ~ 67.6
Aop = 0.01 Apg = 0.035 Acsa = 0.1 67.5
Abg = 0.04 65.9
Aeea = 0.075 | 66.9
Aoy = 0.01 Abg = 0.025 | Aeag = 0.15 | 67.7
Aesa = 0.2 67.0
Aob =001 | Apg=0025 | Aesa =0.1 | 68.0

agnostic distance loss for background, we vary Ay, over the
range {0.02,0.025,0.03,0.035,0.04}. We can find that the
segmentation result is quite stable when A, varies from 0.02
to 0.035 and a larger \pq deteriorates the performance greatly.
We further evaluate the impact of the class-specific distance
module by comparing the performance with different A 54
ranging between {0.075,0.1,0.15,0.2}. As shown in Table
the mloU score is better improved when ..y varies



between 0.1 to 0.15. A larger or smaller A\ ;4 may not improve
the results very much. On the whole, the results in Table
are always much better than the baseline result, which
demonstrates the effectiveness and robustness of our proposed
method. According to Table we finally set A, = 0.01,
Abg = 0.025 and A;5q = 0.1.

V. CONCLUSIONS

In this work, we proposed a saliency guided inter- and
intra-class relation constrained (I?CRC) framework for weakly
supervised semantic segmentation. Specifically, we proposed
a saliency guided class-agnostic distance module to minimize
the intra-category feature variance via aligning features to their
class prototype. Further, we proposed a class-specific distance
module to drive inter-class features apart and encourage the
object region to have higher activation than the background.
Besides strengthening the classification network’s ability to
activate more integral object regions in CAMs, we also pro-
posed an object guided label refinement module to further
exploit the potential of segmentation predictions and initial
labels for generating higher quality pseudo-labels. Extensive
experiments on the PASCAL VOC 2012 and COCO datasets
demonstrated the superiority of our proposed approach.
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