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Saliency Prediction on Stereoscopic Videos
Haksub Kim, Sanghoon Lee, Senior Member, IEEE, and Alan Conrad Bovik, Fellow, IEEE

Abstract— We describe a new 3D saliency prediction model
that accounts for diverse low-level luminance, chrominance,
motion, and depth attributes of 3D videos as well as high-level
classifications of scenes by type. The model also accounts for
perceptual factors, such as the nonuniform resolution of the
human eye, stereoscopic limits imposed by Panum’s fusional area,
and the predicted degree of (dis) comfort felt, when viewing the
3D video. The high-level analysis involves classification of each
3D video scene by type with regard to estimated camera motion
and the motions of objects in the videos. Decisions regarding
the relative saliency of objects or regions are supported by
data obtained through a series of eye-tracking experiments. The
algorithm developed from the model elements operates by finding
and segmenting salient 3D space-time regions in a video, then
calculating the saliency strength of each segment using measured
attributes of motion, disparity, texture, and the predicted degree
of visual discomfort experienced. The saliency energy of both
segmented objects and frames are weighted using models of
human foveation and Panum’s fusional area yielding a single
predictor of 3D saliency.

Index Terms— Stereoscopic, scene classification, eye-tracker,
saliency strength, saliency energy, human visual system.

I. INTRODUCTION

T
HE development of 3D display technologies and devices

has led to a rapid expansion of the 3D imaging market.

This rapid technological growth has been accompanied by

greatly increased popularity of 3D entertainment, as exem-

plified by the many recent impressive 3D-cinema and 3DTV

productions. An important ingredient in further improving

3D video processing technologies are efforts to incorporate

better models of 3D perception. Among these, saliency detec-

tion, or the automated discovery of points of high visual

interest, conspicuity, or task relevance, is a particularly chal-

lenging problem. Yet it is an exceedingly promising prob-

lem, since it has the potential to dramatically affect current

approaches to such important applications as object detection

and recognition, image/video compression, visual navigation

and image/video quality assessment [1].
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Despite considerable prior research on visually salient

region detection on natural scenes [3]–[13], [17], it remains

difficult to precisely define the characteristics of visual attrac-

tion or to create models that reliably and automatically detect

salient regions. The 3D saliency problem, whereby points

of presumed visual interest are found in a reconstructed

3D visual space (e.g., from stereoscopic data) has received

much less attention [2], [14]–[16], although such 3D factors

as depth and shape certainly affect visual attention. Towards

closing this gap of knowledge, we propose a framework for

3D salient region detection in stereoscopic videos that utilizes

a bottom-up approach, identifies camera motion, and classifies

each dynamic scene accordingly. By analyzing the statistical

distribution of expected object motions with regard to camera

motion or dynamic focus changes, the detection of salient

regions is simplified. We define the notion of 3D “saliency

strength,” which quantifies the degree of likely visual attraction

to a region based on measure of visual information content in

the region. “Saliency strength” is computed over space, time,

and disparity, then combined into a 3D space-time “saliency

energy.”

While scene classification is a powerful contextual cue for

determining saliency autonomously, most prior efforts in this

direction have been focused on scene categorization through

pattern recognition. Such techniques attempt, for example,

to recognize or classify specific objects or environments

(e.g., sky, ground) based on learning feature statistics from a

database [18], [19]. However, it is difficult to generalize such

an approach to selecting salient regions. We instead describe

a saliency detection framework that uses scene classification

based on motion information, then extracts visual saliency

measurements suitable for each type of scene.

A variety of sophisticated 2D saliency detection algorithms

have been devised that analyze spatial image characteristics

[3]–[12] such as processed luminance, color and texture fea-

tures or measured fixations statistics. The principles underlying

such 2D saliency detection methods could be extended to

3D saliency detection problems. However to be able to predict

3D video saliency with high accuracy, it will be necessary to

account for 3D characteristics such as depth motion, disparity

perception and visual discomfort [14]–[17]. For example, the

authors of [14] analyzed stereoscopic fixations in 3D as a

function of luminance and depth gradients. They found while

large luminance and contrast gradients tend to draw fixations,

large depth gradients tended to repel the point of gaze in

favor of smooth depth regions. It is also important to con-

sider 3D motion information and its effects on human visual

attention. The authors of [15] presented a saliency detection

approach for stereoscopic video, based on extracting disparity,

motion, visual discomfort and object information in space
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Fig. 1. Procedure of the saliency energy measurement from the input
sequence and its disparity map.

and time. The authors of [16] propose to detect salient regions

based on motion and disparity. Conducting a perception-

based analysis of stereoscopic video is complicated by the

introduction of such factors as vergence, accommodation,

binocular rivalry, visual discomfort, and 3D scene statistics,

all of which are related 3D geometry and the perception of

3D space [20]–[23]. In [20] and [21], the authors analyze

3D geometry and its effects on the 3D experience utilizing

viewing distance, display size and disparity. The authors of

[22] studied depth of focus (DoF) to understand visibility as it

is affected by depth perception in stereoscopic video. In [23],

a model of Panum’s fusional area is used to predict visual

discomfort when viewing stereoscopic video. In particular,

the level of visual discomfort model is related to aspects of

visual attention on stereoscopic video. This further motivates

our desire to create 3D saliency models that reflect both 3D

geometry and visual discomfort/comfort. Fig. 1 shows the

processing framework of our proposed 3D saliency model. A

video sequence and its disparity map are analyzed based on

camera motion, object motion, and zoom. The saliency model

is then uniquely designed for each class of scene. We verify

this modeling stage using an eye-tracker [37]. Then, the video

is segmented to isolate potential highly salient regions using

spatial, temporal, and disparity saliency strength. Finally, we

measure the overall saliency energy for each video frame,

incorporating models of both the nonuniform resolution of

retinal sampling (foveation) and of Panum’s fusional area.

In Section II, we describe the method of motion-based scene

classification and how we extract visual attention as a function

of scene type using the results of eye-tracking experiments.

Section III explains an adaptive method of detecting salient

regions by segmenting each scene type differently based on

motion and disparity. Section IV describes the calculation of

saliency strength in terms of spatial, disparity and temporal

saliency strength factors. Section V outlines how the saliency

energy of each stereoscopic video frame is measured using a

model of foveation and Panum’s fusional area. We conclude

the paper in Section VI.

II. MOTION-BASED SCENE CLASSIFICATION

A. Utilization of Motion Information

It is generally quite difficult to recognize visually salient

regions in natural 2D or 3D images and videos in a manner

Fig. 2. Block diagram for scene classification.

Fig. 3. Depiction of modes of the motion direction. (a) Motion quantization
into 9 direction modes. (b) Expected behavior of motion direction in the
presence of zoom.

that agrees with visual attention or gaze patterns. One feasible

strategy to reduce prediction error is to classify each scene,

then predict salient regions adaptively. This approach seeks to

reduce visual diversity over each candidate region, and hence

to increase reliability relative to “general” solutions. Our low-

level approach to video scene classification relies on analyzing

camera motion and object motion, as shown in Fig. 2.

1) Camera Motion Detection: We deploy a camera detec-

tion module that utilizes motion information obtained using

an efficient optical flow algorithm [40]. The direction of each

motion vector is quantized into one of nine modes as shown

in Fig. 3(a). The motion at spatial index (u, v) in a frame

is denoted V(u,v) = (V
(u,v)
x , V

(u,v)
y ), where 1 ≦ u ≦ w

and 1 ≦ v ≦ h (w and h are the width and height of the

frame), and V
(u,v)
x and V

(u,v)
y are the horizontal and vertical

motion components. This may be expressed in polar form

V
(u,v)
p = (V

(u,v)
r , V

(u,v)
θ ), where V

(u,v)
r is the magnitude of

the motion vector and V
(u,v)
θ is its orientation.

We utilize the two components, V
(u,v)

r and V
(u,v)
θ in

a mode decision process [Fig. 3(a)]. After finding the

histogram of the quantized motion directions in each

frame, the dominant motion direction is found: V M
mode =

arg maxmode (hist(Vmode)), where hist(·) is the histogram

function and Vmode is the set {V (u,v)}, where V (u,v) is

the motion direction at (u, v). Finally, we decide whether

camera motion1 is present from the direction of the dominant

1Or other large motion resulting in an extensive motion field having highly
coherent directionality.
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motion
{

Scene Type 1 ; if V M
mode ≤ Vth

Camera motion exists ; otherwise
(1)

where Vth indicates the threshold below which the velocity is

assumed zero.2

2) Zoom Detection and Decision: As shown in Fig. 2,

we classify scenes containing camera motion as either being

dominated by zoom-induced motion, or otherwise. As shown

in Fig. 3(a), eight direction modes are used for zoom detection.

Fig. 3(b) shows the types of motion direction distributions that

are used to classify scenes as “Zoomed” or not. The directions

are quantized versions of the actual motion. This distribution

is utilized for scene classification by

⎧
⎨
⎩

Scene Type 4 or 5; if min (
NumMode(m)

Isize−NumMode(0)
)≥Zth

Scene Type 2 or 3; otherwise

(2)

where Isize = w × h and NumMode(m) is the number of

pixels in mode m in a frame. A scene is classified as “Zoom”

if the minimum among NumMode(m) for 1 ≤ m ≤ 8 exceeds

a threshold Zth . Moreover, as shown in Fig. 3(b), the polarity

of zoom can be detected in a straightforward manner. Thus,

scenes containing Zoom In vs. Zoom Out are classified as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Scene Type 4;

if

3∑
m=1

NumModeup(m)+
7∑

m=5

NumModelo(m)

3∑
m=1

NumModelo(m)+
7∑

m=5

NumModeup(m)

≥1

Scene Type 5; otherwise

(3)

where NumModeup(m) indicates the number of the mth mode

in the upper half (≤ h/2) of a frame and NumModelo(m)

indicates the number of the mth mode in the lower half

(> h/2) of a frame.

3) Object Motion Detection: Using a simple object motion

detection module, scene types 2 and 3 are further classified

to reflect object motion in the presence of camera motion.

Camera motion occurs when tracking a target object or objects

in scene type 2, and without tracking objects in scene type 3.

In the case of scene type 2, the motion velocity magnitude is

close to zero when the camera fixation tracks a moving object.

Thus, the motion magnitude is used to classify scenes types 2

and 3:
⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Scene Type 2;

if
NumMode(0)

8∑
m=1

NumMode(m)−NumMode(V M
mode)

≧1

Scene Type 3; otherwise.

(4)

2We set Vth = 2 (pixel/frame).

Fig. 4. Scene classification results and ground truth results as a function
of frame number using the stereoscopic test sequences in [42]. (a) “Car2.”
(b) “Walking-person7.” (c) “Statue2.” (d) “University1”.

In (4), the number of mode 0 motion directions (zero motion)

is counted in each frame. If this number is larger than those of

the other motion direction modes after excluding the dominant

motion directions, the scene is classified as scene type 2.

To verify the performance of the motion-based scene classifi-

cation method, we conducted scene classification subjective

experiments utilizing twenty human subjects. The subjects

watched each test sequence frame-by-frame and classified each

into one of the scene types. Ground truth was then taken

to be the majority scene classification on each frame. The

3D test sequences were drawn from the IEEE Stereoscopic

Imaging Database [42], the EPFL stereoscopic video data-

base [43] and the mobile 3D TV video database [44]. Fig. 4

shows the scene classification results and ground truth exam-

ples on the test sequences. For quantitative evaluation, we

measure the Hit-ratio indicating the ratio of correct classified

frames to total frames. Table I shows the performance of the

proposed scene classification over all test sequences. It can

be seen that the performance exceeded 95% correct for all

the sequences. There were a few misclassifications on scene

types 2 or 3, likely arising from inaccuracies of the motion

estimation or ambiguous motion scenes.

B. Fixation Behavior as a Function of Scene Type

Towards understanding human visual fixation behaviors as

a function of scene types 1-5, we conducted an eye-tracking

experiment in a dark room involving twenty persons with ages

ranging from 20 to 30 years old. We used a “SMART EYE

PRO” binocular eye-tracker [37] and a 23” LG polarization

stereoscopic display having a resolution 1600x900.

To study the distinguishing characteristics of each scene

at points of fixation, we computed angular disparity, motion

speed, motion difference at both human fixation locations

and at randomly picked “fixation” locations.3 Fig. 5 shows

the results for each scene where the error bars show 95%

confidence intervals. Fig. 5(a) shows the normalized mean

angular disparity at fixations and at randomly picked locations,

where nearer points have larger weights than farther points as

defined in (8). It can be seen that the angular disparities at

true fixations are generally higher than at random “fixations”

on all the five scenes, suggesting that humans tend to fixate

on closer rather than farther objects. In Fig. 5(b), the 3D scene

3Up to 300 random fixation locations were generated.
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TABLE I

THE PERFORMANCE OF MOTION-BASED SCENE CLASSIFICATION

Fig. 5. Plots of the 3D scene characteristics at fixations (red and solid line)
and at random locations (blue and dot line) for each scene type using the test
sequences [42]–[44]. (a) Normalized mean angular disparity. (b) Normalized
mean speed. (c) Normalized mean motion difference. (d) Normalized location
between center of frames and the fixation or randomly selected points.

characteristics are plotted against object speed. This suggests

that humans tend to fixate on objects moving at higher speeds

when there is no camera motion (scene type 1). However,

when camera motion exists and objects are moving, humans

tend to fixate on and track objects that moving more slowly.

For the Zoom In and Out cases (scene types 4 and 5), in our

model humans are assumed to tend to fixate on objects that

are moving more slowly. In those instances the center of the

image is fixated more often, since the motion is near zero there.

Fig. 5(c) shows the normalized means of motion differences at

fixations and at random locations. From (7), objects exhibiting

larger motion differences are assigned larger weights than

those having smaller motion differences. Generally, the motion

differences at fixations are larger than elsewhere for scene

type 3.

To summarize the results of the experiment, we found that

most of the subjects directed their attention to foreground

objects having large crossed disparities on the stereoscopic

video. Moreover, for scenes of type 1, they tended to fixate

on moving objects. On the other hand, we found that most

subjects fixated on and tracked objects having near zero

motion on scenes of type 2. On scenes of type 3, they would

largely fixate on objects moving along trajectories not tracked

by the camera motion. Finally, for scenes of types 4 and 5,

most of the subjects concentrated their attention near the

middle of the screen.

III. ADAPTIVE SEGMENTATION FOR DETECTING

VISUALLY SALIENT REGIONS

A. Adaptive Segmentation Based on Scene Classification

The conclusions given in Section II-B indicate that human

visual attention on 3D stereoscopic videos is, at least in part,

directed towards objects based on their motion and disparity.

Moreover, depending on the type of scene, the motion and

disparity of each object affects visual attraction in different

ways. Realizing this, we have designed our model to con-

duct adaptive segmentation based on the scene classification

protocol described in Section II-A that is based on measured

motion and disparity. The conclusions given in in Section II-B

suggest that motion and disparity are significant saliency

factors on scenes of types 1, 2 and 3. Thus, segmentation using

motion and disparity is conducted on those scene types, and

the motion and disparity segmentation maps are merged. For

scenes of types 4 and 5 (zoom scenes), it is difficult to expect

good segmentation performance based on motion information.

For those types of scenes, we rely only on disparity infor-

mation to conduct segmentation. The method of segmentation

used to obtain motion and disparity based segmentation maps

was a combination of k-means clustering [38] and a region

growing algorithm [39], as follows. First, the two (left and

right) optical flow maps are input to the motion segmentation

module, where simple k-means clustering is applied on the

x- and y-motions. We set the k = 15. The disparity-based

segmentation is performed in parallel using the computed

disparity map. As a result, two sets associated with motion-

and disparity-based segmentation are obtained:
{

Sm = {Si
m |Si

m ∈ Sm, i = 1, . . . , nm}

Sd = {Si
d |Si

d ∈ Sd, i = 1, . . . , nd }

where Sm and Sd are the motion- and disparity-based segmen-

tation maps, nm and nd are the numbers of segments obtained
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Fig. 6. Example of adaptive segmentation and salient region detection.

(a) Original left image of the 109th stereoscopic frame “Walking-person1”
(scene type 2) [42]. (b) Disparity map. (c) Motion magnitude map. (d) Adap-
tive segmentation. (e) Salient region detection.

using motion- and disparity-based segmentation respectively,

and i is the segment index. The final adaptive segmentation

map, S, is obtained as
{

S = {Si |Si ∈ Sm ∩ Sd}, if Scene Type = 1, 2 or 3

S = {Si |Si ∈ Sd}, if Scene Type = 4 or 5
(5)

where ns is the number of segments in S and 1 ≤ i ≤ ns . Fig. 6

shows an example of the adaptive segmentation process. Each

segment in the segmentation map is represented by a unique

value after merging the motion and disparity segmentations as

shown in Fig. 6(d).

B. Segment Characteristics for Detecting Salient Regions

We define a few parameters that are used to characterize

each segment extracted as in the preceding. First, normalized

velocity and velocity difference parameters are defined using

the averaged x-, y- and z-motion components of each segment.

The x- and y-motion vectors are obtained using the optical

flow algorithm in [40], while the z-motion (depth motion)

is measured using the difference in disparity between the

current and next frames of each segment. The normalized

velocity magnitude (speed) parameter of the i th segment, Mi
I ,

is defined

Mi
I = V̂ i/V̂ M (6)

where i is the i th segment, V̂ i is the average speed (V̂ i =√
(V i

x )2 + (V i
y )

2 + (V i
z )2), V i

x , V i
y and V i

z are the average

x-, y- and z-motion components, and V̂ M is the maximum

speed of the segments for ∀ i which is used as a normalized

factor.

Next, the velocity difference parameter indicates the dif-

ference in motion of each segment relative to a neighboring

dominant motion:

Mi
� = V̂ i

�/V̂ M
� (7)

where Mi
� is the velocity difference parameter of the i th

segment. Using the velocity histogram of each segment, the

degree of motion difference is determined. Let Vx and Vy

be the sets of x- and y-velocities and Vz be the set of

z-velocities for each segment, then V M
x = max(hist(Vx)),

V M
y = max(hist(Vy)) and V M

z = max(hist(Vz)). V M
x , V M

y

TABLE II

SALIENT REGION DETECTION FOR EACH SCENE TYPE

and V M
z are the dominant motions of x-, y- and z-velocities.

Then,

V̂ i
� =

√
(V M

x − V i
x )2 + (V M

y − V i
y )

2 + (V M
z − V i

z )2

captures the degree of velocity difference between the i th seg-

ment and the dominant frame motion. V̂ M
� is a normalization

factor, defined as the maximum difference in the frame for ∀i .

In a stereoscopic video, disparity is also an important

saliency factor. Disparity is obtained from left and right

frame using the depth estimation software in [41]. Define the

disparity parameter

δi = 1 −
Di − DM

N

DM
F − DM

N

(8)

where Di is the average disparity of the i th segment, and DM
N

(DM
F ) is the nearest (farthest) disparity of all segments in the

frame (DM
N ≤ Di ≤ DM

F ). This normalization causes nearer

objects to have larger weights than farther objects.

Last, a segment location parameter Li is obtained, which

indicates the distance between the i th segment and the central

point of the frame:

Li = 1 −

∑ni
s

j=1

√
(x i

j − xc)2 + (yi
j − yc)2

ni
s · LM

(9)

where ni
s is the number of pixels in the i th segment, (x i

j , yi
j )

is the j th pixel of the i th segment (1 ≤ j ≤ ni
s ), (xc, yc) is the

center of the display and LM is the maximum distance of each

segment to the central point (xc, yc) for ∀i , which is used as a

normalization factor (LM =
√

(xc − w)2 + (yc − h)2). As the

distance between the i th segment and the center of the screen

is increased, Li decreases. If the value of Li is large, then

the i th segment is located close to the center of the screen.

In order to better connect the characteristics derived from the

eye tracking study with the scene classification/segmentation

model, Table II tabulates the saliency parameters for each

segment.

In Table II, Ri is the degree of saliency for the i th segment

expressed as a function of the motion, disparity and location

parameters. A set of weights on speed (wI ), velocity difference

(w�), disparity (wδ) and location (wL) are employed. Those

regions in each frame that are deemed salient form a spatial

set R = {Ri |Ri > Rth, i = 1, . . . , ns} where Rth is a

salient threshold and ns is the number of segments in a frame.

Finally, the overall saliency set is R = {Rk , k = 1, . . . , nr },
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where nr = ns − num(Ri ≤ Rth) for 1 ≤ i ≤ ns , which

is the number of salient regions. Fig. 6 shows an example of

this process, where brightness indicates the degree of saliency.

In Fig. 6(e), the final map is shown.

IV. SALIENCY STRENGTH

It has been well known that the density of photoreceptors in

the retina is densest at the fovea and decreases exponentially

to the retinal periphery. The size of the neuronal receptive

fields in the retinal output and in the cortical map of the

retina increases towards the visual periphery [29], [30]. Thus,

the area perceived by the human eyes is a function of the

viewing angle w.r.t the fovea. Thus, as people watch natural

scenes, it is natural for them to move their fixations to

capture information across the scene, and to fixate at more

informative regions (relative to the task at hand) or objects

in the image [29]. In order to capture such behavior, we

define the notion of saliency strength, which quantifies the

degree to which eyes are drawn to salient regions. The saliency

strength measures the amount of certain types of information

contained in salient regions of stereoscopic video. However,

when watching stereoscopic video, visual discomfort can occur

due to the presence of large disparities that are sustained along

the temporal axis, which adversely affects visual attention. To

capture the effects of visual discomfort in the saliency strength,

we include certain visual factors related to stereoscopic visual

discomfort [22].

A. Spatial Saliency Strength

The strength of spatial saliency is based on luminance, color,

size and compactness. Our measure of spatial saliency strength

is computed on a fused representation of the left and right

frames obtained using the cyclopean image model described

in [24].

1) Luminance: Several studies have been conducted on

visual attention as a function of the luminance distribution of a

stereoscopic image [3]–[14]. In [14], the authors found that the

luminance contrast and luminance gradient of stereoscopically

fixated patches are generally higher than in randomly selected

patches. They defined the fixation-to-random luminance con-

trast and gradient ratios, and found that the ratios are generally

larger than 1. We use this attentional characteristic as part of

luminance saliency strength factors, using the luminance con-

trast and luminance gradient maps. Define luminance contrast

and luminance gradient factors

Ck
l =

∑Rk
size

n=1 Cl(xn, yn)

Rk
size

, Gk
l =

∑Rk
size

n=1 Gl (xn, yn)

Rk
size

(10)

where Ck
l (Gk

l ) is the luminance contrast (gradient) factor of

the kth salient region in the original left frame as shown

in Fig. 7(b) and (c). Rk
size is the number of pixels in the

kth salient region and (xn, yn) is the nth pixel of the kth

salient region ((xn, yn) ∈ Rk , n = 1, . . . ,Rk
size). Using

these elements, the luminance contrast saliency strength is

Fig. 7. Luminance saliency strength. (a) Original left image of the 109th

stereoscopic frame “University2” [42]. (b) Luminance contrast map (window
size 10 pixels). (c) Luminance gradient map. (d) Luminance saliency strength
map.

expressed as
⎧
⎨
⎩
Wk

lc = 1, if
Ck

l

Ĉl
> 1

Wk
lc =

Ck
l

Ĉl
, otherwise

(11)

where Wk
lc is the luminance contrast saliency strength of

the kth salient region, Cl is luminance contrast map, and

Ĉl = mean(Cl). This saliency strength measure takes its

highest value when the luminance contrast factors of the kth

salient region are bigger than the average luminance contrast.

It decreases when the salient region contains lower luminance

contrast values than Ĉl . Similarly, the luminance gradient

saliency strength is expressed as
⎧
⎨
⎩
Wk

lg = 1, if
Gk

l

Ĝl
> 1

Wk
lg =

Gk
l

Ĝl
, otherwise

(12)

where Wk
lg is the luminance gradient saliency strength of the

kth salient region, Gl is the luminance contrast map, and

Ĝl = mean(Gl).

Using (11) and (12), the luminance saliency strength is

Wk
l = wlcW

k
lc + wlgW

k
lg (13)

where Wk
l is the luminance saliency strength of the kth salient

region. There is correlation between luminance contrast and

luminance gradient values, we combine these two values using

weighted sum. wlc and wlg are the weights of luminance

gradient and luminance contrast. It increases (decreases) when

the salient region contains higher (lower) luminance contrast

and gradient values. Fig. 7(d) shows the luminance saliency

strength where again, brightness indicates the importance of

saliency.

2) Color: Numerous studies on saliency detection have

been conducted on the effects on visual attention of color

information [3], [4]. The authors of [3] considered the role

of color contrast and found it to be highly correlated with

visual fixation locations. Accordingly, we use color contrast

measurements to calculate the saliency strength. We also use

measurements of the color gradient to capture the local rate of

color changes. These are computed after converting the images

into the perceptually uniform CIELab color space [46]. Define

the color contrast and gradient factors respectively as

Ck
c =

∑Rk
size

n=1 Ca
c (xn, yn) + Cb

c (xn, yn)

2Rk
size

(14)

Gk
c =

∑Rk
size

n=1 Ga
c (xn, yn) + Gb

c (xn, yn)

2Rk
size

(15)
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Fig. 8. Color saliency strength. (a) Original left image of the 109th

stereoscopic frame “University2” [42]. (b) Color contrast map (window size
10 pixels). (c) Color gradient map. (d) Color saliency strength map.

on the kth salient region in the cyclopean frame, depicted

in Fig. 8(b) and (c). Ca
c and Cb

c are the color contrast maps

of the color maps in Fig. 8(a) and (b). Ga
c and Gb

c are the

color gradient maps of the color maps in Fig. 8(a) and (c).

Using these elements, the color contrast saliency strength is

represented as
⎧
⎨
⎩
Wk

cc = 1, if
Ck

c

Ĉc
> 1

Wk
cc =

Ck
c

Ĉc
, otherwise

(16)

where Wk
cc is the color contrast saliency strength of the kth

salient region. Let Cc be the color contrast map, and take

Ĉc = mean(Cc). Similarly, the color gradient saliency strength

is expressed
⎧
⎨
⎩
Wk

cg = 1, if
Gk

c

Ĝc
> 1

Wk
cg =

Gk
c

Ĝc
, otherwise

(17)

where Wk
cg is the color contrast saliency strength of the

kth salient region. Let Gc be the color gradient map, and

Ĝc = mean(Gc). Using (16) and (17), the color saliency

strength of the kth salient region is

Wk
c = wccW

k
cc + wcgW

k
cg . (18)

Naturally, there is correlation between the color contrast and

the color gradient. Hence, we combine the two elements by

a weighted sum where wcc and wcg weight the color contrast

and the color gradient, respectively. The color saliency strength

increases (decreases) when the salient region contains higher

(lower) color contrast and gradient values. Fig. 8(d) shows

the color saliency strength map where brightness indicates the

importance of saliency.

3) Size and Compactness: Many studies have addressed the

relationship between visual attention and the size and shapes

of objects [31], [32]. For example, the authors of [31] relate

object size to human recognition and perception. They define

the relative object size (ROS) as the ratio of the number of

pixels of an object to the number of pixels in the image, and

define a simple threshold on suitable object size (ROS > 5%).

Generally, humans perceive, recognize and more frequently

fixate larger (and often nearer) objects. Using this observation,

we define an object size saliency strength factor in terms of

the ROS of each salient region:
⎧
⎨
⎩
Wk

sc1 = 1, if ROSk ≥ ROSth

Wk
sc1 =

ROSk

ROSth

, otherwise
(19)

where ROSk =
Rk

size

w×h
× 100 and ROSth = 5.

Fig. 9. Spatial compactness saliency strength of various regions.

The authors of [32] studied the question of how object size

affects object perception. They varied the widths of objects

with height fixed, then measured visual sensitivity. They found

that human can adapt to variations in wider objects more

easily than narrower objects. Inspired by this result, define the

compactness of a salient region as the mean distance between

the central point and other points inside the salient region:

Wk
sc2 =

ηk
den

mean(
√

(xk
c − xn)2 + (yk

c − yn)2)
, (20)

xk
c =

∑Rk
size

n=1 xn

Rk
size

, yk
c =

∑Rk
size

n=1 yn

Rk
size

(21)

where (xk
c , yk

c ) is the center of Rk . Since a circle has

the highest possible compactness amongst objects of a

given size, the compactness ηk
den = mean(

√
x2 + y2) is

used to normalize the saliency strength of other objects of

the same size, where x = {1, . . . , round(
√
Rk

size/π)} and

y = {1, . . . , round(
√
Rk

size/π)}. Fig. 9 shows the region

densities of various shapes.

Finally, we express the overall saliency strength factor incor-

porating size and compactness saliency using (19) and (20):

Wk
sc = Wk

sc1 · Wk
sc2. (22)

Thus, large and dense objects have high saliency strength,

while small and low compactness objects have low saliency

strength.

Using (13), (18) and (22), the overall spatial saliency

strength is expressed

Wk
S = (wlW

k
l + wcW

k
c ) · Wk

sc (23)

where wl (wc) weights the luminance (color) saliency strength.

There is correlation between luminance and color saliency

strengthes, so that we combine the two elements by using

the weighted sum. In contrast, we multiply the size and com-

pactness saliency strength to the weighted sum of luminance

and color saliency strengthes because it is difficult to find

correlation between the two factors.

B. Disparity Saliency Strength

1) Depth Discontinuities: Depth discontinuities are an

important factor in defining disparity saliency strength.

In particular, the authors of [14] defined the relationship

between 3D visual fixations, disparity contrast and disparity
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Fig. 10. Depth discontinuity saliency strength. (a) Original left image of

the 250th stereoscopic frame of “Statue2” [42]. (b) Disparity contrast map
(window size 10 pixels). (c) Disparity gradient map. (d) Depth discontinuity
saliency strength map.

gradient. They found that fixated disparity contrasts and dis-

parity gradients are generally lower than disparity contrasts

and disparity gradients at random location. They found that

the ratios of disparity contrasts and gradients of true fixations

relative to random fixations are generally smaller than 1.

They conclude that humans tend to fixate away from large

disparity gradients and contrasts, preferring instead smooth

depth regions. Thus, define disparity contrast and disparity

gradient factors

Ck
d =

∑Rk
size

n=1 Cd(xn, yn)

Rk
size

, Gk
d =

∑Rk
size

n=1 Gd (xn,yn)

Rk
size

(24)

where Ck
d (Gk

d ) is the disparity contrast (gradient) factor of the

kth salient region. Cd (Gd ) is the disparity contrast (gradient)

map of the original left frame as shown in Fig. 10(b) and (c).

These then define the disparity contrast saliency strength factor
⎧
⎨
⎩
Wk

dc = 1, if
Ck

d

Ĉd
< 1

Wk
dc =

Ĉd

Ck
d

, otherwise
(25)

where Wk
dc is the disparity contrast saliency strength of the

kth salient region, Cd is the disparity contrast map, and

Ĉd = mean(Cd). This strength is highest when the disparity

contrast factors of the kth salient region are smaller than the

average disparity contrast. It decreases when the salient region

has a higher disparity contrast than Ĉl . Similarly, the disparity

gradient saliency strength is
⎧
⎨
⎩
Wk

dg = 1, if
Gk

d

Ĝd
< 1

Wk
dg =

Ĝd

Gk
d

, otherwise
(26)

where Wk
dg is the disparity gradient saliency strength of the

kth salient region, Gd is the disparity gradient map, and

Ĝd = mean(Gd). Using (25) and (26), the depth discontinuity

saliency strength is

Wk
dd = wdcW

k
dc + wdgW

k
dg (27)

where Wk
dd is the depth discontinuity saliency strength of

the kth salient region. There is correlation between disparity

contrast and disparity gradient, thus we combine two ele-

ments by weighted sum. wdc and wdg are the weights of

the disparity contrast and disparity gradient elements. This

decreases (increases) when the salient region contains higher

(lower) disparity contrast and gradient values. Fig. 10(d)

depicts an example of depth discontinuity saliency strength,

where brightness indicates the degree of saliency.

Fig. 11. Fixation tracing using an eye tracker [37] for EPFL stereoscopic

video database [43]. (a1) Original left video of the 62th frame “sofa.”

(a2) Original left video of the 20th frame “notebook.” (b1)-(b2) Eye-tracker
results (disparity level=1). (c1)-(c2) Eye-tracker results (disparity level=2).
(d1)-(d2) Eye-tracker results (disparity level=3). (e1)-(e2) Eye-tracker results
(disparity level=4). (f1)-(f2) Eye-tracker results (disparity level=5).

2) Visual Discomfort: The disparity of an object and its size

affect whether fixating on it causes visual discomfort. If the

disparity does not lie within a zone of comfort, the viewer

will feel increased visual discomfort which can subsequently

affect visual attention. Previous studies have focused on visual

discomfort associated with disparity [21]–[23]. The EPFL

database [43] was constructed with five different disparity

levels for analyzing visual discomfort in terms of disparity.

They found that when disparity levels are increased, visual

discomfort also tends to increase. Thus, we conducted an eye-

tracking experiment using this database using the experimental

environment described in Section II-B. Fig. 11 shows the

experimental results obtained using the eye-tracker. At low

disparity levels 1 and 2, fixations tended to land on salient

objects. By contrast, at larger disparity levels are 3, 4 and 5,

the fixation distribution became diffused as compared to the

lower disparity levels.

To capture this observation in the calculation of saliency

strength, we employ the zone of comfort that defines bound-

aries on disparity outside of which visual comfort is lost. The

zone of comfort is typically defined to be where the angular

disparity is in the range of (−1°, 1°) [22]. The average angular

disparity is used here to define the visual discomfort saliency

strength. The relationship between measured pixel disparity

and angular disparity is laid out in Fig. 12.

Fig. 12(a) shows the stereoscopic geometry of a frame

relative to the size of the stereoscopic display and the distance

(in meters) from the human eye. In Fig. 12(b), the stereoscopic

geometry is shown from above. Table III shows the parameters
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Fig. 12. Stereoscopic geometry (a) 3D space (front view). (b) 2D space
(top-down view).

TABLE III

PARAMETER DESCRIPTION OF STEREOSCOPIC GEOMETRY

of these models, which can be used to estimate the relative size

of the display and the frame size associated with the ratio

ρ =
wdp

w
=

w̃dp

w̃
=

D̃k
dp

D̃k
(28)

where ρ is the ratio of the frame and display sizes.

By using (28), the disparity of the kth salient region in pixels

(Dk) can be converted to disparity on the display (D̃k
dp)

D̃k
dp = ρ · D̃k = ρ ·

w̃

w
· Dk =

w̃dp

w
· Dk (29)

where D̃k = w̃
w

· Dk . Similarly, the exact horizontal location

(in meters) of the kth salient region on the display (̃xk
c ) can

be written as

x̃k
c = ρ ·

w̃

w
· xk

c =
w̃dp

w
· xk

c (30)

where xk
c defined in (21) is the horizontal location of the kth

salient region on the frame (in pixels). Finally, the real depth

of the kth salient region in 3D space is

N k
− =

Z̃ · w̃dp · Dk

w · Ẽ + w̃dp · Dk
, N k

+ =
Z̃ · w̃dp · Dk

w · Ẽ − w̃dp · Dk
(31)

where N k
− is (-) depth and N k

+ is (+) depth. Using (31), the

angular disparity of the kth salient region (D
k
) is obtained in

units of pixel disparity via

D
k

= φ − φk, (32)

= arccos(
a2 + b2 − Ẽ2

2ab
) − arccos(

c2 + d2 − Ẽ2

2cd
).

Fig. 13. Visual discomfort saliency strength for various disparity cases
(top-down view).

If it has (-) depth, then a = (Z̃2 + (̃xk
c − Ẽ

2
)2)

1
2 , b =

(Z̃2 + (̃xk
c + Ẽ

2
)2)

1
2 , c = ((Z̃ −N k

−)2 + (̃xk
c − Ẽ

2
)2)

1
2 and d =

((Z̃ −N k
−)2 + (̃xk

c + Ẽ
2
)2)

1
2 . Otherwise, a = (Z̃2 + (̃xk

c − Ẽ
2
)2)

1
2 ,

b = (Z̃2 + (̃xk
c + Ẽ

2
)2)

1
2 , c = ((Z̃ +N k

+)2 + (̃xk
c − Ẽ

2
)2)

1
2 and

d = ((Z̃ +N k
+)2 + (̃xk

c + Ẽ
2
)2)

1
2 . Using the calculated angular

disparity of the kth salient region, the visual discomfort

saliency strength is defined as

Wk
vd =

⎧
⎪⎪⎨
⎪⎪⎩

− 1

D
k · ηd , if D

k
≤ −1°

ηd , if − 1° < D
k

< 1°

1

D
k · ηd , if D

k
≥ 1°

(33)

where Wk
vd is the visual discomfort saliency strength expressed

as a function of the angular disparity of the kth salient region,

and

ηd = 1 −
D

k
− D

M

N

D
M

F − D
M

N

as an index (0 ≤ ηd ≤ 1) on D
M

N (D
M

F ), which is the nearest

(farthest) angular disparity of all the salient regions in the

frame, where D
M

N ≤ D
k

≤ D
M

F . Wk
vd takes its maximum value

when D
k

is in the zone of comfort. When D
k

is out of the zone

of comfort, then Wk
vd decreases in proportion to the angular

disparity. Fig. 13 shows the visual discomfort saliency strength

of a salient region for the various disparity cases. The white

circular object is the kth salient region and the other black

objects represent neighboring regions. The visual discomfort

saliency strength takes the largest value when it is in the zone

of comfort and has a nearer angular disparity, as in the top

left of Fig. 13. In addition, when the salient region is out of

the zone of comfort with a nearer angular disparity (bottom

left), the saliency strength is reduced. When the salient region

is out of the zone of comfort with a greater angular disparity,

the strength is greatly reduced as shown at bottom right.

Finally, we express overall saliency strength factor incor-

porating depth discontinuity and visual discomfort saliency

strength using (27) and (33):

Wk
D = Wk

dd · Wk
vd (34)

where Wk
D is the disparity saliency strength of the kth salient

region. We multiply the depth discontinuity factor of saliency

strength by the visual discomfort factor of saliency strength.
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C. Temporal Saliency Strength

There has been a significant amount of research on the topic

of eye-movements as a function of object motion [25]–[28].

Human eye movements related to visual attention can be clas-

sified into four main types [28]: 1) Vestibular eye movements

hold the image of the world on the retina steady as the head

moves; 2) Smooth pursuit which, broadly holds the image of

a fixated moving target on the fovea; 3) Saccade which brings

images of objects of interest onto the fovea and 4) Vergence

which moves the eyes so that the images of a single object are

placed or held simultaneously on both foveas. Amongst these,

we shall focus on using smooth pursuit [26]. As mentioned,

smooth pursuit eye movement occurs when the eyes are

tracking a moving object and is affected by object speed.

The human eye is able to track objects angular velocities

of up to about 80 deg/sec although it is often reported that

the maximum velocity of smooth pursuit eye movement is

20-30 deg/sec when observers are tracking the moving objects

perfectly [25]. Following this latter guideline, define temporal

saliency strength in terms of object motion speed, using the

geometric parameters in Table III and ρ in (28), by converting

the units of motion speed from pixel/sec to meter/sec at the

display.

Ṽ k
dp = ρ · Ṽ k = ρ ·

w̃

w
· V k =

w̃dp

w
· V k (35)

where V k
x , V k

y and V k
z are the average spatial and depth

motions (speeds) in pixels of the kth salient region, V k is

the average speed (pixel/sec) of the kth salient region

(V k =
√

(V k
x )2 + (V k

y )2 + (V k
z )2 × fr ), fr is the frame rate

of the stereoscopic video, Ṽ k is the salient region’s speed in

meter/sec and Ṽ k
dp is the projected speed in meter/sec on the

display. Next, transform the speed of the kth salient region to

deg/sec as

V̇ k = arctan(
Ṽ k

dp

Z̃
). (36)

Finally, we define the temporal saliency strength factor

Wk
T =

⎧
⎪⎨
⎪⎩

1, if 0 ≤ V̇ k ≤ V m
th

V m
th

V̇ k , if V m
th < V̇ k ≤ V M

th

0, if V̇ k > V M
th

(37)

where V m
th = 20 deg/sec and V M

th = 80 deg/sec.

Table IV summarizes the each saliency strength factor.

D. Saliency Strength Performance Analysis

To evaluate the performance of our model, we computed the

area under the receiver operating characteristics (ROC) curve,

i.e., the area under the curve (AUC) score [11]. In [47], it was

described that the center-biased human attention characteristics

reduce the accuracy of AUC scores. They found that the

starting fixation point for all observers is biased at the central

fixation. Thus, we excluded 20 fixations from the first for

ameliorate the center-bias of visual attention, and calculated

the AUC scores.

TABLE IV

SUMMARIZATION OF SALIENCY STRENGTH FACTORS

1) The Sensitivity of the Each Saliency Strength

Factor: We calculated the sensitivity of each of these

features: spatial saliency strength, disparity saliency strength

and temporal saliency strength. Table V shows the AUC

score of each saliency strength factor. It can be seen that

each sequence reveals different feature sensitivities depending

on the sequence characteristics and the scene type. Spatial

saliency strength is a highly sensitive predictor for most of the

test sequences as it embodies the established salient factors

luminance, color, size and compactness. Disparity saliency

strength delivers high sensitivity on test sequences exhibiting

large disparity variations or large crossed disparities such as

“Marathon1,” “Sidewalk-lateral1” and “Hallway.” On scene

types 4 or 5 (Zoom In or Out), the temporal saliency

strength is highly predictive as on “Statue2,” “Statue3” and

“Street-lamp1.”

2) The Final Saliency Strength Calculation: We used

three different fusion methods: Weighted sum, Max and

Multiplication to calculate the final saliency strength map.

◦ Weighted sum: the weighted sum of the three saliency

strength maps

Rk
S = (wsW

k
S + wDW

k
D + wTW

k
T ) · Rk . (38)

◦ Max : the maximum value of the three saliency strength

maps

Rk
S = Max(Wk

S ,Wk
D,Wk

T ) · Rk . (39)

◦ Multiplication : multiplicative fusion of the three saliency

strength maps

Rk
S = (Wk

S · Wk
D · Wk

T ) · Rk (40)

where Wk
S , Wk

D and Wk
T are the spatial, disparity and temporal

saliency strengths of the kth segment, and wS , wD and

wT are the spatial, disparity and temporal saliency strength

weights in the weighted sum of the three saliency strength

maps. The overall performance of the weighted sum method

is generally higher than that attained via the other two

fusion methods (Weighted sum = 0.7652; Max = 0.7079;

Multiplication = 0.7291).

3) The Performance Analysis: Fig. 14 shows saliency

strength maps using our model with the weighted sum method

and the results of various other saliency detection methods.

Fig. 14(h) show the saliency strength weight maps obtained

using our model and indicating the spatial, temporal and dis-

parity saliency strength factors. Regions having low saliency
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TABLE V

THE SENSITIVITY OF THE EACH SALIENCY STRENGTH

strength, such as road, ground or sky, are excluded from the

saliency strength weight maps. Moreover, objects exhibiting

high luminance gradients or contrast have relatively large

weights. Rapid motions in the 3D videos, such as the move-

ment of the person in the rear in Fig. 14(h)-(2) and the cars in

Fig. 14(h)-(3) lead to low values in the saliency strength maps.

Fig. 14(h)-(5) and (h)-(6) show that, in similar environments

and scenes, objects that are wide and dense with few or no

depth discontinuities tend to have higher saliency strength.

Moreover, in videos containing Zoom In or Out, motion at the

periphery of the image tends to be faster than at the center of

the image. Thus, the peripheries of the videos in Fig. 14(h)-(5)

and (h)-(6) have low saliency strength. Fig. 14(i) show results

using the eye-tracker in the same environment as shown

in Section II-B. The eye-tracking results are similar to the

saliency strength maps.

We compare our model with algorithms proposed by Bruce

and Tsotsos [5], Zhai and Shah [6], Itti and Baldi [7],

Marat et al. [8], Zhang et al. [9], and Seo and Milanafar [10].

Fig. 14(b)–(g) show the saliency results of these saliency mod-

els. It can be seen that our model relies heavily on identifying

salient object regions. Our model achieves high correlations

relative to results obtained using an eye-tracker. Furthermore,

much of the success of our saliency strength model arises

from adaptation to scene type. In particular, it significantly

outperforms other models (Fig. 14(2)–(6) and (10)) when

camera motions occur. Table VI shows the AUC score of each

algorithm. Our proposed saliency model outperforms other

methods in most cases. In particular, it achieves much higher

accuracy when the test sequences include camera motion or

Zoom In/Out.

V. SALIENCY ENERGY MEASUREMENT

The overall saliency energy is obtained by applying saliency

weights to the saliency strength computed on each frame

over time. Here we utilize two important additional visual

factors when a human watches stereoscopic video. One is

foveation [33], [34], which describes the space-variant res-

olution of photoreceptors in the retina. The other is Panum’s

fusional area [23] which measures the depth resolution and

range of the eyes. Using these two factors, we obtain visual

weights on each region and calculate the overall saliency

energy as a weighted sum.

A. Stereoscopic Saliency Weight

1) Foveation Saliency Weight: Fig. 15(a) depicts the foveal

region of the eye. Since foveation is a process of nonuniform

sampling that allows preferential acquisition of visual infor-

mation at the human retina, we define the foveation saliency

weights as follows [33], [34]. The model of foveation we use is

fc(x) = min[
e2 ln( 1

CT0
)

α[c2 + arctan( d(x)
wγ )]

,
πwγ

360
] (41)

where γ indicates the distance between the human eyes

and the fixation point (center of the fixated region), d(x)

is the pixel distance between the foveal region and other

neighboring locations (xn, yn), γ =
d(x)
w and arctan( d(x)

wγ ) is

the eccentricity e. Other parameters in the foveation model

have been estimated in [36] yielding e2 = 2.3, α = 0.106 and

CT0 = 1
64

. Using this foveation model, the foveation weight

is defined

W2D(xn, yn, x f , y f ) =
fc(xn, yn)

fc(x f , y f )
(42)

where fc(x f , y f ) is the spatial cutoff frequency at the

foveation point, with cutoff frequency fc at (x f , y f ).

Fig. 16(b) shows examples of foveation visual weights.
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Fig. 14. The results of saliency detection of the various methods. (a) Original left images: (1) 130th frame, “Car2” (scene type 1), (2) 215th frame “Walking-

person7” (scene type 2), (3) 48th frame “University1” (scene type 3), (4) 109th frame “University2” (scene type 3), (5) 111th frame “Statue2” (scene type 4),

(6) 86th frame “Street-lamp1” (scene type 5), (7) 60th frame “Bike” (scene type 1), (8) 124th frame “Feet” (scene type 1), (9) 8th frame “Street” (scene type 1)

and (10) 62th frame “Balloons” (scene type 3). (b)-(g) The saliency detection results of the various methods. (h) The proposed saliency strength maps.
(i) Eye-tracker simulation results.

2) 3D Saliency Weight - Panum’s Fusional Area: Panum’s

fusional area is defined as the area on the retina of one

eye over which a point-sized image can range, while still

being able to provide a single image with a specific point of

stimulus on the retina of the other eye. Therefore, the region

in visual space over which we perceive “single vision” is

Panum’s fusional area, i.e., where stereoscopic fusion is clearly

performed. Any objects to the front and back of this area

are not fused completely, a phenomenon known as diplopia

(double vision) [23]. Fig. 15(b) shows Panum’s fusional area.

The horopter is the locus of 3D points having the same angular

disparity. We define the 3D saliency factor relative to Panum’s

fusional area by
{
W3D(φk, φs) = 1, if 0 ≤ �φ ≤ β

W3D(φk, φs) = exp(−
�φ−β

ψ
), if �φ ≥ β

(43)

where φk is the viewing angle of the kth salient region when

the depth is N k
− or N k

+ from the display to the fixation region,

φs is the viewing angle of another neighboring region when

the depth is N s
− or N s

+, and �φ is the difference between

φk and φs (�φ = |φk − φs |). The parameter β is a threshold

needed to define Panum’s fusional area (β = 0 in general).

ψ ≈ 0.62° is a fixed coefficient that has been estimated in

physiological experiments [23]. Fig. 16(c) shows the weighting

computed used (43) as a function of depth w.r.t. the fixation

region. Regions lying within Panum’s fusional area exhibit

higher saliency weight while those lying outside have much

lower weight. Using these foveation and 3D saliency weights,

the saliency energy of a stereoscopic video is obtained as

shown in Fig. 16(d).

B. Stereoscopic Video Saliency Energy

Using the foveation and 3D saliency weights, the overall

saliency energy, SE of a stereoscopic video is defined as

SE =
1

nr

nr∑

s=1

×

(
nr∑

k=1

Rk
size∑

n=1

W2D(xk
n , yk

n , x s
c , ys

c) · W3D(φk, φs) · Rk
S

nr∑
k=1

Rk
size∑

n=1

W2D(xk
n , yk

n , x s
c , ys

c) · W3D(φk, φs)

)

(44)
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TABLE VI

THE PERFORMANCE EVALUATION OF THE VARIOUS SALIENCY METHODS

Fig. 15. Stereoscopic saliency energy weight model. (a) Foveation.
(b) Panum’s fusional area.

Fig. 16. Saliency weight. (a) The 139th left frame “University2” (scene

type 3) [42] for a given fixation region (10th segment). (b) foveation saliency
weight. (c) 3D saliency weight. (d) Saliency energy weight using the foveation
and 3D weights.

where nr is the number of salient regions after segmentation

in a frame, (xk
n , yk

n ) is a pixel in the kth salient region, (x s
c , ys

c)

is the location information of the sth salient region using (21),

and φk(φs) is the average viewing angle of the kth (sth) salient

region. If the fixation is in the sth salient region, the saliency

energy weight of each region is calculated w.r.t. that of the

sth salient region. We carry out this process with reference to

all salient regions sequentially under the assumption that the

Fig. 17. Saliency energy graph (a) “Car1” (scene type 1) and “Car2” (scene
type 1) and (b) “University1” (scene types 1, 2 and 3)” and “University2”
(scene types 1, 2 and 3).

fixation is on each salient region, and obtain the final saliency

energy by taking the weighted sum.

Fig. 17 plots saliency energy measurements against frame

number for two video sequences. Since “Car2” has more

objects than “Car1,” it has higher saliency energy than “Car1”

overall, as shown in Fig. 17(a). The saliency energies of the

two sequences in Fig. 17(a) increases up to around the 220th

frame (when the bus arrives), then rapidly decreases after-

wards, when the bus disappears from the scene. In Fig. 17(b),

the patterns of occurrence of salient regions are irregular in

the sequences “University1” and “University2” due to random

object motions in addition to camera motion (scene type 3).

However, the saliency energy of “University2” is higher than

that of “University1” since more of the objects in it have a

high saliency strength. Fig. 18 demonstrates frames having the

maximum (minimum) saliency energy (Fig. 17(a), (c), (e) and

(g) ((b), (d), (f) and (h))), where more (less) objects having

high saliency strength are distributed. It may be observed that

high saliency energy occurs on frames containing more regions

with high saliency strength.
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Fig. 18. Frames with maximum and minimum saliency energy.

(a) Maximum saliency energy frame; 197th frame “Car1” (SE = 0.4691).

(b) Minimum saliency energy frame; 298th frame “Car1” (SE = 0.0300).

(c) Maximum saliency energy frame; 225th frame “Car2” (SE = 0.6919).

(d) Minimum saliency energy frame; 289th frame “Car2” (SE = 0.1040). (e)

Maximum saliency energy frame; 57th frame “University1” (SE = 0.4951).

(f) Minimum saliency energy frame; 8th frame “University1” (SE = 0.1064).

(g) Maximum saliency energy frame; 90th frame “University2” (SE =

0.6941). (h) Minimum saliency energy frame; 296th frame “University2”
(SE = 0.1737).

VI. CONCLUSION

When analyzing the saliency of stereoscopic video, it is

important to include relevant perceptual mechanisms in par-

ticular since human visual responses in 3D are different than

in 2D, owing to, for example, accommodation and vergence

processes. Here we proposed a new and detailed methodology

to quantify the degree of saliency of objects and regions in

4D space-time by defining novel saliency strength and saliency

energy measures on stereoscopic videos, using well-known

perceptual and attentional principles. The simulation results

indicate that the new saliency strength and energy models

enable detection of visually important regions and visually

important frames on stereoscopic videos. Models such as

these can be used in many applications such as 3D video

compression and 3D quality assessment.
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