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Abstract. Many computer vision problems can be considered to consist of two main tasks: the extraction of image

content descriptions and their subsequent matching. The appropriate choice of type and level of description is of

course task dependent, yet it is generally accepted that the low-level or so called early vision layers in the Human

Visual System are context independent.

This paper concentrates on the use of low-level approaches for solving computer vision problems and discusses

three inter-related aspects of this: saliency; scale selection and content description. In contrast to many previous

approaches which separate these tasks, we argue that these three aspects are intrinsically related. Based on this

observation, a multiscale algorithm for the selection of salient regions of an image is introduced and its application

to matching type problems such as tracking, object recognition and image retrieval is demonstrated.

Keywords: visual saliency, scale selection, image content descriptors, feature extraction, salient features, image

database, entropy, scale-space

1. Introduction

The central problem in many computer vision tasks

can be regarded as extracting ‘meaningful’ descriptions

from images or image sequences. These descriptions

may then be used to solve matching or correspondence

problems such as object recognition, classification or

tracking. The key issues are of course what is ‘mean-

ingful’ and what form should the descriptions take. In

general, the answers to both of these are context spe-

cific. Yet it seems that the Human Visual System (HVS)

is capable of solving a variety of vision tasks with ap-

parent ease and reliability, and if generally accepted

models of the human visual system are to be believed,

it does so with a common front end (retina and early

vision).

∗Timor Kadir is the recipient of a Motorola University Partners in

Research grant.

It is generally agreed that the HVS uses a combi-

nation of image driven data and prior models in its

processing. Traditionally, different groups within the

computer vision community have tended to place em-

phasis on one of these two extremes, but it is rare to find

complete systems that rely solely on a single method-

ology. Although the precise nature of this combination

within the HVS remains unclear, it is widely accepted

that early or low-level vision is quite independent of

context.

One of the main models for early vision in humans,

attributed to Neisser (1964), is that it consists of pre-

attentive and attentive stages. In the pre-attentive stage,

‘pop-out’ features only are detected. These are local

regions of the image which present some form of spa-

tial discontinuity. In the attentive stage, relationships

between these features are found, and grouping takes

place. This model has widely influenced the computer

vision community (mainly through the work of Marr
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(1982)) and is reflected in the classical computer vision

approach—feature detection and perceptual grouping,

followed by model matching/correspondence.

To date, there have been difficulties in realising ro-

bust vision systems based purely on this model. The

problems seem to arise mainly in the grouping stage.

For the matching stage to work effectively, the group-

ing must reflect the structure of the object(s) under

test. However, in the general case it seems difficult

to achieve this purely from image data, without addi-

tional context-specific constraints. Segmentation algo-

rithms are often used to solve low-level pixel or feature

grouping problems. Although significant progress has

been made in the analysis and formalisation of the seg-

mentation problem, for example the MDL approach of

LeClerc (1989), as used in Region Competition by Zhu

and Yuille (1996), it remains notoriously difficult in the

general case. For example, in the case of object recog-

nition, it seems necessary to select the correct parts

of an image to extract descriptions from, without first

‘knowing’ where and what the object is; that is, it is

necessary to know which pixels belong to the object of

interest.

Finding the optimal segmentation is difficult because

the search space of possible pixel groups is too large,

especially in algorithms that use multiple feature maps

and so a sub-optimal search is used to make the prob-

lem tractable. Also, no single definition of segmenta-

tion (e.g. piecewise homogeneous intensities) suffices

in practice and the automatic model selection problem

is difficult to solve.

Recently, it has been suggested that purely local in-

formation could be sufficient to describe image content

(Schiele, 1997; Schmid and Mohr, 1997). Motivated

primarily by the approach taken by Swain and Ballard

(Swain, 1990), Schiele (1997) has demonstrated very

good object recognition and classification performance

using local appearance descriptors without perceptual

grouping of any kind. The method works by build-

ing multidimensional histograms for local feature re-

sponses across the image at multiple scales. The ob-

ject is identified by matching these histograms to

those stored in the database. The proposed framework

achieves good recognition rates of objects in cluttered

scenes, although in the examples shown, the clutter

comprises other objects within the database rather than

arbitrary ‘background.’

There are of course limitations to a purely local ap-

proach. One can think of many instances where the

structure of the features plays a significant part in the

description of the object. For example, objects such as

computer keyboards that comprise tessellated copies

of local features. Another problem with the Schiele

algorithm is that position information is not recov-

ered, since no correspondence is calculated between the

model and the image. In order to address this problem,

Schiele proposes an extension of the algorithm based

on the observation that certain feature locations of the

object under test are more discriminating or salient

than others. These could be used to identify possible lo-

cations of the object within the scene. Furthermore, by

looking for a network of such salient points, it may be

possible to resolve ambiguities which the unstructured

local approach cannot. This idea was not implemented

at the time of the thesis, but demonstrations of the

principle were given.

In this paper, we investigate the use of low-level local

approaches to vision tasks that involve correspondence

and matching problems. We discuss three intimately

related aspects of the problem: saliency, scale and de-

scription; and introduce a novel algorithm to create a

hierarchy of salient regions that operates across feature

space and scale.

The paper is organized as follows. In Section 2 we

introduce the idea of Visual Saliency and briefly review

the approaches proposed in the literature to define it.

We then introduce Gilles’ (Gilles, 1998) idea of using

local complexity as a measure of saliency. In Section 3

we report results using this method on a range of im-

age source material,1 and identify a number of limita-

tions and problems with the original method. Having

identified scale as a fundamental problem, Section 4

discusses this issue and a novel algorithm for assess-

ing the saliency of local image regions is introduced

which operates over feature space and scale. In Sec-

tion 5, we introduce the idea of identifying volumes in

saliency space to improve robustness. We demonstrate

the operation and properties of the algorithm (such as

robustness to scale) on a number of simple example

applications in Section 6. In these examples, we have

deliberately used a minimal set of prior assumptions

and omitted enhancements of the basic method, in or-

der highlight the performance of our technique. For

example, in the surveillance sequence experiment we

have not assumed a fixed camera nor a fixed ground

plane despite these being reasonable assumptions to

make. Also, the addition of a Kalman or Condensation

(Blake and Isard, 1997) tracker to the method would

further improve the performance of the method; we

are currently investigating the combination of these
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methods with our algorithm and will report results in a

future paper. Finally, in Section 7 we discuss the rela-

tionship between the described approach to low-level

saliency and the problem of image content description.

2. Visual Saliency

Visual saliency is a broad term that refers to the idea

that certain parts of a scene are pre-attentively distinc-

tive and create some form of immediate significant vi-

sual arousal within the early stages of the HVS. See

Fig. 1. The term ‘pop-out’ (Julesz, 1995) is used to

describe the visual saliency process occurring at the

pre-attentive stage. Certain visual primitives are imme-

diately perceivable—they ‘pop-out.’ Treisman (1985)

reports on a number of experiments that identify which

visual features ‘pop-out’ within the HVS.

Numerous models of human visual saliency (some-

times referred to as visual search or attention) have

been offered in Cognitive Psychology and Computer

Vision. However, the vast majority have tended to be

only of theoretical interest and often in those cases that

were implemented, only synthetic images were used.

In contrast, we limit our discussion here to work that

has been tested on real images. A good review may be

found in Milanese (1993).

The idea of saliency has been used in a number of

computer vision algorithms, albeit implicitly. The early

approach of using edge detectors to extract object de-

scriptions embodies the idea that the edges are more

Figure 1. Examples of visual saliency.

significant than other parts of the image. More explicit

uses of saliency can be divided into those that concen-

trate on low-level local features (Schmid et al., 1998),

and those that compute salient groupings of low-level

features (Sha’ashua and Ullman, 1988); though some

approaches operate at both levels (Milanese, 1993).

This paper focuses on the former, since the latter is

more a task of perceptual grouping.

2.1. Geometric Features

One popular approach is the development of so-called

Interest point detectors. These tend to be based on

two-dimensional geometric features often referred to

as Corners.2 Schmid and Mohr (1997) select Inter-

est points using the Harris Corner detector (Harris and

Stephens, 1988), and then extract descriptors at these

locations for an image retrieval application. Corner

features are used because they are local (robust to oc-

clusion) and are relatively stable under certain trans-

formations. It is also claimed that they have high ‘in-

formation content.’ In Schmid et al. (1998) the authors

compare different Interest point detectors for their re-

peatability and information content; the latter is mea-

sured by considering the entropy of the distribution of

local grey-value invariants taken around the detected

Interest point.

Early Interest point detectors were commonly ap-

plied at the resolution of the image and hence did not

have an inherent scale parameter. Later methods how-

ever, were implemented in a multiscale framework. A

number of schemes have been adopted, such as coarse

to fine tracking (Mokhtarian and Suomela, 1998),

parametrised model fitting (Deriche and Blaszka,

1993) and analysis of local extrema in scale-space

(Lindeberg, 1994).

Often, systems using Interest point approaches ex-

tract descriptors at a number of scales using Local

Jets (Kœnderink and van Doorn, 1987). However, such

scales are arbitrary relative to the scale of the detector.

For example, Corner features are often used to esti-

mate correspondences to solve problems such as cam-

era calibration. Correlations between pairs of local im-

age patches around the Corners are used. Once again

the sizes of these image patches, that is to say their

scale, tend to be arbitrary. On the contrary, we argue

that scale is intimately related to the problem of deter-

mining saliency and extracting relevant descriptions.

In some recent work (Dufournaud et al., 2000) the

authors link the Interest point detection scale to the
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description scale. However, this method does not ad-

dress the problem of comparing saliency over different

scales.

We seek a more general approach to detecting salient

regions in images.

2.2. Rarity

Naturally, saliency implies rarity. However, as argued

by Gilles (1998) the converse is not necessarily true.

If everything was rare then nothing would be salient.

Gilles also points out another problem with rarity-based

saliency measures; ‘rarity’ is intrinsically defined by

the method by which it is measured. If highly discrim-

inating descriptors are used, then everything tends to

be rare. If on the other hand the descriptors are very

general, then nothing tends to be rare. Setting the ap-

propriate level is difficult in general.

There are, however, a number of examples that use

this approach. The technique suggested by Schiele

(1997), is based on the maximisation of descriptor vec-

tors across a particular image. Schiele states that:

These salient points are literally the points on the ob-

ject which are almost unique. These points maximise

the discrimination between the objects.

In his recognition algorithm, Bayes’ formula is used

to determine the probability of an object on given a

vector of local measurements mk :

p(on | mk) =
p(mk | on)p(on)

p(mk)
(1)

where

• p(on) is the prior probability of the object on

• p(mk) is the prior probability of the filter output com-

bination mk

• p(mk | on) is the probability density function of the

measurement vector of object on

The idea is that maximisation of p(on | mk) over all

filter outputs across the image provides those points

which best describe the image (in terms of unique-

ness). The higher the value of p(on | mk) for a given

point and neighbourhood in an image, the better that

descriptor is for distinguishing that specific image from

all other images within the database; in other words it

is a measure of uniqueness. In order to use this method,

the prior probability p(mk) must be estimated from the

database.

In a related method, Walker et al. (1998a) iden-

tify salient features for use in automated generation

of Statistical Shape/Appearance Models. The method

aims to select those features which are less likely to

be mismatched. Regions of low density in a multidi-

mensional feature space, generated from the image,

are classed as highly salient. In Walker et al. (1998b)

the method is extended to work with multiple training

examples.

2.3. Saliency as Local Complexity

Gilles (1998), investigates salient local image patches

or ‘icons’ to match and register two images. Specif-

ically, he was interested in aerial reconnaissance im-

ages. Motivated by the pre-attentive and attentive vision

model of human attention, Gilles suggests that by first

extracting the locally salient features (analogous to

pop-out features) from each of a pair of images, then

matching these, it is often straightforward to estab-

lish the approximate global transform between the im-

ages. If saliency is defined locally, then even gross

global transforms do not affect the saliency of the fea-

tures. Once the approximate transform has been found,

a global matching method may be used to fine-tune

the match without the matching algorithm becoming

trapped in local minima (assuming of course that the

salient features enable the gross match to be sufficiently

accurate).

Gilles defines saliency in terms of local signal com-

plexity or unpredictability; more specifically he sug-

gests the use of Shannon entropy of local attributes.

Figure 2 shows the local intensity histograms from var-

ious image segments. Areas corresponding to high sig-

nal complexity tend to have flatter distributions hence

higher entropy.3

More generally, it is the high complexity of a suit-

able descriptor that can be used as a measure of local

saliency. Given a point x, a local neighbourhood RX ,

and a descriptor D that takes on values {d1, . . . , dr }
(e.g. in an 8 bit grey level image D would range from

0 to 255), local entropy is defined as:

HD,RX
= −

∑

i

PD,RX
(di )log2 PD,RX

(di ) (2)

where PD,RX
(di ) is the probability of descriptor D

taking the value di in the local region RX .
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Figure 2. The local histograms of intensity. Uniform images tend

to have peaked histograms indicating a low complexity (or high pre-

dictability). Neighbourhoods with structures have flatter distribu-

tions, that is, a higher complexity. Reproduced with permission from

Gilles (1998).

The underlying assumption is that complexity in real

images is rare. This is true except in the case of noise

or self-similar images (e.g. fractals) where complexity

is independent of scale and position.

3. Initial Results

Motivated by the work of Gilles, we investigated the

use of entropy measures to identify regions of saliency

within a broad class of images and image sequences.

Such salient regions are used to extract descriptions

which could then be used to solve vision problems ne-

cessitating matching or correspondence. In this section,

we summarise the results of applying the original Gilles

technique to a range of different types of image source

material.

3.1. Image Source Content

Gilles was primarily interested in single, still grey-level

aerial images, whereas we are interested in colour im-

age sequences containing a wide range of natural and

man-made content. In general, aerial images contain

features over a relatively small range of scales, and they

exhibit little depth variation. Consequently, in many

cases, aerial images can be treated as two-dimensional.

In contrast to this, the images we are interested in con-

tain features across a large range of scales. This is

partly due to the nature of the objects themselves and

partly due to the significant depth variation within the

scene.

The unmodified Gilles algorithm was applied to the

following three sequences:

• DT. A surveillance-type sequence at a traffic junc-

tion taken with a fixed camera. Sequence from

KOGS/IAKS Universität Karlsruhe.4

• Vicky. A sequence of planar human motion (walk-

ing) against a primarily textured background in a

park area taken with hand-held camcorder. Contains

a free hand camera pan.

• Football. A sequence with multiple moving objects

against a primarily textured background. Contains a

camera zoom.

These sequences can be obtained from http://www.

robots.ox.ac.uk/∼timork.

3.2. Results and Observations

Figure 3 contains sample frames from the processed se-

quences. The superimposed squares represent the most

salient ‘icons’ or parts of the image; the size of the local

window or scale and threshold used were selected man-

ually to give the most satisfactory results. In general,

the results are encouraging, with the algorithm select-

ing areas that correspond well to perceptually salient

features. In the DT sequence this mostly coincided with

the cars; in the Vicky sequence, the person’s head and

feet. However, we encountered a number of problems.

First, the scale (the size of the local region over which

the entropy is calculated) is a global, pre-selected pa-

rameter. The global scale model is only appropriate for

images that contain features existing over small ranges

of scale, as is the case for aerial images. The limitations

of the single scale model can be seen in the DT sequence

in Fig. 3, where the scale is clearly inappropriate for

the pedestrians and the road markings. Furthermore,

this parameter should ideally be selected automati-

cally. Gilles suggested a simple algorithm that could

automatically select a single global scale by search-

ing for peaks in average global saliency for increasing

scales. This was useful in his application for identi-

fying appropriate scales to be used between pairs of

aerial images that had been taken at different heights,

but would be of limited use in the general case where

scale variations are much larger. As acknowledged by

Gilles in his thesis, a local scale selection method is

needed.
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Figure 3. Example frames from the application of the original Gilles algorithm to the DT (top) and Vicky (bottom) sequences.

Another problem arises with highly textured regions

that contain large variations in intensity. An example

can be seen in the Vicky sequence frame in Fig. 3 where

many icons reside (over time, rather unstably) on the

trees and bushes. Although such regions exhibit com-

plexity at the scale of analysis, large regions do not

correspond to perceptually salient features at that scale.

We found that the algorithm is also sensitive to small

changes and noise in the image. The positions of the

icons rarely remain stable over time on a salient feature;

rather, they oscillate around it. In a separate experiment,

we repeatedly applied the algorithm on the same frame

but with independent Gaussian noise added at each it-

eration to establish how much of the instability was due

to noise and how much due to movement in the scene.

We found that noise affected the positions of the icons

significantly even though the positions of the features

themselves had not changed.

The Gilles method picks single salient points in

entropy space to represent salient features. However,
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it is unlikely that features exist entirely within the

isotropic local region and hence several neighbour-

ing positions are likely to be equally salient. In such a

case, the locally maximum entropy from frame to frame

could be a result of noise rather than underlying image

features. Choosing salient regions rather than single

salient points would reduce the likelihood of this occur-

ring. Incorrect local scale would further compound this

problem.

The next section presents our work which builds on

the ideas of Gilles, by addressing the above discussed

shortcomings of the original method.

4. Scale Selection

In Gilles’ original method, the local scale, that is to say

the size of the local neighbourhood over which the PDF

of the descriptor is estimated, was a pre-selected fixed

parameter. As noted earlier, the algorithm that was pro-

posed for the global selection of this value worked well

for aerial images, but a local scale method is required

for a wider range of image content. It has long been

recognised that multiscale representations are neces-

sary to completely represent and process images (more

generally signals of any kind), and there is a wealth of

work relating to this issue. We next briefly review this

area.

4.1. Multiscale Representations

Linear scale space theory (Koenderink, 1984;

Lindeberg and ter Haar Romeny, 1994; Witkin, 1983)

provides a mathematically convenient method to gen-

erate representations of images at multiple scales. The

same framework also deals with the problem of well-

posed differentiation of discrete images at specific

scales. Justifications for the use of Gaussian kernels are

derived from (amongst others) causality and extrema

reduction. It is very widely used as a framework for

multiscale signal processing. Efforts to deal with one

of its significant shortcomings, namely edge blurring

at large scales, have lead to non-linear and anisotropic

methods. Perona and Malik’s (Perona and Malik, 1988)

method weights the diffusion by an edge significance

metric; Weikert’s Diffusion Tensor (Weickert, 1997)

improves on this by allowing diffusion along edges but

not across them. Generally however, these have to be

implemented as discrete approximations to differential

equations. They tend to be slow and the mathematical

relations between time and scale are less tractable than

in the linear case, although some progress towards

unifying these has been made by Morel and Alvarez

(Alvarez et al., 1992).

Wavelet representations are an alternative multiscale

representation. They are also very well researched and

widely used, and have the benefit of being able to lo-

calise well in both scale and space. It has been claimed

that since Wavelets constitute an orthogonal basis they

do not satisfy one of the requirements of a true scale-

space—that it should be possible to establish relations

over scale (ter Haar Romeny, 1996). This may be true

of the Wavelet coefficients themselves which represent

the detail or high-pass versions of a signal (at a certain

scale range), but the reconstruction can be made to any

arbitrary scale by successively summing these to the

approximation or lowpass signal. In fact the relation-

ship between Wavelet and Gaussian based scale-spaces

is quite strong. The Gaussian diffusion methods oper-

ate as low-pass filters smoothing the original signal,

whereas the Wavelet based methods are based on band-

pass filters (through successive high and low pass op-

erations). Many Gaussian diffusion-based scale spaces

consider the difference between scales as part of the

processing; an early example can be found in Burt and

Adelson (1983). This Difference of Gaussian approx-

imates the Laplacian pyramid which can be generated

using the well known Marr-Hildreth Mexican hat edge

detector (Marr and Hildreth, 1979)—an early form of

Wavelet (Mallat, 1998).

Scale space representations enable us to analyse the

signal of interest at different scales, however they do

not tell us which of these scales we should use in sub-

sequent processing. We discuss this problem next.5

4.2. Scale Selection

There are a number of separate issues to address. First,

which scales are optimal and can these be selected au-

tomatically? Second, the definition of saliency should

be extended to work across scale as well as feature

space. Scale is an implicit part of the saliency problem.

In other words, can we compare saliency over scale as

well as in feature space?

There are fewer examples of scale selection in the

literature compared to multiscale representations. The

widely adopted approach is to apply some kind of pro-

cessing at multiple scales and use all of these results; an

example is Schiele (1997). However this leaves scale

as a free parameter which increases the search space
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for matching problems. In their image retrieval applica-

tion, for example, Schmid and Mohr use local configu-

rations of features to reduce the number of false positive

matches (Schmid and Mohr, 1997). Furthermore, this

approach increases the amount of stored data.

It is known that features exist over a range of scales,

hence can best be observed over that range. Lindeberg

(1993, 1994) suggests that for Geometric image de-

scriptors, the ‘best’ scale can be defined as that at which

the result of a Differential operator is maximised (from

a signal processing point of view this can be interpreted

as maximising signal-to-noise). This idea was shown to

improve object recognition in Chomat et al. (2000). It

seems sensible then to select scales at which the entropy

is maximised. This approach is intuitively plausible but

only addresses the first of the issues discussed at the

beginning of this section. It does not provide any in-

formation regarding the scale-space behaviour of the

saliency of a given feature. The left-hand diagram in

Fig. 4 shows the salient regions found by maximising

entropy versus scale. The resulting features do not rep-

resent the image objects well; if used in a matching

task the selected features would not produce unique

correspondences.

Different features can produce maxima or peaks in

entropy, for increasing scales, of different widths. One

important question is: which is the more salient—a fea-

ture that is observed over a large range of scales (a

wide peak) or one that observed over a small range. In

Bergholm (1986), Bergholm tracks edges over multiple

scales, an idea originally suggested by Witkin (1983);

Figure 4. Most salient parts: selected using peaks in entropy versus scale (left); selected using peaks in entropy versus scale weighted by sum

of absolute difference at peak (right).

those that survive over many scales are deemed to be

the more significant. This is appropriate for edges be-

cause although the edge has a specific scale associated

with it in the perpendicular direction, it does not in the

tangential direction.

However, in our case we are looking for local salient

features based on what is complex as defined by entropy

(predictability). Complexity is assumed to be rare. If an

image was complex and unpredictable at all spatial lo-

cations and scales, then it would either be a random im-

age or fractal-like. Features that exist over large ranges

of scale exhibit self-similarity, which in feature space,

we regard as non-salient. Following the same reason-

ing, extending our saliency measure to scale, rather than

adopting the conventional view of multi-scale saliency,

we prefer to detect features that exist over a narrow

range of scales.

Our method works as follows: for each pixel loca-

tion, we choose those scales at which the entropy is a

maximum, or peaked then weight the entropy value at

such scales by some measure of the self-dissimilarity

in scale-space of the feature.

Since we select scales at which the entropy is peaked,

the peak width could be used directly. However it is

difficult to measure this consistently. Also, there are

many exceptional cases that result in slow computa-

tion. Instead, we use the statistics of the local descriptor

over a range of scales around the peak to measure the

degree of self-similarity. There are many methods by

which PDFs can be compared, for example the Kull-

back contrast, Mutual Information or χ2. However, for
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simplicity we have used the sum of absolute difference

of the grey-level histogram. Our proposed saliency met-

ric Y , a function of scale s and position �x , becomes:

YD(�s, �x)
�
= HD( �S, �x) × WD( �S, �x) (3)

where entropy HD is defined by:

HD(s, �x)
�
=

∫

i∈D

pD(s, �x)log2 pD(s, �x).di (4)

and where pD(s, �x) is the probability density as a func-

tion of scale s, position �x and descriptor value i which

takes on values in D the set of all descriptor values.

The weighting function, WD(s, �x), is defined by:

WD(s, �x)
�
= s.

∫

i∈D

∣

∣

∣

∣

∂

∂s
pD(s, �x)

∣

∣

∣

∣

.di (5)

The vector of scales at which entropy is peaked, �S, is

defined by:

�S
�
=

{

s :
∂2HD(s, �x)

∂s2
< 0

}

(6)

Jagersand (Jägersand, 1995) and Winter (Winter

et al., 1997) have also used the notion of dissimilar-

ity between consecutive scales to determine significant

features. However, we define a saliency metric applica-

ble over both feature space and scale simultaneously,

hence can compare the saliency of different features

occurring at different spatial locations and scales. The

right-hand diagram in Fig. 4 shows the effect of ap-

plying the scale dissimilarity weighting on simple syn-

thetic example. The value of entropy has been weighted

by the sum of absolute difference of the histograms

at the peak. The addition of a scale-space measure

has enabled the method to correctly capture the most

salient features and scales. In a matching task, these fea-

tures are much better, that is produce fewer incorrect

matches, than those found using maximised entropy

alone (shown in the left-hand diagram in Fig. 4).

4.3. The Algorithm

The proposed algorithm works as follows:

1. For each pixel location �x :

(a) For each scale s between smin and smax:

i. Measure the local descriptor values within

a window of scale s.

ii. Estimate the local PDF from this (e.g. using

histograms).

iii. Calculate the local entropy (H).

(b) Select scales ( �S) for which the entropy is

peaked. ( �S may be empty)

(c) Weight (W) the entropy values at �S by the sum

of absolute difference of the PDFs of the local

descriptor around �S.

The algorithm generates a space in R3 (two spatial

dimensions and scale) sparsely populated with scalar

saliency values.

Figure 5 shows the results of the new algorithm

applied to various images. In these examples, the his-

togram of local grey-level values is used as the de-

scriptor and a global threshold is applied. In the orig-

inal single scale method, a significant problem was

that of textures and other self-similar texture-like ar-

eas such as trees in the background of outdoor scenes.

These would be measured as highly salient because

they tend to contain a large number of grey-level val-

ues in roughly equal proportion. However, because they

are largely self-similar, the whole area tends to be of ap-

proximately equal saliency, leading to unstable salient

icons. Furthermore, our assumption that complexity is

rare (in spatial dimensions) does not hold in this case

and many self-similar icons are chosen leading to a

poor description of the image.

In the new algorithm, we search for saliency in scale-

space as well as spatial dimensions, therefore we can

easily handle notions of self-similarity and saliency in

the same framework. In Fig. 5, we can see that the large

areas of texture do not affect the choice of the most

salient parts. In the first example (top-left) in Fig. 5,

the grey-level range of the radial shaded areas is very

similar to that of the textured background.

In essence, the method searches for scale localised

features with high entropy, with the constraint that

scale is isotropic. The method therefore favours blob-

like features. Alternatively, we can relax the isotropic

requirement and use anisotropic regions. This has

the drawback of increasing the dimensionality of the

saliency space. Moreover, the relatively simple notion

of scale as a single parameter is lost. However, for some

features, such as those with local linear structure, this

may be necessary to correctly characterise local scale

behaviour. In this case two scales may be used to anal-

yse the feature; one tangential and one perpendicular

to the direction of the feature. This is the subject of

ongoing research, and in this paper we concentrate on
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Figure 5. The new algorithm: Picking the most salient points and their scales. A global threshold is used.

isotropic features. Such features are useful for match-

ing because they are locally constrained in two direc-

tions. Features such as edges or lines only locally con-

strain matches to one direction (of course depending

on their length).

It should be noted however, that the method does

detect non blob-like features, but these are considered

less salient than their isotropic equivalents. In the case

of linear structure, this is because there is a degree of

self-similarity in the tangential direction. The selected

scale is determined predominantly by the spatial extent

of the feature in the perpendicular direction. The spa-

tial extent in the tangential direction of such anisotropic

regions could be analysed by a post-processing group-

ing algorithm. In solving the correspondence prob-

lem, this ranking is somewhat desirable as it reflects

the information gained by matching each type of

feature.

5. Salient Volumes

The original Gilles algorithm selects the most salient

(high entropy value) points in entropy space as gener-

ated from the image. These points represent small im-

age patches in the original image function, the sizes of

which are determined by the scale of the entropy anal-

ysis. These image patches are referred to (in Gilles’

thesis) as icons.

Robustly picking single points of entropy maxima

relies on the persistence of these points in various imag-

ing conditions, such as noise or small amounts of mo-

tion. It is known that the presence of noise in the image

acts as a randomiser and generally increases entropy,

affecting previously low entropy values more than high

entropy values. However, the effect of noise also de-

pends greatly on the shape of the local entropy surface

around the maximum. Furthermore, our new saliency
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metric generates a R3 space (2 spatial dimensions and

scale) and so we must extend our selection method to

work with this.

A more robust method would be to pick regions (or

volumes in R3) rather than points in entropy space.

Although the individual pixels within a salient region

may be affected at any given instant by the noise, it

is unlikely to affect all of them in such a way that the

region as a whole becomes non-salient.

Some form of clustering algorithm would be appro-

priate for this task. However standard methods such

as K-means usually require the number of clusters to

be defined a-priori. Furthermore, they usually demand

completeness, that is, they assume that everything is

to be grouped into one of the clusters. In our saliency

space only some of the points should be clustered, many

of the low saliency points are due to noise or textures.

It is also necessary to analyse the whole saliency

space such that each salient feature is represented. A

global threshold approach would result in highly salient

features in one part of the image dominating the rest.

A local threshold approach would require the setting

of another scale parameter.

We have developed a simple clustering algorithm

to meet these two requirements. It works by select-

ing highly salient points that have local support—that

is, nearby points with similar saliency and scale. Each

region must be sufficiently distant from all others (in

R3) to qualify as a separate entity. For robustness, we

use a representation that includes all of the points in a

selected region. The method works as follows:

1. Apply a global threshold.

2. Choose the highest salient point in saliency-space

(Y).

3. Find the K nearest neighbours (K is a pre-set

constant).

4. Test the support of these using variance of the centre

points.

5. Find distance, D, inR3 from salient regions already

clustered.

6. Accept, if D > scalemean of the region and if suf-

ficiently clustered (variance is less than pre-set

threshold Vth).

7. Store as the mean scale and spatial location of K

points.

8. Repeat from step 2 with next highest salient point.

The purpose of step 1 is to reduce computation time

by removing the least salient features. This should be

set quite low so as to keep all the features of interest

and we have found that a 50% threshold (of the most

salient feature value) works well. Both the Vth and K

parameters affect the robustness of the resultant fea-

tures. A greater value of K increases the number of

salient points whose positions (in R3) must vary less

than Vth to qualify as sufficiently clustered. Ideally,

both of these should be related to the scale of the re-

gion under test. However, we have found that using

fixed values was sufficient for our experiments. We

used K = 8 and Vth = 5 for all of our experiments.

By testing centroid variance, the clustering algo-

rithm favours isotropic regions. This reflects a simi-

lar property of the saliency algorithm as discussed in

Section 4.3. A development of this algorithm could

analyse the local autocorrelation or eigenstructure in

order to perform grouping of the salient features. As

stated earlier, this is the subject of ongoing research.

We have used this algorithm in all of the experiments

presented in this paper. Figure 6 shows the results of

the whole saliency algorithm, including clustering, ap-

plied to the DT and Vicky sequences. The new method

captures salient features at various scales. For example,

in the DT sequence both cars and pedestrians are repre-

sented at their appropriate local scales. In the original

method, this was determined by the choice of the scale

parameter.

6. Experimental Results

In this section, we use the saliency method described

above in a number of vision applications.

6.1. Scale and Viewpoint Robustness

In this section we demonstrate that the method is able to

handle arbitrary changes in scale of the image and small

changes in viewpoint of a 3D object. Under reasonable

(but arbitrary) changes in magnification we would like

the same salient locations to be selected along with their

respective scales. This ‘fixing’ of the scale parame-

ter should improve the performance of correspondence

tasks, and also reduce the amount of data that needs

to be stored to represent an object. Also, the method

should be robust to small changes in the viewpoint of

a 3D object. If this is the case then we can apply the

method to 3D object representation by using multiple

2D views in a manner similar to that used by Schiele

(1997).
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Figure 6. Example frames from the application of the new algorithm to the DT (top) and Vicky (bottom) sequences. Salient regions selected

using the clustering algorithm.

In the example shown in Fig. 7, the superimposed

circles represent the 10% most salient regions from

two sizes of the Anacin image (from the Columbia

image database (Nene et al., 1996)). The larger im-

age is the original, the smaller a 0.4 sub-sampled ver-

sion. Independent Gaussian noise has been added to

both images and the algorithm is run over the same

range of scales (7–43 pixels diameter scales) in both

images. Using a global threshold the method selected

40 salient regions from the first image and 29 from the

second.

The image patches show the best matches between

the two sets of salient regions, found by pixel correla-

tion. It can be seen that the method is able to detect the

correct matches as well as their respective scales—13

of the icons selected from each set have close matches.

The relative scale can be calculated from a simple con-

sistency test on the relative scales of matched icons.
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Figure 7. Matching salient icons between the original sized image and a 0.4 sub-sampled version in noise.
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Figure 8. Matching salient icons between 0◦ and 15◦ viewpoint change (in noise).

This result demonstrates that it would be possible to

represent the object using one set of salient icons and

use this representation to recognise instances of the

object at other arbitrary scales.

In the example shown in Fig. 8, the robustness of the

method to small 3D rotations is demonstrated. Since

the saliency method uses only local information, global

transformations of the image have limited impact on the

saliency. The experiment is carried out in a similar man-

ner to the previous example except that two views of

the object are used instead of two scales. Once again, a

small amount of independent Gaussian noise is added

to the two images prior to processing.

The method picked 29 salient regions for the original

image and 28 for the 15◦ rotated version and found

18 matches.

6.2. Rotation and Photometric Invariance

In this section we demonstrate the method’s invariance

to planar rotation and changes in illumination.
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The saliency algorithm calculates entropy of the

local intensity PDF (in these experiments). Therefore,

in the continuous case shifts in intensity make no dif-

ference to the entropy value. However, the histogram

is only a discrete approximation to the true PDF and

so shifts in intensity have a small effect on the local

entropy (and hence the saliency value). This effect de-

pends on the bin size of the histogram. Other PDF es-

timators, such as the Parzen window method, do not

suffer from this problem but are computationally more

expensive.

Scalings in intensity do affect the saliency value,

but since the algorithm searches for maxima in en-

tropy, the scales themselves should be quite robust.

In terms of the hierarchy of salient regions found in a

given image, uniform scalings in intensity applied to the

whole image make little difference, apart from reduc-

ing the dynamic range between high and low saliency

features (caused by the discretisation of intensities).

Non-uniform scalings however, will cause the global

Figure 9. Robustness to rotation (45◦) and illumination change (70% scaling). The upper images show the salient regions found in each image,

the lower row the Gilles Sparse Iconic Representation of matches. Image from NIST Special Database 18, Mugshot Identification Database.

ordering of the regions’ saliencies to change. For

example, it may occur that certain parts of an image are

illuminated better and hence higher variations in inten-

sity are observed in that area. In an extreme case, prob-

ably such areas would be more perceptually salient.

However, the saliency of a given region with respect

to its local neighbourhood should be quite robust; that

is, the local ordering of saliencies should be robust.

Therefore a local post-processing clustering technique,

such as described in Section 5, can overcome such

problems.

In the case of rotation we expect the method to be

invariant because the saliency algorithm uses circular

local windows to sample the image. Discretisation may

cause some problems at the smaller scales, however

subpixel methods may be used to alleviate these.

Figure 9 shows the effect on the salient features of

a 70% scaling (contrast reduction) of the image inten-

sity values and a 45◦ clockwise rotation. The lower dia-

grams show the so-called Sparse Iconic Representation
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used by Gilles. This shows the ‘icons’ matched by the

algorithm in their image positions and scales.

6.3. Object Tracking and Recognition

In this section, our aim is to motivate the use of our

saliency method in recognition and tracking tasks. In

such tasks, two requirements of features and descrip-

tions are that they should be robust, and relevant. The

former is necessary to ensure stable descriptions under

variations in viewing conditions; the latter, because it

is desirable to relate descriptions to objects or parts

thereof.

The purpose of this experiment is to demonstrate that

features selected by our method are persistent in several

instances of an object in a scene. The application is a

simplified recognition and tracking scenario where the

task is to identify close matches of a previously defined

object in an image sequence, treating each frame inde-

pendently. The persistence of features builds on the

results of the previous sections and demonstrates ro-

bustness in a real scenario. By matching features with

a model, we test their relevance with respect to the

image objects they represent.

There was no attempt to develop a Kalman or

Condensation (Blake and Isard, 1997) tracker. Such

a tracker would further help the system in practice, but

that is not the issue here. Treating each image indepen-

dently represents a worst-case scenario that obviously

could be improved by combining the ideas here with a

tracker.

We used two sequences: the DT sequence from

KOGS/IAKS Universität Karlsruhe, and the Vicky se-

quence. The models consisted of the clustered most

salient regions and their scales found by running our

algorithm on the (sub-)images shown in the top-left of

Figs. 10 and 11. These are simply manually cropped

from one frame in each sequence. In the Vicky exper-

iment, two ‘takes’ of the sequence were available. We

built the model from a single frame from one, and con-

ducted the experiment using the other.

The object is represented by a ‘constellation’ of

salient regions. The algorithm was then applied to each

frame of the sequence and instances on this constella-

tion were identified. As in the previous experiments,

normalised pixel correlation was used to find matches.

This approach can be thought of as a powerful but least

general descriptor. This was done in order to demon-

strate the performance of the features independently

of the properties of different descriptors. In practice,

better descriptors, such as those with photometric and

rotational invariance, should be used.

In order to show the scale invariance of the tech-

nique, the car model was built at the original resolution

of the sequence and the recognition was carried out

on a 0.7 spatially sub-sampled version. Edge preserv-

ing anisotropic diffusion was applied to each frame to

reduce noise and interlace artifacts. For the Vicky ex-

periment, anisotropic diffusion was not used, and the

model generation and recognition were carried out at

the same scale. In both experiments no assumptions

were made about the scales between the model and

test image, and no information was retained between

frames.

Frames with superimposed results are shown in

Figs. 10 and 11, with the most likely matches indi-

cated by circles. We note the following. Firstly, that

the method can consistently identify salient regions (as

defined by our method) in an image sequence; similar

features are consistently found even though each frame

is treated independently. Secondly, that it can do this

over arbitrary changes of scale and for small changes in

viewpoint of 3D objects. Note that this experiment in-

volves a real camera sequence without pre-segmented

objects. In this case, the model was built from one frame

but was applicable to many frames in the sequence.

Good approximations of the model positions are found

in each frame.

Thirdly, the method could be used for recognition in

quite complex scenes containing clutter and occlusion,

without attempting to directly solve the segmentation

problem. Common approaches for tracking and recog-

nition in scenes such as this would normally apply some

type of motion segmentation prior to recognition and

these often require assumptions about global motion.

We avoid this by using the saliency algorithm to se-

lect those regions and scales that are of interest, prior

to recognition. Note that no assumption is made about

global or object motion, so the method can be used to

recover such motions. The technique vastly reduces the

amount of information (positions and scales) that need

to be considered at subsequent stages of processing.

Finally, it illustrates the more general idea that local ap-

pearance descriptors can be useful for computer vision

tasks as discussed in Section 1.

It should be noted however, that the method only

works well because the task was defined around those

objects that are classed as highly salient as defined

by our method. Namely, compact patches with unpre-

dictable grey-level pixel values. It could be argued that
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Figure 10. Results from the recognition experiment on the DT sequence. The top-left shows the (enlarged) image of the car from which the

object model was built. The superimposed circles show the features in each frame which match with the object model.

the cars are ‘the most interesting objects’ given no par-

ticular task other than to describe the scene in a general

sense; of course the method could also work in space

and time (and scale) in which case the motion of the cars

would further increase their saliency. However, the task

could have been to track some of the less salient parts,

for example the pedestrians. There are two important

points relevant to this issue. The first is that the method

does not itself threshold out the less salient regions, but

generates a hierarchy of salient regions. In this exper-

iment we have used a global threshold to remove the

low saliency features, but we could have considered

features as representing local regions and scales in an

image. For example, although a particular feature may

not have a globally high saliency, locally it might be

the most interesting feature in that part of the image

and at that scale. Our simple clustering algorithm does

attempt to do this but in a very crude way. The second

point is that of the prior model used for the saliency

definition. We have used grey-level distribution, but

different feature maps could be used. This is an im-

portant issue which will be discussed in more detail in

Section 7.

A number of false positives are detected. This is due

to the simple object model that has been used. Note

that the method has not used any scale consistency nor

local configuration information for the model; both of

these would eliminate a large number of the false pos-

itives. For example, it can be assumed that the salient

features comprising the model, scale consistently (with

respect to one another), in given instances of the object

in the test sequence. This would be a very general

and effective technique. That is, scale factors between

the features in the model and those matched in the
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Figure 11. Results from the recognition experiment on the Vicky sequence. The model was generated from the top-left image (taken from

vicky1) cropped to the rectangle. The superimposed circles show the features in each frame (of vicky2) which match with the object model.

scene should be consistent. Furthermore, it can be as-

sumed that smooth changes in camera position or ob-

ject depth would result in smooth changes in selected

scale. We could use this information in conjunction

with a tracker to further improve the performance of

the basic technique.

We have deliberately omitted such enhancements

at the higher layers of processing to emphasise the

performance of the technique (since it is a low-level

early vision algorithm). The fact that a crude object

model and a simple pixel matching method has been

used, yet has achieved good results demonstrates that

the quality of the information computed by our tech-

nique is very good. We accept that there are many

methods that could be used to improve these re-

sults and in fact probably many alternative techniques

that could be used to achieve better results with this

and other similar sequences. The experiments here

are designed to justify the arguments made in this

paper.

7. Discussion—What is the Prior Model?

The concepts that have been used in our saliency tech-

nique imply some kind of prior; in other words there is

a benchmark that local complexity is measured against.

In this section we discuss what this is and the resulting
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implications on the appropriate selection of descriptors

for our saliency measure.

Consider an example of measuring the predictabil-

ity of a local image region’s intensity values. First, we

compute the local histogram of grey-values; this ap-

proximates the local PDF of grey-values. If the his-

togram is highly peaked around a specific intensity

range then this (by definition) means that, within this

region it is highly likely that pixel values within that

particular intensity range can be found. If the PDF is

spread out, it means that many intensity values are

equally likely. Entropy simply summarises the degree

to which a PDF is peaked or spread out. We label those

areas with a flat PDF (i.e. high entropy) as salient, and

can use these in further processing.

There is an apparent paradox here: A sharply peaked

PDF is generally considered highly informative, yet

in our method this is labelled with low saliency. In

Shannon Information theory, information is the oppo-

site to entropy.

Placing the sampling procedure in a Bayes frame-

work provides a useful insight:

p(A | B, s) =
p(B | A, s)p(A, s)

p(B, s)
(7)

where p(B | A) is the measurement, p(A) is the prior

and p(A | B) is the posterior PDF that is then used to

calculate the entropy; all of these are taken with respect

to the local region at scale s. In the example above,

nothing is assumed about the prior distribution of in-

tensity values within the local region and so p(A) is

uniform. If, after measurement, the posterior PDF is

very sharply peaked, then the measurement must have

been very informative. Given this, this region can be

described well using very few parameters in the de-

scriptor (probably just an average grey-value will do).

This means that the representation of the local region

as a few intensity values is a good way of representing

that region.

A flat posterior PDF means that nothing new has

been learnt from the measurement process (apart from

the region does not have very predictable intensity val-

ues). In this case the local region is not very well cap-

tured by an intensity representation and hence a more

powerful descriptor is needed to accurately describe

the region. In other words, the local PDF of a descrip-

tor measures how well that descriptor captures the lo-

cal signal behaviour. If it captures it well, then this is

classed as non-salient and if not then this is salient.

It follows that the technique can be considered to

model the non-salient parts of a signal rather than the

salient parts. Saliency is defined as those parts of the

signal that cannot be represented well by our prior

model. Therefore the entropy of a descriptor tells us

how well that descriptor captures the local region’s

data. This is opposite to the way in which most fea-

ture extraction and visual saliency techniques work,

but is actually rather intuitive. Those parts of an image

that are most informative are those that do not get mod-

eled well (or predicted) by our prior assumptions or put

another way: if we can model them then they’re prob-

ably not all that interesting. We assume that the prior

model captures the common or widespread behaviour

of the signal. In the examples used in this paper the non-

saliency model is a piecewise flat local image patch and

the assumption here is that piecewise flat parts are very

common and not very interesting.

7.1. Choosing Descriptors for Saliency

In this paper all the results and examples that have been

presented have used the local intensity as the descrip-

tor for saliency. Given the above reinterpretation, the

technique can be stated as: Given a descriptor with one

(or more) free parameters, describe the local region’s

signal; its saliency is inversely related to how good (or

compact) this description is. Therefore in designing

appropriate descriptors for saliency all the parameters

of what is non-salient should be included in the de-

scriptor. For example, for selection of salient regions

in fingerprint images, an edge detector at multiple ori-

entations and scales can be used. The descriptor, in this

case, is a region containing a line with a variable scale

and orientation. This would model low saliency as a

single line at some orientation at a single thickness. In

this case salient regions could be where there are mul-

tiple lines joining together, as occurs at bifurcations.

Figure 12 shows an example of this. We have used a

Gaussian derivative at a particular scale and assigned a

single dominant orientation to each pixel location. Our

multiscale saliency algorithm has then been applied to

this feature map and the most salient parts shown with

superimposed circles.

7.2. Saliency and Description

In the Introduction, it was argued that the use of

saliency methods should enable better and more

compact image descriptions to be obtained. This
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Figure 12. Using dominant edge directions at a certain scale as the non-salient descriptor on a fingerprint image.

should improve the performance of correspondence

and matching tasks. In this section we discuss the

link between saliency and description tasks within our

framework.

Approaches in the literature have tended to select

salient features separately from their subsequent de-

scription. Gilles (1998) does not suggest any link be-

tween the two processes and uses the image patches

directly. Schmid and Mohr (1997) use the Local Jet

at multiple scales to describe the image near Interest

points. However there is no justification of why these

descriptors are good for the particular choice of salient

feature.

Earlier it was discussed that our salincy method

could be considered to model the low-saliency parts of

the image. Entropy of a local descriptor measures the

degree to which that descriptor captures local signal

behaviour and these are chosen to represent efficiently

(from an information theory point of view) those parts

of an image which are non-salient. The regions which

are classed as highly salient are those which are not

well represented by that descriptor and need differ-

ent (more powerful) descriptors. The entropy method

can be used to test how well a descriptor performs.

We may generalise the approach. Rather than applying

one saliency measure and then describing the salient

parts, we propose that a hierarchy of increasingly pow-

erful descriptors be applied and tested. At each level,

we can extract the non-salient features which can be

described well by the descriptors at that level. The

salient parts can then be tested using more powerful

descriptors until all the image has been sufficiently

described.

In Gilles’ original work, salient local image patches

were described as vectors of pixel values for the sub-

sequent matching task. This can be thought of as a

very powerful descriptor (high dimensional). We have

used the same approach in our experiments. Different

descriptors may be used, which may have advantages

such as photometric or rotational invariance.

7.3. Spectral and Wavelet Entropy

In this section we discuss the relationship of our method

to two related signal complexity measures, Spectral en-

tropy (Zheng et al., 1996) and Wavelet entropy (Starck

and Murtagh, 1999). A corollary of this relationship

is that there are also strong links to image compres-

sion and Wavelet packet best basis selection techniques

(Coifman and Wickerhauser, 1992).



Saliency, Scale and Image Description 103

Spectral entropy is used by the Neural Network com-

munity to measure pattern complexity. It is calculated

directly from the Fourier coefficients of transformed

signal. Wavelet entropy has been proposed by Murtagh

as a technique for image feature extraction and content

description (Starck and Murtagh, 1999). It also calcu-

lates entropy directly from the (Wavelet) basis coeffi-

cients, but introduces a noise model which improves

robustness. They are both multiscale in the sense that

they consider different scales in calculation of the com-

plexity of the signal.

Both these methods can be considered in the context

of our saliency technique as different local descriptors

of non-saliency. For example, in the case of Spectral

entropy, if we were to class as salient those regions

with many coefficients with similar magnitudes, then

the prior model we have used for non-saliency is that

of a region containing a single frequency (band). The

descriptors for non-saliency form a much richer set in

this case than in the intensity distribution case. Wavelet

entropy can be analysed in a similar manner.

Furthermore, there may be benefits of using Spec-

tral or Wavelet entropy over intensity distribu-

tion entropy; one example is the noise model in-

cluded in the method used in Starck and Murtagh

(1999).

Compression techniques commonly take advantage

of the decorrelation properties of transforms such as the

Discrete Cosine Transform or the Wavelet Transform,

to achieve compression. The idea is that the signal is

transformed into a set of decorrelated or orthogonal ba-

sis vectors which, after appropriate quantisation, can

represent the signal in a more efficient manner. The

method works most efficiently if the signals found in

the source can be represented well by a small number

of the basis vectors—that is the basis set can synthe-

size the source signals with only a few parameters.

Our saliency method with a local descriptor set made

from the local Fourier or Wavelet coefficients, bears a

strong resemblance to signal compression techniques.

Non-salient parts of the image are those that contain

significant redundancy and can be compressed quite

easily.

Entropy is also widely used in the selection of

best basis in Wavelet packet methods (Coifman and

Wickerhauser, 1992). Here the basis with the mini-

mum local entropy is classed as the best; that is, the

one with the fewest negligible coefficients. Once again,

there is a strong link with our approach to saliency and

description.

7.4. Saliency and Segmentation

The task in segmentation is to group image pixels such

that the groups satisfy some definition of homogeneity.

For example this may be that the regions are piecewise

continuous in intensity, of similar texture, or have simi-

lar motion vectors. In the entropy of intensity approach

to saliency, the task is to find groups of pixels which are

different from each other (but close spatially) according

to the assumed definition of non-saliency. In the inten-

sity distribution local descriptor that has been used for

the majority of the experiments in this paper, groups

containing many different pixel values in equal pro-

portion are considered salient. In this way, the method

can be viewed as the opposite to the classic segmen-

tation problem. The salient regions can be considered

as the outliers of the homogeneous regions after seg-

mentation. In fact Gilles did suggest that his method

could be used to select seed points for a segmentation

algorithm.

8. Conclusion

In this paper we have presented a discussion of three

separate but closely related issues common in many

computer vision problems: saliency, scale, and image

description.

In many computer vision tasks we would like to

extract ‘meaningful’ and general descriptors of image

content. Descriptors have to be appropriate to the task at

hand to be useful, but early vision in humans is believed

to operate with little contextual information. From the

popular pre-attentive and attentive models of early vi-

sion, and from several recent results it is known that

local features can be ‘good enough’ to solve many com-

puter vision tasks. We have discussed the idea of visual

saliency which suggests that certain regions of the im-

age are better than others at describing content and we

have suggested that this approach can solve some of

the problems associated with purely local methods.

Motivated by the promising results obtained by

Gilles, we have investigated his local complexity ap-

proach to visual saliency applied to a wide range of

image source material including image sequences. Our

experiments showed that local scale selection was nec-

essary but furthermore that the method had to be ex-

tended to consider saliency across scale as well as spa-

tial dimensions. We have introduced a novel saliency

method that builds on Gilles ideas but automatically se-

lects appropriate scales for analysis and can compare
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the scale-space behaviour of image features. We then

presented results showing the performance of the tech-

nique, in particular its invariance to scale changes in

the image and viewpoint changes in 3D objects. We

then applied the technique to an object recognition and

tracking task in an image sequence. Using a crude ob-

ject model and pixel correlation matching, the tech-

nique was successful in identifying matches of the

model in an image sequence consisting of a complex

scene. In these examples, we used a minimal set of prior

assumptions in order to highlight the performance of

the basic technique. Further enhancements can be made

to the technique by using, for example, a Condensa-

tion or Kalman tracker or by making basic assumptions

about the consistency of scales between model and im-

age, or smoothness of changes in position and scale

between frames in an image sequence. The use of such

assumptions is the subject of further investigation and

results will be reported in a future paper. We are also

investigating the application of the technique to large

database object recognition problems and will report

on these results in a future paper.

In the last section we investigated the links between

saliency and image description. In many approaches

to saliency these two issues have been separately han-

dled. Features that have been selected using a saliency

algorithm are then described by using an arbitrary de-

scription method (and in some cases arbitary scales).

On the contrary we argue that the two tasks should be

considered as parts of the same problem. Having anal-

ysed the prior model for saliency that we have used

in the experiments, we conclude that the method mea-

sures how well a given local descriptor captures local

signal behaviour. Low saliency regions are those that

can be modeled very well by the chosen local descrip-

tor (in information theory this means ‘in few bits’; in

signal processing this can mean ‘good signal to noise

ratio’). In the example of local intensity distribution

low saliency regions are those that are piecewise flat.

In other words the prior model should be designed

such that the non-salient features are well described;

the saliency descriptor models the background rather

than foreground. This approach is quite distinct from

conventional approaches to saliency. We presented an

example where we wish to find the salient parts in a fin-

gerprint image. The model of non-saliency in this case

is a single direction edge at a particular scale. Salient

parts are those with many directions and scales. The

method can in this way be generalised for any prior

model. Subsequent description of that image feature

should be done by a more discriminating descriptor

than the one used for saliency.

Having made this observation, a number of other re-

lations become obvious: Spectral/Wavelet entropy are

simply the same method but with different local de-

scriptors; Segmentation is the opposite to saliency (as

we have defined it); strong connections exist to com-

pression coding where redundancy (low-saliency) is

taken advantage of to achieve compression.
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Notes

1. Gilles was primarily interested in the matching of aerial images.

2. Note, these operators do not exclusively select features that are

perceived to be the corners of objects; rather, they compute sets

of zero measure typified by their peaked autocorrelation.

3. Histograms are not confined to intensity; they may be any local

attribute such as colour or edge strength, direction or phase.

4. Copyright (c) 1998 by H.H. Nagel. Institut für Algorithmen und

Kognitive Systeme. Fakultät fur Informatik. Universität Karlsruhe

(TH). Postfach 6980.D—76128 Karlsruhe, Germany.

5. We do not advocate the use of one particular scale space repre-

sentation in our work. Rather we are interested in scale selection

and the extension of saliency to operate over scale. We have used

a circular top-hat sampling kernel to generate our scale space for

reasons of simplicity, rotational invariance (in the image plane)

and because it does not alter the statistical properties of the local

descriptor.
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