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Saliency Tree: A Novel Saliency

Detection Framework
Zhi Liu, Member, IEEE, Wenbin Zou, and Olivier Le Meur

Abstract— This paper proposes a novel saliency detection
framework termed as saliency tree. For effective saliency mea-
surement, the original image is first simplified using adaptive
color quantization and region segmentation to partition the image
into a set of primitive regions. Then, three measures, i.e., global
contrast, spatial sparsity, and object prior are integrated with
regional similarities to generate the initial regional saliency for
each primitive region. Next, a saliency-directed region merging
approach with dynamic scale control scheme is proposed to
generate the saliency tree, in which each leaf node represents
a primitive region and each non-leaf node represents a non-
primitive region generated during the region merging process.
Finally, by exploiting a regional center-surround scheme based
node selection criterion, a systematic saliency tree analysis
including salient node selection, regional saliency adjustment
and selection is performed to obtain final regional saliency

measures and to derive the high-quality pixel-wise saliency map.
Extensive experimental results on five datasets with pixel-wise
ground truths demonstrate that the proposed saliency tree model
consistently outperforms the state-of-the-art saliency models.

Index Terms— Saliency tree, saliency detection, saliency model,
saliency map, regional saliency measure, region merging, salient
node selection.

I. INTRODUCTION

SALIENCY detection plays an important role in a variety

of applications including salient object detection [1], [2],

salient object segmentation [3]–[6], content-aware image/video

retargeting [7]–[9], content-based image/video compression

[10], [11], and content-based image retrieval [12], etc.

Generally, saliency is defined as what captures human

perceptual attention. Human vision system (HVS) has the
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ability to effortlessly identify salient objects even in a complex

scene by exploiting the inherent visual attention mechanism.

With the goal both to achieve a comparable saliency detection

performance of HVS and to facilitate different saliency-based

applications such as those mentioned above, a number of

computational saliency models have been proposed in the

past decades, and a recent benchmark for saliency models on

saliency detection performance is reported in [13].

The early research on saliency model is motivated by

simulating the visual attention mechanism of HVS, through

which only the significant portion of the scene projected

onto the retina is thoroughly processed by human brain for

semantic understanding. Based on the biologically plausible

visual attention architecture [14] and the feature integration

theory [15], Itti et al. proposed a well-known saliency

model [16], which first computes feature maps of luminance,

color and orientation using a center-surround operator across

different scales, and then performs normalization and sum-

mation to generate the saliency map. Salient regions showing

high local contrast with their surrounding regions in terms of

any of the three features are highlighted in the saliency map.

Since then, the center-surround scheme has been widely

exploited in a variety of saliency models, due to its clear

interpretation of visual attention mechanism and its concise

computation form. The centre-surround scheme is imple-

mented using a number of features including local contrasts

of color, texture and shape features [17], oriented subband

decomposition based energy [18], ordinal signatures of edge

and color orientation histograms [19], Kullback-Leibler (KL)

divergence between histograms of filter responses [20],

local regression kernel based self-resemblance [21], and

earth mover’s distance (EMD) between the weighted his-

tograms [22]. The selection of surrounding region is the

key factor to suitably evaluate the saliency of the center

pixel/region. Rather than using a fixed shape such as rectangle

or circular region, the surrounding region is selected as the

whole region of the blurred image in the frequency-tuned

saliency model [23], and the maximum symmetric region

in [24]. Besides, the center-surround differences are evaluated

on the basis of segmented regions using several region-based

features to generate the region-level saliency map in [25].

However, it is nontrivial to determine a suitable scale or to

integrate multiple scales for surrounding regions, which can

adapt well to salient objects and background with various

scales and shapes for reasonable saliency evaluation.

Besides the widely exploited center-surround scheme, there

are various formulations for measuring saliency based on

different theories and principles such as information theory,

1057-7149 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



1938 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 23, NO. 5, MAY 2014

frequency domain analysis, graph theory and supervised learn-

ing. Based on information theory, the rarity represented using

self-information of local image features [26], the complexity

represented using local entropy [27], and the average trans-

ferring information represented using entropy rate [28] are

exploited to measure saliency. Using frequency domain analy-

sis methods, the spectral residual of the amplitude spectrum

of Fourier transform [29], the phase spectrum of quaternion

Fourier transform [10], and contrast sensitivity function in the

frequency domain [30] are exploited to generate the saliency

map. Based on graph theory, random walks on the weighted

graph constructed at pixel level [31] and block level [32], and

the stochastic graph model constructed on the basis of region

segmentation [33] are exploited to generate saliency maps at

different levels. Using supervised learning methods, a set of

features including multi-scale contrast, center-surround his-

togram and color spatial distribution are integrated to generate

the saliency map under the framework of conditional random

field [34], and region feature vectors are mapped to saliency

scores, which are fused across multiple levels to generate

the saliency map [35]. Using support vector machine, eye

tracking data is used to train the saliency model for selection

of salient/non-salient pixel samples and feature extraction [36].

Recently, the global information of the image has been

incorporated into saliency models with different forms. In the

context-aware saliency model [37], the global uniqueness of

color feature and some visual organization rules are com-

bined with the local center-surround difference to generate the

saliency map. In [38], the global color distribution represented

using Gaussian mixture models (GMM), and both local and

global orientation distribution are utilized to selectively gen-

erate the saliency map. In [39], GMMs are used to explicitly

construct salient object/background model, and for each pixel,

the ratio of posterior probability of object model to background

model is calculated as the saliency measure.

Furthermore, in some saliency models [40]–[46], the image

is partitioned into regions using either image segmentation

methods or pixel clustering methods, and the global informa-

tion is effectively incorporated at region level. Statistical mod-

els such as Gaussian model [40] and kernel density estimation

based nonparametric model [41] are used to represent each

region, and both color and spatial saliency measures of such

statistical models are evaluated and integrated to measure the

pixel’s saliency. Using different formulations, global contrast

and spatially weighted regional contrast [42], color com-

pactness of over-segmented regions [43], distinctiveness and

compactness of regional histograms [44], global contrast and

spatial sparsity of superpixels [45], and two contrast measures

for rating global uniqueness and spatial distribution of colors

in the saliency filter [46] are exploited to generate saliency

maps with well-defined boundaries. In the recently proposed

hierarchical saliency model [47], saliency cues are calculated

on three image layers with different scales of segmented

regions, and then hierarchical inference is exploited to fuse

them into a single saliency map.

Besides, some recent saliency models also exploit

object/background priors and cues at different levels for

a better saliency detection performance. For example,

generic objectness measure [1] and object-level closed

shape prior are effectively incorporated into saliency models

presented in [48] and [49], respectively. Under the framework

of low-rank matrix recovery, center prior, color prior and

learnt transform prior [50] as well as region segmentation

based object prior [51] are exploited for saliency detection.

In the geodesic saliency model [52], background priors are

exploited to formulate the saliency of patch/superpixel as the

length of its shortest path to image borders. In the Bayesian

saliency model [53], convex hull analysis on interest points

and Laplacian sparse subspace clustering on superpixels are

used as low-level and mid-level cues, respectively, to infer

pixel’s Bayesian saliency.

It should be noted that saliency detection performance

has been progressively enhanced with the emerging saliency

models, especially those recent models proposed in [40]–[53].

They can highlight salient object regions more completely with

well-defined boundaries, and suppress background regions

more effectively compared to previous saliency models.

However, these state-of-the-art saliency models are still insuf-

ficient to effectively handle some complicated images with

low contrast between objects and background, heterogeneous

objects and cluttered background.

With the main motivation to improve the overall saliency

detection performance and especially enhance the applicability

on complicated images, we propose saliency tree as a novel

saliency model in this paper. Our main contributions are

fourfold. First, the proposed saliency tree model enables a

hierarchical representation of saliency, which is different from

the existing saliency models. Note that the recent model [47]

exploits hierarchical inference for fusing multi-layer saliency

cues, and takes the advantage of hierarchical saliency detec-

tion for improving the performance. The proposed model is

considerably different from [47] in the complete framework

of saliency tree generation and analysis, which selects the

most suitable region representation by exploiting the hier-

archy of tree structure, to effectively improve the saliency

detection performance. Second, on the basis of our previous

work [45], [51], we integrate three measures, i.e., global

contrast, spatial sparsity and object prior, at region level to

reasonably initialize regional saliency measures. Third, we

propose a saliency-directed region merging approach with

dynamic scale control scheme for saliency tree generation,

which can preserve meaningful regions at different scales.

Finally, we propose a systematic procedure of saliency tree

analysis including regional center-surround scheme based node

selection criterion, salient node selection, regional saliency

adjustment and selection to generate high-quality regional

saliency map and to derive the final pixel-wise saliency

map. Both subjective observations and objective evaluations

demonstrate that the proposed saliency tree model achieves

a consistently higher saliency detection performance on five

datasets compared to the state-of-the-art saliency models.

The flowchart of the proposed saliency tree model is shown

in Fig. 1, and the following four sections from Section II

to V describe image simplification, regional saliency mea-

surement, saliency tree generation and saliency tree analysis,

respectively. Extensive experimental results and analysis are
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Fig. 1. Flowchart of the proposed saliency tree model.

presented in Section VI, and conclusions are given in

Section VII.

II. IMAGE SIMPLIFICATION

Natural image generally contains thousands of pixels with

a variety of colors. In order to effectively measure saliency,

two simplification operations, i.e., adaptive color quantization

and region segmentation, are performed on the original image

to represent it using a reduced number of colors and regions.

Before the following two simplification operations, the original

color image is transformed into the Lab color space, in which

the luminance channel and the two chrominance channels are

well decorrelated.

For adaptive color quantization, each color channel is first

uniformly divided into q bins, and the quantization step is

defined as

δz =
zmax − zmin

q
(1)

where z denotes each channel L, a or b, and zmax and zmin

denote the maximum and the minimum, of the channel z,

respectively. The parameter q is set to a moderate value, 16,

which is generally sufficient for color quantization of natural

images. Then a color quantization table Q with q × q × q

entries is generated based on the colors of all pixels in the

image. The quantized color of each entry, qck , is calculated

as the mean color of those pixels falling into the kth entry

of Q. Finally, by removing those entries with zero value, Q is

updated to have a total of m (usually m ≪ q × q × q) entries.

For region segmentation, we choose the gPb-owt-ucm

method [54], which exploits the globalized probability

of boundary (gPb) based contour detector and the ori-

ented watershed transform (owt) to generate the real-valued

ultrametric contour map (UCM). By thresholding the UCM,

a set of closed boundaries are retained to form a boundary

map, which can be converted into a region segmentation

result.

Specifically, the thresholding operation is first performed

on the UCM, which is normalized into the range of [0, 1],

by increasing the threshold from 0 to 1 with an interval

of 0.01, to obtain the boundary map when the corresponding

region number decreases just below τ (let t denote the number

of actually generated regions). Then for each region smaller

than αM/t , where M is the total number of pixels in the

image and α is the coefficient for controlling removal of

small regions, the pixels belonging to the weakest part of

its boundary, in terms of UCM values, are set to zero in the

UCM for elimination of this small region. The two parameters,

τ and α are set to 200 and 0.2, respectively, to obtain an

over-segmentation result with reasonable region sizes. After

the above removal of small regions, the remaining regions

Ri (i = 1, . . . , n) are termed as primitive regions, which are

appropriate for regional saliency measurement and are used

as the basis for generating the saliency tree in the following

sections.

For the example image in Fig. 2(a), its UCM is shown in

Fig. 2(b), in which strong boundaries are darker than weak

boundaries. The primitive region segmentation result is shown

in Fig. 2(c), in which each primitive region is represented

using the mean color of the region.

III. REGIONAL SALIENCY MEASUREMENT

Based on the image simplification result, regional similarity

is measured based on regional histograms. Then initial regional

saliency for each primitive region is evaluated by integrating

three measures, i.e., global contrast, spatial sparsity and object

prior. We observed from a variety of natural images that salient

objects are generally different from background regions, and

are surrounded by background regions, which usually touch

image borders. Specifically, the above three measures are

evaluated based on the following three aspects:

1) Salient object regions usually show contrast with

background regions;

2) Spatial distribution of salient object colors is sparser

than background colors, which usually scatter over the whole

image;

3) Background regions generally have a higher ratio

of connectivity with image borders than salient object

regions.

The following five subsections will detail the whole process

of regional saliency measurement.

A. Regional Similarity

For each primitive region Ri (i = 1, . . . , n), its regional

histogram Hi is calculated using the quantized colors of all

pixels in Ri , and then normalized to have
∑m

k=1 Hi(k) = 1.

The regional similarity between each pair of primitive regions,

Ri and R j , is defined as

Sim(Ri , R j ) = Simc(Ri , R j ) · Simd (Ri , R j ) (2)
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Fig. 2. Illustration of region segmentation and regional saliency measurement. (a) original image; (b) ultrametric contour map; (c) primitive region segmentation
result; (d) global contrast map; (e) spatial sparsity map; (f) coarse region segmentation result; (g) object prior map; (h) initial regional saliency map.

The color similarity between Ri and R j is defined based on

the chi-square distance between Hi and H j as follows:

Simc(Ri , R j ) = exp

(

−
1

2

m
∑

k=1

[

Hi(k) − H j (k)
]2

Hi(k) + H j (k)

)

(3)

The spatial similarity between Ri and R j is defined as

Simd (Ri , R j ) = 1 −

∥

∥µi − µ j

∥

∥

2

d
(4)

where d denotes the diagonal length of the image, and the

spatial center position of Ri is defined as

µi =

∑

p∈Ri
xp

|Ri |
(5)

where xp denotes the spatial coordinates of each pixel p,

and |Ri | denotes the number of pixels in Ri .

Both Simc(Ri , R j ) and Simd(Ri , R j ) fall into the normal-

ized range of [0, 1]. Sim(Ri , R j ) is evaluated higher when

the color distributions of Ri and R j are similar and the spatial

distance between them is shorter.

B. Global Contrast

The global contrast of each primitive region Ri is measured

using the weighted color differences with all the other regions

as follows:

GC(Ri ) =
∑n

j=1

∣

∣R j

∣

∣ · Simd (Ri , R j ) ·
∥

∥mci − mc j

∥

∥

2
(6)

where mci (resp. mc j ) denotes the mean color of Ri

(resp. R j ). The weight
∣

∣R j

∣

∣ · Simd(Ri , R j ) indicates that

those regions, which are larger and spatially closer to Ri ,

have a relatively larger contribution to the evaluation of global

contrast of Ri . Then the normalized global contrast measure

for Ri is calculated as follows:

NGC(Ri ) =
GC(Ri ) − GCmin

GCmax − GCmin
(7)

where GCmax and GCmin are the maximum and the minimum,

respectively, in the global contrast measures of all primitive

regions.

Based on a reasonable assumption that region pairs with

a high regional similarity should be evaluated with similar

values on the global contrast measures, the regional similarities

are used to refine the normalized global contrast measures as

follows:

RGC(Ri ) =

∑n
j=1 Sim(Ri , R j ) · NGC(R j )

∑n
j=1 Sim(Ri , R j )

(8)

C. Spatial Sparsity

For each primitive region Ri , the spatial spread of its color

distribution is defined as follows:

SS(Ri ) =

∑n
j=1 Sim(Ri , R j ) · D(R j )
∑n

j=1 Sim(Ri , R j )
(9)

where D(R j ) denotes the Euclidean spatial distance from the

center position of R j to the image center position. Then an

inverse normalization operation is performed on the spatial

spread measures to obtain the normalized spatial sparsity

measures as follows:

N SS(Ri ) =
SSmax − SS(Ri )

SSmax − SSmin
(10)

where SSmax and SSmin are the maximum and the minimum,

respectively, in the spatial spread measures of all primitive

regions. Similarly, the normalized spatial sparsity measures

are refined as follows:

RSS(Ri ) =

∑n
j=1 Sim(Ri , R j ) · N SS(R j )

∑n
j=1 Sim(Ri , R j )

(11)

D. Object Prior

The connectivity ratio between each region and image

borders can be used to indicate the prior probability belonging

to a salient object, because salient objects usually do not

connect with image borders or connect with image borders

less than background regions in a variety of images. Following

our previous work [51], it is suitable to evaluate the object

prior on the basis of a coarse region segmentation, so as to

obtain more uniform object prior values for those homogenous

background regions, which connect with image borders and

are less partitioned in the coarse segmentation result. For this

purpose, the UCM is thresholded using a relatively higher

value, 0.25, to obtain a coarse segmentation result with nc

regions, and the object prior for each region ℜ j ( j = 1, . . . , nc)

is defined as follows:

O P(ℜ j ) = exp

(

−λ

∣

∣ℜ j ∩ B
∣

∣

∂ℜ j

)

(12)

where B denotes the image borders, and ∂ℜ j denotes the

perimeter of region ℜ j . The coefficient λ is set to 2.0

for a moderate attenuation effect on object priors of those

regions touching image borders. Then for each primitive region

Ri (i = 1, . . . , n), its object prior is assigned as follows:

O P(Ri ) = O P(ℜ j ), ∀Ri ⊆ ℜ j (13)
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E. Initial Regional Saliency

By integrating the aforementioned three measures using the

multiplication operation, the initial regional saliency measure

for each primitive region Ri is defined as follows:

SI (Ri ) = RGC(Ri ) · RSS(Ri ) · O P(Ri ) (14)

The initial regional saliency measures of all primitive

regions are normalized into the range of [0, 1] for the

latter use in the saliency tree generation. For the example

image in Fig. 2(a), which has a human object with het-

erogeneous regions and a cluttered background, the regional

global contrast map and spatial sparsity map are shown in

Fig. 2(d) and (e), respectively. On the basis of coarse region

segmentation in Fig. 2(f), the generated object prior map is

shown in Fig. 2(g). Note that for such a complicated image in

Fig. 2(a), either Fig. 2(d) or (e) reasonably but partly highlights

salient object regions and suppresses background regions to

some extent. Fig. 2(g) moderately suppresses a large part of

background regions, but those background regions without

touching image borders cannot be suppressed.

By integrating the three maps in Fig. 2(d), (e), and (g),

the initial regional saliency map shown in Fig. 2(h) can

highlight salient object regions and suppress background

regions more effectively than any of the three maps, but it

is still insufficient to suppress some background regions. To

effectively improve the saliency detection performance on such

complicated images, we propose the following saliency tree

generation in Sec. IV and saliency tree analysis in Sec. V.

For reference, the saliency maps generated using the state-

of-the-art saliency models for this image are shown from

column (c) to (m) in the bottom row of Fig. 7. We can

observe that such a complicated image is difficult for the state-

of-the-art saliency models to generate high-quality saliency

maps, while the above initial regional saliency map visually

outperforms most saliency maps generated using the state-of-

the-art saliency models. Besides, in Sec. VI-B, a performance

analysis on five datasets is used to objectively evaluate the

contribution of each measure, i.e., global contrast, spatial

sparsity and object prior, to the initial regional saliency.

IV. SALIENCY TREE GENERATION

Starting from the primitive regions with their initial

regional saliency measures, a saliency-directed region merging

approach is proposed to generate the saliency tree, which is a

binary partition tree [55] with saliency measures. Specifically,

the region merging sequence is recorded by exploiting the

structure of binary partition tree, in which each node is

assigned with regional saliency measure. Each primitive region

is represented by a leaf node in the saliency tree, and each

non-primitive region, which is generated during the region

merging process, is represented by a non-leaf node in the

saliency tree. The following two subsections first describe

the merging criterion and merging order exploited in the region

merging process, and then detail the saliency-directed region

merging approach for saliency tree generation.

A. Merging Criterion and Merging Order

In order to direct the region merging process, the merging

criterion for each pair of adjacent regions, Ri and R j , is

evaluated based on color similarity and saliency similarity

between them as follows:

Mrg(Ri , R j ) = Simc(Ri , R j ) · Sims(Ri , R j ) (15)

where the saliency similarity is defined as

Sims(Ri , R j ) = 1 −
∣

∣SI (Ri ) − SI (R j )
∣

∣ (16)

It is obvious that the merging criterion Mrg(Ri , R j )

achieves a higher value when Ri and R j show similar color

distributions and similar regional saliency measures. Since

region merging is always performed on adjacent regions, the

merging criterion for each non-adjacent region pair is set to

zero, for clarity of the following description.

Based on the above defined merging criterion, the region

merging process is iteratively performed based on the deter-

mined merging order. Specifically, at each merging step, one

pair or multiple pairs of adjacent regions are selected to merge

by checking the following two conditions (a) and (b). Without

loss of generality, assume there are a total of t regions at the

beginning of the current merging step.

(a) The out-of-scale regions, which are too small in view

of the region number at the current merging step, are first

searched to merge with a higher priority. The set of out-of-

scale regions is denoted as � = {Ri } ,∀ |Ri | ≤ βM/t , where

the coefficient β is set to a moderate value, 0.2, for selection

of small regions. In case that � is not empty, for each region

Ri in �, its most similar region R j is selected to constitute a

region pair (Ri , R j ) for merging, i.e.,

R j = arg max
k=1...t

Mrg(Ri , Rk), ∀Ri ∈ � (17)

The condition (a) is exploited to dynamically control the

region scale dependent on the current region number t . If more

than one pair of regions are selected based on the condition (a),

these region pairs are merged simultaneously. However, in

case that � is empty (usually at the latter merging steps), the

condition (b) will be used to select one region pair to merge.

(b) The region pair (Ri , R j ) with the highest merging

criterion, which is actually the general condition to determine

the merging order in conventional region merging algorithms,

is selected as follows:

(Ri , R j ) = arg max
k1=1...t, k2=1...t

Mrg(Rk1 , Rk2 ) (18)

When a region pair (Ri , R j ) is used to merge into a new

region Rk , its regional histogram Hk and initial regional

saliency measure SI (Rk) are calculated as follows:

Hk =
|Ri | · Hi +

∣

∣R j

∣

∣ · H j

|Ri | +
∣

∣R j

∣

∣

(19)

SI (Rk) =
|Ri | · SI (Ri ) +

∣

∣R j

∣

∣ · SI (R j )

|Ri | +
∣

∣R j

∣

∣

(20)

where |Ri | · SI (Ri ) is termed as the saliency gross in Ri .
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Algorithm 1 Pseudo Code of Saliency-Directed Region

Merging Approach

B. Saliency-Directed Region Merging

Based on the above defined merging criterion and merging

order, the proposed saliency-directed region merging approach

for saliency tree generation is summarized in Algorithm 1.

Starting from n primitive regions, the total times of merging

two regions into a new region is n−1 during the whole region

merging process. Therefore, in the saliency tree, there are n

leaf nodes representing primitive regions Ri (i = 1, . . . , n) and

n − 1 non-leaf nodes representing during the region merging

process the generated regions Ri (i = n + 1, . . . , 2n − 1),

which are termed as non-primitive regions. The root

node in the saliency tree represents the complete image

region.

For the example in Fig. 2, the saliency tree generated using

the proposed saliency-directed region merging approach is

shown in Fig. 3(a), which only shows the nodes at the top

8 levels and some meaningful regions generated during the

region merging process for a clear display.

V. SALIENCY TREE ANALYSIS

Saliency tree provides for an image a hierarchical saliency

representation, which can be fully exploited to generate

high-quality regional saliency map and pixel-wise saliency

map. In the following, a systematic saliency tree analysis

including the definition of node selection criterion, salient

node selection, regional saliency adjustment and selection,

and pixel-wise saliency map derivation, will be described in

the following four subsections.

A. Node Selection Criterion

Node selection criterion is defined based on a regional

center-surround scheme, in which the region with certain

saliency gross and higher saliency difference from its regional

surround is considered as more salient. For each region

Ri (i = 1, . . . , 2n − 1) represented by each node Ni in the

saliency tree, its regional surround Ci is defined as the set of

primitive regions adjacent to Ri . An example of the region

Ra and its regional surround Ca is shown in Fig. 3(b). The

saliency measure of each regional surround Ci is defined as

follows:

SC (Ci ) =

∑

R j ∈Ci
log

(∣

∣R j

∣

∣

)

· SI (R j )
∑

R j ∈Ci
log

(
∣

∣R j

∣

∣

) (21)

where R j is each primitive region covered in Ci . The

logarithm of region area is used as the weight to reasonably

attenuate the contribution of large-sized regions, which have

a higher percentage of pixels far away from the boundary

of Ri , and to make the contribution comparable among the

surrounding primitive regions with variable areas.

Based on the regional center-surround scheme, the node

selection criterion for the node Ni representing Ri is then

defined as follows:

SC(Ni ) = [SI (Ri ) − SC (Ci )] · |Ri | · SI (Ri ) (22)

where the former term represents the saliency difference

between Ri and Ci , and the latter term |Ri | · SI (Ri ) represent-

ing the saliency gross in Ri is introduced to assign a higher

node selection criterion for reasonable-sized regions with a

higher saliency difference from their surrounds.

B. Salient Node Selection

From the saliency tree, in which all nodes are now

assigned with node selection criteria, different sets of salient

nodes are selected at a series of saliency visibility levels

Vℓ(ℓ = 1, . . . , ζ ), which determine the minimum saliency

gross contained in the correspondingly selected regions. In

our implementation, the number of total levels ζ is set to 10,

and the saliency visibility levels are set from 1% to 10%, with

an interval of 1%, of the total saliency gross of the image,

i.e.,
∑n

i=1 |Ri | · SI (Ri ). The purpose of salient node selection

is to preserve a set of regions, which are considered as salient

and the most representative at a certain saliency visibility

level, and will be used for regional saliency adjustment and

selection in Sec. V-C.

The proposed salient node selection procedure is

summarized in Algorithm 2. Using the salient node
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Fig. 3. (a) Example of saliency tree; (b) (better viewed in color) Illustration of regional surround.

Algorithm 2 Pseudo Code of Salient Node Selection

Procedure

selection procedure on the saliency tree in Fig. 3(a), the

region selection results are output at seven saliency visibility

levels, i.e., V1~V6 and V10, and shown in the top row of

Fig. 4. We can observe that the region, which represents

the salient object more completely, is selected at different

saliency visibility levels.

C. Regional Saliency Adjustment and Selection

For each region selection result Ŵℓ, the remaining areas

(white areas in the top row of Fig. 4) uncovered by any

region in Ŵℓ are labeled using the connected component

analysis to generate one or multiple regions, which constitute

a complementary region set Ŵℓ. Then the primitive regions,

which are covered by each region in Ŵℓ (resp. Ŵℓ), constitute

the region set �ℓ (resp. �ℓ). The two sets, �ℓ and �ℓ,

are complementary to each other on the basis of primitive

regions.

The regions in Ŵℓ and Ŵℓ constitute a partition of the image

at each saliency visibility level Vℓ. As shown in the top row

of Fig. 4 and Fig. 3(a), salient object regions as well as other

meaningful background regions, which are generated in the

saliency tree, can be more completely preserved in such a

partition. Therefore, we can exploit the object prior evaluated

on the basis of regions in Ŵℓ and Ŵℓ to adjust the initial

regional saliency measures, in order to highlight salient object

regions and suppress background regions more effectively.

Specifically, for each region ℜk ∈ Ŵℓ ∪ Ŵℓ, its object prior

O Pℓ(ℜk) is calculated using Eq. (12). Then for each primitive

region Ri ∈ �ℓ ∪ �ℓ, its object prior is assigned as follows:

O Pℓ(Ri ) = O Pℓ(ℜk), ∀Ri ⊆ ℜk and ℜk ∈ Ŵℓ ∪ Ŵℓ (23)

and then its regional saliency measure at the saliency visibility

level Vℓ is adjusted as follows:

ASℓ(Ri ) = O Pℓ(Ri ) · SI (Ri ) (24)

From a set of the adjusted regional saliency measures at

different saliency visibility levels, the optimal set is selected

as the one that can maximize the saliency difference between

regions in �ℓ and regions in �ℓ, since such an adjustment

of regional saliency measures shows that the corresponding

region selection result is more confident and rational for

regional saliency measurement. Specifically, the optimal set

of the adjusted regional saliency measures, ASℓ∗, is selected
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Fig. 4. (better viewed in color) Illustration of regional saliency adjustment and selection, and pixel-wise saliency map derivation. Top row: seven region
selection results (each selected region is shown using the region’s mean color, and the unselected regions are shown using white areas); bottom row: regional
saliency maps with saliency difference measures, final regional saliency map (marked with the red border) and pixel-wise saliency map (marked with the
yellow border).

by maximizing the following saliency difference measure:

ASℓ∗ =arg max
ℓ

⎡

⎢

⎢

⎣

∑

Ri ∈�ℓ

|Ri |· ASℓ(Ri )

∑

Ri ∈�ℓ

|Ri |
−

∑

R j ∈�ℓ

∣

∣R j

∣

∣· ASℓ(R j )

∑

R j ∈�ℓ

∣

∣R j

∣

∣

⎤

⎥

⎥

⎦

(25)

and is used as the final regional saliency measures, i.e.,

SF (Ri ) = ASℓ∗(Ri ) for each primitive region Ri .

For the region selection results shown in the top row of

Fig. 4, the correspondingly adjusted regional saliency maps

with the saliency difference measures are shown in the bottom

row of Fig. 4. The adjusted regional saliency map at the

saliency visibility level V10 is selected as the final regional

saliency map, in which the salient object is highlighted and

background regions are suppressed more effectively.

D. Pixel-Wise Saliency Map Derivation

Finally, a pixel-wise saliency map is derived based on final

regional saliency measures of primitive regions. For each pixel

p ∈ Ri , its local neighborhood 
p includes the primitive

region Ri and the adjacent primitive regions of Ri . The

saliency measure of the pixel p is defined as the weighted sum

of final regional saliency measures of its neighboring primitive

regions, i.e.,

SP (p) =

∑

R j ∈
p
ω j · SF (R j )

∑

R j ∈
p
ω j

(26)

where the weight ω j is defined as follows:

ω j=

{

H j (bp), i f R j = Ri

H j (bp) · exp
(

−
∥

∥xp−µ j

∥

∥

2

/
∥

∥xp−µi

∥

∥

2

)

, otherwi se
(27)

where bp denotes the entry number for the quantized color of

the pixel p in the color quantization table Q. Using Eq. (27),

a higher weight is given to the primitive region, which is closer

to p and has a higher probability of the pixel’s color in its

regional histogram. It is reasonable that those primitive regions

showing a higher color similarity with p and a shorter distance

to p have a higher contribution to the saliency of p.

As shown in the rightmost column of Fig. 4, the derived

pixel-wise saliency map better highlights the complete salient

object region with well-defined boundaries, which are more

natural and smoother compared to the final regional saliency

map. The pixel-wise saliency map is also shown in the

rightmost column of the bottom row in Fig. 7, for a visual

comparison with saliency maps generated using the state-of-

the-art saliency models, and we can see that the quality of our

pixel-wise saliency map is better than other saliency maps.

VI. EXPERIMENTAL RESULTS

To evaluate the performance of the proposed saliency

tree (ST) model, we performed extensive experiments on the

following five datasets and made a comparison with eleven

state-of-the-art saliency models. We used all datasets in the

benchmark [13] on saliency models, i.e., ASD, MSRA, SED

and SOD, and one recently introduced dataset, PASCAL-

1500 [51]. We choose the top five models that achieve the

best performance in the benchmark [13], i.e., region contrast

(RC) [42], kernel density estimation (KDE) [41], context and

shape prior (CS) [49], fusion of saliency and generic object-

ness (SVO) [48], and context-aware (CA) [37] model, and six

recently proposed saliency models including low-rank matrix

recovery (LR) [50], saliency filter (SF) [46], regional his-

togram (RH) [44], Bayesian saliency (BS) [53], segmentation

driven low-rank matrix recovery (SLR) [51], and hierarchical

saliency (HS) [47]. Note that we use more informative abbre-

viations, KDE, CS and CA to replace the corresponding abbre-

viations, LiuICIP, CBsal and Goferman, respectively, used in

the benchmark [13]. We used the executables or source codes

with default parameter settings provided by the authors for

the eleven saliency models. For a fair comparison, all saliency

maps generated using different saliency models are normalized

into the same range of [0, 255] with the full resolution of origi-

nal images. The results of the proposed ST model are available

at http://people.irisa.fr/Olivier.Le_Meur/shivpro/index.html.
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Fig. 5. (better viewed in color) ROC curves generated using global contrast
maps, spatial sparsity maps, object prior maps, initial regional saliency maps,
final regional saliency maps and pixel-wise saliency maps of MSRA dataset.

In the following, Sec. VI-A introduces the five datasets,

and Sec. VI-B analyzes the performance and contribution of

different parts in the proposed ST model. The comparison

of saliency detection performance with the eleven state-of-

the-art saliency models, both subjectively and objectively, are

presented in Sec. VI-C and VI-D, respectively. Some failure

cases are analyzed in Sec. VI-E, and the complexity issue of

ST model is discussed in Sec. VI-F.

A. Datasets

The five datasets used in the following experiments are

described as follows:

1) MSRA [34] dataset contains 5,000 images from the

image set B of Microsoft Research Asia salient object data-

base. The pixel-wise binary masks of salient objects [35] are

provided as the ground truths. There is a large variation among

images including natural scenes, animals, indoor, outdoor, etc.

2) ASD [23] dataset contains 1,000 images selected from

the above MSRA dataset with pixel-wise binary ground truths

for salient objects. Note that ASD is the most commonly used

dataset for evaluation of saliency detection performance in

the recent years, but the images in this dataset are relatively

simpler than the other four datasets.

3) SED [56] dataset contains 100 images with one salient

object and the other 100 images with two salient objects.

Pixel-wise ground truth annotations for salient objects in all

200 images are provided.

4) SOD [57] dataset contains 300 images from the Berkeley

segmentation dataset (BSD) [58], for which salient object

boundaries are marked by seven users. A unique binary

ground truth for each image is generated using the marked

boundaries which receive a majority of user votes. This dataset

contains many images with different natural scenes making it

challenging for saliency detection.

5) PASCAL-1500 [51] dataset contains 1500 real-world

images from PASCAL VOC 2012 segmentation challeng-

ing [59], in which only images intuitively deemed to have

Fig. 6. AUC values achieved using global contrast maps, spatial sparsity
maps, object prior maps, initial regional saliency maps, final regional saliency
maps and pixel-wise saliency maps of all the five datasets.

salient objects are selected. The binary ground truths for eval-

uation of saliency detection performance are adapted from the

pixel-wise annotated segmentation ground truths in PASCAL

VOC, by labeling object pixels as “1” and other pixels as “0”.

In PASCAL-1500, many images contain multiple objects with

various locations and scales, and/or highly cluttered back-

ground, which make this dataset also challenging for saliency

detection.

B. Performance Analysis

The proposed ST model first generates global contrast map,

spatial sparsity map, object prior map and initial regional

saliency map in Sec. III, and then generates final regional

saliency map and pixel-wise saliency map in Sec. V. In order

to objectively evaluate the contribution of different parts in the

proposed ST model to the saliency detection performance, we

adopted the commonly used receiver operating characteristic

(ROC) curve, which plots the true positive rate (TPR) against

the false positive rate (FPR) and presents a robust evaluation

of saliency detection performance. Specifically, the above

mentioned six classes of maps generated using the ST model

are first normalized into the same range of [0, 255]. Then

thresholding operations using a series of fixed integers from

0 to 255 are performed on each map to obtain 256 binary

salient object masks, and a set of TPR and FPR values are

calculated by comparing to the corresponding binary ground

truth. Finally, for each class of map, at each threshold, the

TPR/FPR values of all images in the dataset are averaged, and

the ROC curve for each class of map plots the 256 average

TPR values against the 256 average FPR values.

Fig. 5 only shows the ROC curves on the largest dataset,

i.e., MSRA, due to the page limit. As shown in Fig. 5, the

ROC curve for initial regional saliency map is higher than the

three ROC curves for global contrast map, spatial sparsity map

and object prior map. This demonstrates the complementary

effect of global contrast, spatial sparsity and object prior for a

reasonable estimate of initial regional saliency. Furthermore,

compared to the ROC curve for initial regional saliency map,

the ROC curve for final regional saliency map is elevated and

the ROC curve for pixel-wise saliency map is further elevated.

This demonstrates the contribution of saliency tree analysis



1946 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 23, NO. 5, MAY 2014

Fig. 7. Examples of saliency detection on MSRA dataset. (a) images (IM), (b) ground truths (GT) and (c)–(n) saliency maps generated using different models.

Fig. 8. Examples of saliency detection on ASD dataset. (a) images (IM), (b) ground truths (GT) and (c)–(n) saliency maps generated using different models.

for improving the saliency detection performance. We also

observed similar trends of such ROC curves on the other four

datasets.

For a more intuitive evaluation, we calculated the area

under each ROC curve (AUC) on all the five datasets as a

quantitative metric. As shown in Fig. 6, the AUC values clearly
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Fig. 9. Examples of saliency detection on SED dataset. (a) images (IM), (b) ground truths (GT) and (c)–(n) saliency maps generated using different models.

Fig. 10. Examples of saliency detection on SOD dataset. (a) images (IM), (b) ground truths (GT) and (c)–(n) saliency maps generated using different models.

demonstrate the effectiveness of initial regional saliency mea-

surement and the contribution of saliency tree analysis to

improve the saliency detection performance on all the five

datasets.

C. Subjective Evaluation

Some saliency maps generated using the proposed ST

model and the eleven state-of-the-art saliency models on

the five datasets are shown in Figs. 7–11 for a subjective

comparison. We can observe that most saliency models can

effectively handle images with relatively simple background

and homogenous objects, such as the top two examples in

Fig. 8, to generate high-quality saliency maps. However, for

some complicated images containing heterogeneous objects

(such as human objects, vehicles in Figs. 7 and 11, and

buildings in Fig. 10), showing a low contrast between objects

and background (such as row 6 and 7 in Fig. 7, the bottom two
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Fig. 11. Examples of saliency detection on PASCAL-1500 dataset. (a) images (IM), (b) ground truths (GT) and (c)–(n) saliency maps generated using
different models.

Fig. 12. (better viewed in color) ROC curves of different saliency models
on MSRA dataset.

rows in Fig. 8, row 6 and 9 in Fig. 11), and having a cluttered

background (such as row 1, 4 and 10 in Fig. 7, row 7 in

Fig. 8, row 2 in Fig. 9, row 1 and 4 in Fig. 10, and the top

five rows in Fig. 11), the proposed ST model can suppress

background regions and highlight the complete salient object

regions with well-defined boundaries more effectively than the

other saliency models. Thanks to the use of tree structure and

the systematic saliency tree analysis process, ST model can

better handle the problems of heterogeneous objects, cluttered

background and low contrast between object and background

more effectively compared to other saliency models.

Besides, ST model can highlight both large-scale salient

objects (such as row 2 in Fig. 9, row 3 in Fig. 10, and the

bottom row in Fig. 11) and tiny-scale salient object (such as

Fig. 13. (better viewed in color) PR curves of different saliency models on
MSRA dataset.

row 6 in Fig. 10) more effectively compared to other saliency

models, due that the regional center-surround scheme used in

ST model flexibly addresses the issue of object scale compared

to single or several fixed scales used in other saliency models.

Note that the issue of multiple objects itself is not challenging

for most saliency models in case that multiple objects are well

contrasted with the background (such as row 5 and 6 in Fig. 9).

However, if images containing multiple objects are coupled

with the above mentioned problems of heterogeneous objects,

cluttered background, low contrast and object scale (such as

row 5 and 8 in Fig. 7, the bottom row in Fig. 10, and row 7

in Fig. 11), ST model is more effective to highlight multiple

salient objects with well-defined boundaries.
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Fig. 14. AUC values achieved using different saliency models on all the five datasets.

Fig. 15. F-measures achieved using different saliency models on all the five datasets.

Fig. 16. Some failure examples. (a) images (IM), (b) ground truths (GT) and (c)–(n) saliency maps generated using different models.

D. Objective Evaluation

In order to objectively evaluate the saliency detection perfor-

mance of different saliency models, ROC curves are generated

for each saliency model on each dataset using the same

method in Sec. VI-B. Similarly as the generation process of

ROC curves, we also generate for each saliency model on

each dataset the precision-recall (PR) curve, which plots the

precision measure against the recall measure to characterize

the saliency detection performance. Due to the page limit,

only the ROC curves and PR curves on the largest dataset, i.e.,

MSRA, are shown in Figs. 12 and 13, respectively. We can see

from Figs. 12 and 13 that both ROC curve and PR curve of

ST model are the highest one, which demonstrates the better

saliency detection performance of ST model.

For a quantitative and intuitive comparison, Fig. 14 shows

the AUC values, which are calculated for ROC curves of

all saliency models on all the five datasets, and objectively

demonstrates that ST model consistently outperforms all the

other saliency models on all the five datasets. Besides, we

can observe from Fig. 14 that for each saliency model, the

highest and the lowest AUC value are consistently achieved

on ASD dataset and SOD dataset, respectively. This indicates

that the widely used ASD dataset is relatively simpler for the
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state-of-the-art saliency models (note that 10 models achieve

an AUC value higher than 0.95), while SOD dataset, which

is originally designed for evaluation of image segmentation

performance and contains a variety of natural scenes, are the

most challenging for saliency detection.

In order to evaluate the quality of saliency maps and the

applicability for salient object detection and segmentation

more explicitly, we performed adaptive thresholding oper-

ation on each saliency map using the well-known Otsu’s

method [60], which is simple yet effective, to obtain a binary

salient object mask. We calculate the measures of precision

and recall by comparing each binary salient object mask with

the corresponding binary ground truth, and then calculate

F-measure, which is the harmonic mean of precision and

recall, to evaluate the overall performance as follows:

Fγ =
(1 + γ ) · precision · recall

γ · precision + recall
(28)

where the coefficient γ is set to 1 indicating the equal impor-

tance of precision and recall. For each dataset, the average

F-measure on all saliency maps generated using each saliency

model is calculated and shown in Fig. 15. We can see from

Fig. 15 that on all the five datasets, ST model consistently

achieves the highest F-measure, which objectively demon-

strates the overall better quality of saliency maps generated

using ST model.

E. Failure Cases and Analysis

As shown in the previous two subsections, the proposed ST

model outperforms the state-of-the-art saliency models on both

subjective and objective evaluation. However, some difficult

images are still challenging for ST model as well as other

state-of-the-art saliency models. If an image contains a part

of background regions, which are visually salient against the

major part of background, such as rows 1-3 in Fig. 16, it is

difficult to suppress such visually salient background regions.

In addition, if a part of salient object shows a very similar

color with its nearby background regions in a cluttered scene,

such as rows 3-6 in Fig. 16, the salient object cannot be

completely highlighted or/and the nearby background regions

are erroneously highlighted in the generated saliency maps.

The proposed ST model as well as the state-of-the-art saliency

models are still not effective to handle such difficult cases

mentioned above. It should be noted that some class-specific

knowledge about human object and vehicles (such as motor-

cycle and train) can be incorporated into saliency models to

improve the saliency detection performance on such images in

the row 1, 3 and 5 of Fig. 16, for specific applications such

as detection of human objects and vehicles.

F. Complexity Analysis

We implemented the proposed ST model using Matlab

R2012b, and used the source code of the gPb-owt-ucm

method [54], which is written mostly in C++ and coordi-

nated by Matlab scripts, to generate the UCM for region

segmentation. Our experiments are performed on a laptop

with Intel Core i7-3720QM 2.6GHz CPU and 8GB RAM.

TABLE I

AVERAGE PROCESSING TIME AND MEMORY CONSUMPTION OF

EACH COMPONENT IN THE PROPOSED ST MODEL

PER IMAGE IN THE SOD DATASET

The average processing time and memory consumption of each

component in the proposed ST model per image in the SOD

dataset (all images have a resolution of either 481 × 321 or

321 × 481, equivalent to about 0.15 Megapixel) are shown in

Table I. Note that in the current implementation, the resizing

factor for eigenvector computation in the gPb is set to 0.5 to

reduce the time complexity and memory consumption. Even

so, the gPb still occupies a large amount of time and a large

memory. In contrast, all the own components of ST model

(excluding UCM generation) only take 2.084 seconds in total,

and the memory consumption is also lower.

Therefore, in order to make the proposed ST model more

practical for applications with runtime requirements, the

computational efficiency of gPb, which is the bottleneck

of runtime, should be improved with the highest priority.

Fortunately, as reported in [61], the gPb method can be

effectively parallelized and accelerated using a GPU imple-

mentation, which can process the image with a resolution of

0.15 Megapixel in the BSD dataset (note that all 300 images

in the SOD dataset are from the BSD dataset as mentioned in

Sec. VI-A) within 1.8 seconds on a NVidia GTX 280 GPU.

The three own components of ST model can also be paral-

lelized using a GPU implementation. Specifically, regional

saliency measurement can be parallelized on the basis of

primitive region; salient node selection, regional saliency

adjustment and selection can be parallelized on the basis of

saliency visibility level; pixel-wise saliency map derivation can

be parallelized on the basis of pixel. We believe that a parallel

GPU implementation of ST model will substantially improve

the computational efficiency.

VII. CONCLUSION

In this paper, we have presented saliency tree as a novel

saliency detection framework, which provides a hierarchi-

cal representation of saliency for generating high-quality

regional and pixel-wise saliency maps. Initial regional saliency

is measured by integrating global contrast, spatial sparsity

and object prior of primitive regions to build a reasonable

basis for generating the saliency tree. Then saliency-directed
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region merging, regional center-surround scheme, salient

node selection, regional saliency adjustment and selection,

and pixel-wise saliency map derivation are proposed and

systematically integrated into a complete saliency tree model.

Both subjective and objective evaluations on five datasets

demonstrate that saliency tree achieves a consistently higher

saliency detection performance compared to the state-of-the-

art saliency models, and especially enhances the applicability

on complicated images.

In our future work, we will extend the current saliency tree

model with the incorporation of motion fields and inter-frame

spatiotemporal correlations for effective saliency detection

in videos. Specifically, saliency detection using the current

saliency tree model is only performed on some key frames,

which are selected on the basis of video shot with a constraint

of maximum interval. Then a regional motion trajectory based

temporal saliency measure will be designed to modulate the

current final regional saliency measure for each primitive

region in the key frame, as its spatiotemporal saliency measure.

Finally, we will investigate an inter-frame regional saliency

propagation scheme using motion fields, to estimate for each

non-key frame its region partition and the spatiotemporal

saliency measures of regions, based on the results available

in the preceding and the following key frame. The pixel-wise

saliency map derivation method can be adapted for estimating

pixel’s saliency from its spatiotemporal neighboring regions.
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