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Abstract—In modern internet of things (IoT), visual analysis
and predictions are often performed by deep learning models.
Salient object detection (SOD) is a fundamental pre-processing
for these applications. Executing SOD on the fog devices is a
challenging task due to the diversity of data and fog devices.
To adopt convolutional neural networks (CNN) on fog-cloud
infrastructures for SOD-based applications, we introduce a semi-
supervised adversarial learning method in this paper. The pro-
posed model, named as SaliencyGAN, is empowered by a novel
concatenated-GAN framework with partially shared parameters.
The backbone CNN can be chosen flexibly based on the specific
devices and applications. In the meanwhile, our method uses both
the labelled and unlabelled data from different problem domains
for training. Using multiple popular benchmark datasets, we
compared state-of-the-art baseline methods to our SaliencyGAN
obtained with 10% to 100% labelled training data. SaliencyGAN
gained performance comparable to the supervised baselines when
the percentage of labelled data reached 30%, and outperformed
the weakly supervised and unsupervised baselines. Furthermore,
our ablation study shows that SaliencyGAN were more more
robust to the common “mode missing” (or “mode collapse”) issue
compared to the selected popular GAN models. The visualized
ablation results proved that SaliencyGAN learned a better
estimation of data distributions. To the best of our knowledge,
this is the first IoT-oriented semi-supervised SOD method.

Index Terms—Internet of Things, Deep Learning, Convolu-
tional Neural Networks, Salient Object Detection, GAN.
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EMpowered by 5G communication, the internet of things

(IoT) collects and distributes large-scale streaming data

from ubiquitous devices and objects [1]. A significant portion

of these data are videos and images collected for a wide range

of computer vision tasks. Salient object detection (SOD) is

a fundamental pre-processing for these vision systems, for

example, extracting suspicious events in smart home security

camera. Recent developments in deep learning have have

brought successful solution for many tasks in computer vi-

sion (CV), including SOD. However, the majority of these

algorithms has not been customized to modern IoT systems.

Specifically, due to the computing power, scale of the training

data and diversity of CV applications required for training

and utilizing deep neural networks, most SOD-based CV al-

gorithms are deployed to the cloud infrastructure. These cloud

devices are often equipped with high-performance graphic

processing units to perform, for example, computation of large

data matrices gathered from a vast variety of sensors. This

will not only lead to longer response time but huge amount of

manual effort for training the deep learning models. Our main

motivation of this work is for a deep learning SOD methods

that is flexible and efficient to be deployed on the cloud and

fog devices of visual IoT.

SOD aims to extract visually distinctive contents from

images and videos. It has been an explicit step for various

computer vision applications in IoT [2]. Or SOD has been an

implicit operation in deep CNN where a saliency map can be

extracted from the hidden layers [3] (e.g., recognition, detec-

tion). These SOD-based computer vision techniques have been

applied to a variety of IoT systems ranging from healthcare to

industrial serveillance. SOD plays an important role in these

IoT systems filtering out redundant background and facilitates

fast post-processing [4]. As a result, SOD is more suitable

to be deployed in the fog compared to the cloud devices, for

example, smart home hub box and intelligent controller.

However, there are two main challenges of deploying

modern SOD algorithms on fog devices. First, present SOD

methods mostly use fully-supervised models, which requires

manually generated pixel-wise ground truths. Although un-

supervised [5] and weakly supervised methods have been

proposed [6], they either have performance incomparable to

supervised models or require impractically huge amount of

image-wise annotations (details discussed in Section II).

Second, computing powers of the fog infrastructure are

highly diverse, which leads to varying applicability of the

same deep neural network. For example, a 19-layer VGGnet

running smooth on a local GPU server may be not able to
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(a) cloud based SOD (b) fog based SOD

Fig. 1: Comparison of salient object detection (SOD) solutions in IoT: (a) present cloud based SOD; (b) the proposed SaliencyGAN method.
In SaliencyGAN solution, pretrain of the model is performed on the cloud servers using public datasets. The backbone network was selected
and finetuned based on specific applications and fog devices. In the test time, SOD are performed on the fog infrastructure as a general-purpose
pre-processing. The filtered data with only salient contents are submitted to cloud for further computer vision tasks.

be executed on a cellphone. As a result, SOD models have

mostly been implemented in the cloud servers together with

the downstream post-processings, which harms the security of

data privacy and bring difficulties for fast/real-time responses.

In this work, we propose an semi-supervised learning

method, named as SaliencyGAN, for flexible and efficient

deployment of different backbone CNNs in IoT systems. Using

SaliencyGAN, we can first pretrain a deep SOD CNN in

the cloud servers where this backbone CNN can be flexibly

selected according to the computing power of fog devices.

The pretrained model is then finetuned for a specific IoT

application using both labelled and unlabelled data, and then

distributed to different fog devices. In the test stage, these

finetuned CNNs filter out background information and only

submit the salient contents to the cloud servers for further post-

processing. Compared to SaliencyGAN, current SOD solutions

are mainly deployed on cloud. Figure 1 provides a comparison

between present typical cloud-based solutions and our fog-

based SaliencyGAN mode.

Figure 2 demonstrates fundamental idea behind our Salien-

cyGAN method: both the labelled and unlablled data are useful

to estimate the distribution of the whole training dataset in a

feature space, and this feature space has optimal separatibility

for the background and salient regions; the salient objects can

be extracted then through a mapping fp¨q between the image

feature space and a saliency map feature space. Training of the

SOD model can be done through this joint learning process.

To simulate this learning process, we use two concatenated

generative adversarial networks (GAN) with partially shared

parameters. The two GANs are trained end-to-end for simulta-

neous alignment of the labelled and unlabelled images within

both the image feature space and saliency map feature space.

In the meantime, the performance of both GANs are mutually

reinforced. The image and saliency distributions shown in

figure 2 were plotted from the popular MSRA10K [7] dataset

using the two principle dimensions extracted by PCA.

The proposed SaliencyGAN model was assessed with mul-

tiple widely used benchmark datasets. Compared against se-

Fig. 2: Demonstration of our salient object detection (SOD) method
using 10% labelled images from MSRA10K[7] dataset. Distributions
of images and saliency maps (visualized using PCA) are estimated
with an optimal mapping function. Both labelled and unlabelled
images contribute to the final SOD performances without the common
“mode missing” issue. (best viewed in color)

lected fully-supervised baselines and state-of-the-art methods

which use the same backbone CNN, SaliencyGAN achieved

comparable performance with only 30% labelled images. We

also argue that, compared to weakly supervised learning, the

proposed method has better generalizability over real-world

IoT applications. This is because of its capability transfer-

ring to new problem domains without categorical labelling.

Furthermore, compared to present popular CycleGAN [8]

and WGAN-GP [9] models in our simulation experiment,

SaliencyGAN demonstrated better ability to capture the data

distributions without sign of “mode missing”.

Contributions of this paper are summarized as follows:

1) We propose the semi-supervised SaliencyGAN adversar-

ial learning framework that can achieve state-of-the-art

performance with less ground truths. This enables fast

and flexible deployment on a broad range of visual IoT

systems. To the best of our knowledge, this is also the

first semi-supervised method in the field of SOD.

2) We design the concatenated and mutually reinforced

dual-GAN architecture, as well as the end-to-end

traninig algorithm for simultaneous optimization of the

unsupervised GAN losses with the supervised classifi-
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cation loss. Any popular backbone CNN can be trained

under this framework for specific fog/cloud devices and

vision based tasks.

3) Comparison experiment results have demonstrated

SaliencyGAN’s capability of training any backbone

DCNN with less labelled data, and capability of adapting

a deep learning SOD model to new visual IoT tasks.

Optimal hyperparametric setups have been verified by

the ablation study. Its ability to capture multimodal

data distribution without the common “mode missing”

problem has been proved by our simulation experiment.

The paper is organized as follows: Section II reviews the

current SOD models and related semi-supervised learning

methods. Section III gives the details of the SaliencyGAN

method. SectionIV presents details about implementation and

experiments. Experiment results are analyzed and discussed

Section V, and section VI concludes this paper.

II. RELATED WORK

Deep CNNs have been applied to a broad range of IoT

systems, such as, material retrieval [10], security surveillance

[11], and pipeline anormaly inspection [12]. SOD is performed

explicitly in [11] where the salient maps indicate objects mov-

ing between video frames. For IoT systems proposed in [12]

SOD is an implicit step performed in the hidden layers where a

saliency map can be extracted. Compared to early SOD models

using handcrafted features that describe low-level image prop-

erties, such as color, edge, intensity, texture and local contrast,

these deep learning models mostly look at learning rich feature

representations through hierarchical and multi-stage refine-

ment, or using ingenious network architecture that can obtain

more effective features [13]. Because previous works focus

on downstream computer vision techniques in particular IoT

systems, performance and applicability of the involved SOD

algorithms have not been evaluated. Furthermore, the SOD

prediction step of these models are deployed on the cloud as

a pre-processing. Efforts for an independent fog-oriented SOD

model is missing. In the field of computer vision, recent SOD

models which achieved state-of-the-art performance [14][15]

are most fully supervised learning as in the discussed visual

IoT applications. This requires sufficient amount of pixel-level

labels that are expensive to obtain. Unsupervised SOD [5]

models allows to train solely unlabelled data, but the reported

performances are still hard to be comparable to supervised

state-of-the-art methods.

Recently, a weakly-supervised SOD model [6], which is

trained with only image-level categorical labels, has shown

superior performance compared to unsupervised methods.

However, the huge amount of training images use for training

the weakly-supervised method can still lead to time-consuming

manual labelling process. Specifically, in [6], 456k images

were used for training the weakly supervised model while most

supervised methods were trained on benchmark datasets with

10,000 images. According a recent study [16] which provides

an estimation of time used for generating image-level labels

(„1 second/image) and for generating ground-truth masks

of objects ( 40 second/image), preparing training data for

weakly-supervised SOD models can be potentially more label-

intensive. Furthermore, as a general-purpose preprocessing,

the data processed by SOD methods should not be limited to

certain categories. For a broad range of IoT application (see

figure 1), it is also impractical to quickly adopt these models

to new problem domains.

Adversarial learning [17] has been found helpful to SOD

models for better generalizability and robustness [18]. For

modern IoT applications where massive images and videos can

be easily acquired, GAN-based models are useful for adjusting

the feature spaces established by deep neural networks to the

quickly changed data variance. For instance, Zheng et al.[10]

developed a visual-tactile cross-modal retrieval framework sur-

face material retrieval. Futhermore, adversarial learning is also

useful to secure data privacy and reduce security cost in IoT.

This process has often been implemented as a collaborative

learning through adversarial attack [19]. However, a common

issue in all GAN-based deep learning models is “mode miss-

ing”. A popular method to improvement the convergence of

the original GAN method is to replacing the cross-entropy loss

with the Wasserstein distance and using gradient penalty [9].

Zhu et al. [8] introduced the cycle-consistency loss function

for better estimation of data distributions.

III. METHOD

A. SaliencyGAN Architecture

As introduced above, we train a SOD CNN within a

concatenated-GAN framework deployed on the cloud, and

adopt the trained CNN to different fog devices in IoT. Figure 3

displays the SaliencyGAN architecture. The proposed model

consists of two concatenated GAN frameworks, each has a

generator and a discriminator network. The first GAN includes

an image generator GI which generates fake images from

a input random latent code, and an image discriminator DI

which is trained to distinguish real images from the training

dataset and fake images generated by GI . In the mean time,

GI is trained to confuse DI . The second GAN consists of

a saliency generator GS that performs SOD prediction and a

saliency discriminator DS . DS is trained to predict whether

the saliency maps are extracted from the unlabelled images or

from the labelled images. GS on one hand is trained to predict

accurate saliency maps for the labelled data, and to confuse

DS on the other hand. For real applications in IoT, the labelled

data can be obtained from public datasets, and data acquired

for a specific IoT system can be unlabelled and directly used

for training in cloud. After training finished, only GS need to

be distributed to the fog for SOD prediction.

The general architecture of SaliencyGAN evaluated in this

work follow the design of DCGAN [20]. Each of the two

discriminator networks, DI and DS , has four 4 ˆ 4 convo-

lutional layers with stride 2, followed by a global average

pooling (GAP) layer and a fully-connected layer. The ith

convolutional layer in DI has 128 ¨ i channels. The number

of channels in corresponding layers of DS only is only 1{8
of DI , as distinguishing saliency maps is intuitively easier

than distinguishing images. The final predictions are single

scalar values output from a Sigmoid layer. To perform SOD
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Fig. 3: The proposed SaliencyGAN framework. The global average pooling layer (GAP) is placed at the end of image and saliency
discriminator. For a real IoT system, only the saliency generator which consists of a set of“Denseblock” and “Bottleneck” layers in this
example is distributed to the fog devices. (best viewed in color)

in the fog, architecture of GS can be selected according to

different applications. Regardless of the backbone network, the

first three layers of GS share weights with DI . In this work,

we evaluated two backbone networks in our experiments. For

comparison with state-of-the-art baselines, we use VGG16

structure. Another tested backbone network is shown in figure

3, where DenseNet and Resnet Bottleneck blocks are stacked

after the first three convolutional layers.

The concatenated GAN structure aims to precisely model

distributions of the image and saliency-map in the feature

spaces. In the first GAN, training of GI forces DI to encode

both the labelled and unlabelled images from datasets into a

uniform distribution. Similarly, to confuse DS , GS must har-

moniously combine features from the labelled and unlabelled

data, and obtain indistinguishable performance on both. As a

result, all input data contributes to the training of SOD. The

shared weights between DI and GS play a critical role in

SaliencyGAN. This design forces DI to use saliency features

in the input images for its final prediction.

B. The SaliencyGAN loss and training pipeline

To sum up, the SaliencyGAN framework consists of four

subnetworks: the image generator GI , the image discriminator

DI , the saliency generator GS and the saliency discriminator

DS . These networks are jointly trained using minibatch gra-

dient descent. For each of the four subnetworks we define an

adversarial loss. For GS , an extra supervised loss is defined

between the output of GS and the labelled groud truths.

1) GI and DI Adversarial Loss: In DI and DS , a GAP

layer transform the feature maps in 1D feature vectors before

input into the fully connected layers. Let DI
GAP p˚q denote the

features output by the GAP layer of DI . To capture the feature

distribution of images, we use a feature matching loss, LI
fea,

originally proposed in [21] for GI :

L
I
feapx̂, xq “

«

E
x̂„Pfi

D
I
GAP px̂q ´ E

x„Pri

D
I
GAP pxq

ff

2

, (1)

where x and x̂ are a real image and a fake image generated

by GI , and Pri and Pfi are the feature distributions of real

images and fake images. The adversarial loss of the image

generator GI is then defined by:

LGI ,advpx̂, xq “ ´ E
x„Pri
x̂„Pfi

”

D
Ipx̂q

ı

` L
I
feapx̂, xq.

(2)

For DI , we use the adversarial loss based on Wasserstein

distance and gradient penalty in WGAN-GP [9]:

LDI ,advpx̂, xq “ E
x„Pri
x̂„Pfi

”

´D
Ipxq ` D

Ipx̂q
ı

`

λI E
x̃„Ppenalty

„

´›

›

›
▽x̃D

Ipx̃q
›

›

›
´ 1

¯

2


,

(3)

where the gradient panelty weight λI “ 10. This loss has been

proved to have better stability of adversarial training.

2) GS and DS Adversarial Loss: Similarly, for the saliency

discriminator DS , the feature matching loss LS
fea is defined:

L
S
feapŝl, ŝuq “

„

E
ŝl„Pls

D
S
GAP pŝlq ´ E

ŝu„Pus

D
S
GAP pŝuq



2

,
(4)

where ŝl and ŝu are the saliency maps of labelled and unla-

belled input images, generated by GS . Let Pls and Pus rep-

resent the probability distributions of saliency maps generated

from labelled and unlabelled data, and DS
GAP p˚q represents the

features output by the GAP layer of DS . Induction of LS
fea

reduces statistics differences between saliency maps generated

from labelled and unlabelled images, thus allows to effectively

merge the distributions of labelled and unlabelled within

the feature spaces of DS . As DS has much less trainable

parameters compared to DI , we found the binary entropy loss

without gradient penalty is sufficient for a stable convergence.

The adversarial losses of GS and DS are then defined as:

LGS ,advpŝl, ŝuq “ E
ŝu„Pus

log
”

1 ´ D
Spŝuq

ı

` L
S
feapŝl, ŝuq,

(5)

LDS ,advpŝl, ŝuq “ ´ E
ŝl„Pls

log
”

D
Spŝlq

ı

´ E
ŝu„Pus

log
”

1 ´ D
Spŝuq

ı

.
(6)
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3) GS Supervised Loss: The adversarial losses can be

viewed as unsupervised losses as they solely use the predicted

saliency maps of GS rather than the ground-truth labels.

GS , as the network finally used for SOD, can be trained a

supervised loss. Because the SOD datasets suffer from severe

label imballance, here we use the Generalised Dice Loss

(GDL) proposed in [22]:

LGS ,sup “ GDLpŝl, slq, (7)

where sl and ŝl are the real and predicted saliency maps of

a labelled image. GDL is an extension of binary Dice loss

where the foreground and background are reweighed based on

numbers of pixels. It has been widely used for segmentation

to deal with unbalanced class labelling.

Algorithm 1 Minibatch training of SaliencyGAN.

Require:

1: Learning rate η.

2: Prior distribution Ppriorpzq.

3: Weight of saliency generator adversarial loss ω.

Ensure:

4: for each iteration in training do

5: Sample m examples
 

x1

l , x
2

l , ...x
m
l

(

from the labelled

data. Their ground truth are
 

s1l , s
2

l , ...s
m
l

(

, m examples
 

x1

u, x
2

u, ...x
m
u

(

from unlabelled images, and merge the

2m images to
 

x1, x2, ...x2m
(

.

6: Sample 2m noise examples
 

z1, z2, ...z2m
(

from

Ppriorpzq.

7: Generate 2m image samples
 

x̂1, x̂2, ...x̂2m
(

using the

GI , by x̂i “ GIpziq, and m predicted saliency maps

for labelled and unlabelled images
 

ŝl
1, ŝl

2, ...ŝl
m
(

and
 

ŝu
1, ŝu

2, ...ŝu
m
(

separately by ŝi “ GSpxiq and and

combine the 2m saliency maps into
 

ŝ1, ŝ2, ...ŝ2m
(

.

8: Update the parameters θDS of DS by:

θDS Ð θDS ´ η ˆ ▽θ
DS

«

1

m

m
ÿ

i

LDS ,advpŝl
i
, ŝu

iq

ff

.

9: Update the parameters θDI ,GS of DI and GS by:

θDI ,GS ÐθDI ,GS

´ η ˆ ▽θ
DI,GS

«

1

2m

2m
ÿ

i

LDI ,advpxi
, x̂

iq

`
1

m

m
ÿ

i

LGS ,suppsil, ŝ
i
lq

`
ω

m

m
ÿ

i

LGS ,advpŝiu, ŝ
i
lq

ff

.
10: Update the parameters θGI of Image Generator GI .

θig Ð θig ´ η ˆ ▽θig

«

1

2m

2m
ÿ

i

LGI ,advpx̂i
, x

iq

ff

.

11: end for

C. Training SaliencyGAN

Based on the architecture of SaliencyGAN, a training

pipeline is designed for step-wise update of the supervised

loss LGS ,sup, and the adversarial losses LGI ,adv , LDI ,adv ,

LGS ,adv and LDS ,adv . Algorithm 1 illustrates the training

process of SaliencyGAN. In each iteration, the model takes m

labelled images and m unlabelled images as input, as well as

2m fake images generated from prior distribution Ppriorpzq.

In backpropagation, parameters of DS , (denoted by θDS in

Algorithm 1), are updated first using LDS ,adv , followed by

θDI ,GS (parameters of DI and GS which are partially shared)

using LDI ,adv , LGS ,sup and LGS ,adv . As shown in the 9th step

of Algorithm 1, a weight, ω, is used to balance the supervised

loss and adversarial losses. The value of ω is set to 10´4 based

on a grid search. Parameters of GI are updated at last.

IV. EXPERIMENTS

A. Experiment Design

We comprehensively evaluated the performances of Salien-

cyGAN as a semi-supervised adversarial SOD model in three

comparison experiments and two ablation study.

1) Comparison Experiments: First, precisely capturing data

distribution is critical to the performance of SaliencyGAN. But

“mode missing” problem is a common issue in adversarial

learning methods. So we first compared SaliencyGAN with

popular GAN-based models in a task of modeling multi

module Gaussian distributions in Comparison Experiment 1.

The fundamental idea behind all deep learning SOD model is

to train a CNN which predicts a saliency map from a input

image. In SaliencyGAN, this CNN is the saliency generator

GS . GS also can be trained in fully-supervised or adversarial

approaches with all available labelled data. In the second

experiment, we use these two approaches as baselines. We

compared performance of different versions of GS trained by

supervised and adversarial approaches, as well as the proposed

semi-supervised approach in Comparison Experiment 2. As

a semi-supervised method, different combinations of labelled

and unlabelled data can be used to train the SaliencyGAN. Let

Nl and Nu be the numbers of labelled and unlabelled images

in a dataset, we define the labelling ratio pl “ Nl

Nl`Nu
¨ 100%.

We gradually increase pl to find a minimum ratio of labelled

data where SaliencyGAN can obtain comparable performance

with the supervised baselines. This combination of labelled

and unlabelled data is used for further comparison with

state-of-the-art methods in the third Experiment (Comparison

Experiment 3).

In Comparison Experiment 3, VGG16 architecture was

adopted for GS , and in other comparison experiments we used

the structure shown in figure 3.

2) Ablation Studies: We performed two ablation experi-

ments to evaluate the hyperparametric configuration and the

proposed training pipeline. The weight ω of saliency generator

adversarial loss LGS ,adv shown in Algorithm 1 step 9 has a

significant effect in backpropagation. The first ablation study

(Ablation Experiment 1) looks at the influence of ω on the

final SOD performances. Furthermore, in the proposed training

Algorithm 1, the two sets of GAN are updated simultaneously
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but they can also converge when trained separately. The

second ablation study (Ablation Experiment 2) validate the

importance of this end-to-end training procedure compared to

separately training the two sets of GANs. Again we tested two

backbone structures for GS : the achitecture shown in figure 3

for Ablation Study 1 and VGG16 for Ablation Study 2.

B. Datasets

In Comparison Experiment 1, we use 1D simulated data.

Other experiments were performed using public benchmark

SOD datasets. To be consistent with the prior works, we train

the compared methods on MSRA10K [7]. In total six popular

benchmark datasets were used for testing: DUT-OMRON

(5148 images) [23], DUT-TE (5019 images) [24], ECSSD

(1000 images) [25], HKU-IS (4447 images) [26], PASCAL-

S (850 images) [27], THUR-15K (6233 images) [28]. These

datasets contain a wide range of natural images collected from

indoor and outdoor environments, which provide abundant

training materials for IoT applications, such as, smart cities

and smart home. All the six benchmark datasets were used in

Comparison Experiment 2 and Ablation Experiment 1. For

Comparison Experiment 3 and Ablation Experiment 2, we

compared performance on the DUT-TE, ECSSD, HKU-IS,

PASCAL-S, THUR-15K datasets.

C. Implementation Details

To simulate a IoT environment, we train and test a SOD

CNN using different GPUs. Training of SaliencyGAN were

performed on a server equipped with 4 nVidia Tesla P100

GPUs which simulates the computing units in a data center.

The trained GS is then tested on a smaller Tesla K80 GPU

with 12G memory. To simulate a typical fog device, we limited

the available memory of the K80 GPU to 4 gigabytes. This

is smaller than the GPU memory on present personal PCs

which are typically used as a fog device. We implement

SaliencyGAN in Python in TensorFlow. All the models are

trained by Adam optimizer with β1 0.5 and β2 0.999. The

initial learning rate η is set to 0.0002. The batch size m is

16 and the unsupervised loss weight ω is 0.0001. The prior

distribution Ppriorpzq is Np0, Iq normal distribution.

D. Evaluation metres

Results of Ablation Experiment 1 was assessed qualita-

tively. In other experiments, four metrics were used to

quantitatively measure the performances of models: pixel-wise

mean absolute error (MAE) of saliency maps, maximum F-

measure scores (maxF), Precision Recall curves (PR-curves),

F-measure curves to quantitatively evaluate the experiment

results. The maxF is the max value of F-measure scores among

100 discrete thresholds in the range [0,1], which reflects an

overall performance between S and G. The F-measure is

defined by Ft “ p1`0.3q¨Precisiont¨Recallt
0.3¨Precisiont`Recallt

as in [13], where

Precisiont and Recallt are obtained by using a threshold t.

Moreover, the PR-curve is computed as the mean precision

and recall values at different thresholds. The F-measure curve

is computed as the F-measure scores at different thresholds.

Except when being compared to state-of-the-art models, we

use a saliency generator GS with the light-weight architecture

shown in figure 3 for better applicability to fog IoT devices.

Fig. 4: Visualization of distributions estimated by SaliencyGAN, as
well as by vanilla GAN, CycleGAN and WGAN-GP on capturing
data distributions. X and Y mean input and output data separately.

X̂ and Ŷ mean generated input and output data by models. (best
view in color and with zoom)

V. RESULTS AND DISCUSSION

A. Comparison 1: SaliencyGAN vs. modern GAN-based mod-

els on capturing data distributions

The first experiment uses simulated data to assess the

capability of avoiding the “mode missing” issue. The training

dataset was generated by sampling two multimodal Gaussian

distributions which simulate the distributions of input images

X and output saliency-maps Y . A mapping function were

learned while the two distributions were estimated by GAN-

based models. Estimated distributions obtained by Saliency-

GAN and three baseline GAN-based models (vanilla GAN

[17], CycleGAN [8] and WGAN-GP [9]) were plotted for

comparison. This experiment provides a insight into Salien-

cyGAN’s ability to accurately capture data distributions.

Figure 4 shows the distributions estimated by different

GAN-based models, where X and Y represent the ground-

truth distributions of input and output, and X̂ and Ŷ are the

predicted distributions. As shown in Figure 4, because vanilla

GAN is only trained to converge to samples with highest

discriminator loss, the generator collapses which produces

limited varieties of samples. CycleGAN uses cycle-consistent

loss to make the mapping X̂ Ñ Ŷ revertible. This reduces

the effects of “mode missing”, but still has no explicit mech-

anism to keep the varieties of samples. WGAN-GP improved

estimation of data distribution by using Wasserstein distance

to minimize the difference of two distributions. However,

precise capturing the data distributions requires large amount

of samples. Otherwise the estimated distributions will be noisy.

SaliencyGAN gave the most accurate estimation of output

data distributions because of the shared weights between DI

and GS , which introduced classification error (classification of

saliency and background) into the GAN loss and preserve the
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Label Method
DUT-OMRON[23] DUT-TE[24] ECSSD[25] HKU-IS[26] PASCAL-S[27] THUR-15K[28]

(%) MAE Ó maxF Ò MAE Ó maxF Ò MAE Ó maxF Ò MAE Ó maxF Ò MAE Ó maxF Ò MAE Ó maxF Ò

10%

GS 0.1406 0.5879 0.1500 0.5680 0.1327 0.7389 0.1156 0.7191 0.1722 0.6751 0.1430 0.5960

GS+DS 0.1336 0.6018 0.1435 0.5845 0.1290 0.7465 0.1143 0.7286 0.1740 0.6740 0.1409 0.6067

GI+DI+GS+DS 0.1306 0.6102 0.1349 0.6100 0.1156 0.7763 0.1071 0.7418 0.1637 0.6990 0.1322 0.6217

30%

GS 0.1377 0.5953 0.1412 0.5959 0.1172 0.7698 0.1060 0.7465 0.1656 0.6932 0.1355 0.6219

GS+DS 0.1325 0.6065 0.1386 0.6033 0.1153 0.7776 0.1090 0.7504 0.1652 0.6950 0.1324 0.6267

GI+DI+GS+DS 0.1126 0.6479 0.1245 0.6288 0.1004 0.8070 0.0928 0.7759 0.1512 0.7228 0.1225 0.6416

50%

GS 0.1242 0.6217 0.1340 0.6120 0.1107 0.7887 0.0977 0.7656 0.1549 0.7153 0.1296 0.6328

GS+DS 0.1098 0.6515 0.1209 0.6358 0.1059 0.7969 0.0900 0.7848 0.1541 0.7172 0.1194 0.6473

GI+DI+GS+DS 0.1131 0.6545 0.1226 0.6425 0.0953 0.8176 0.0883 0.7885 0.1467 0.7295 0.1204 0.6556

70%

GS 0.1259 0.6192 0.1312 0.6200 0.1066 0.7949 0.0965 0.7689 0.1574 0.07132 0.1277 0.6376

GS+DS 0.1156 0.6407 0.1259 0.6303 0.1024 0.8051 0.0926 0.7766 0.1530 0.7228 0.1246 0.6402

GI+DI+GS+DS 0.1121 0.6527 0.1225 0.6415 0.0950 0.8167 0.0868 0.7880 0.1447 0.7364 0.1170 0.6540

90%

GS 0.1208 0.6317 0.1270 0.6269 0.1036 0.7989 0.0931 0.7728 0.1518 0.7197 0.1266 0.6393

GS+DS 0.1209 0.6372 0.1271 0.6335 0.1039 0.8017 0.0922 0.7789 0.1527 0.7239 0.1221 0.6476

GI+DI+GS+DS 0.1068 0.6680 0.1163 0.6545 0.0893 0.8307 0.0826 0.8005 0.1437 0.7385 0.1140 0.6623

100% GS 0.1179 0.6326 0.1258 0.6276 0.1069 0.7979 0.0931 0.7776 0.1554 0.7353 0.1212 0.6443

TABLE I: MAE and maxF results of comparing SaliencyGAN with supervised and adversarial baselines on six benchmark datasets using
the same backbone network. “GS” represents supervised baseline where the image generator GS is trained solely with the supervised loss;
“GS `DS” represents adversarial baseline where “GS” is trained with supervised and saliency adversarial losses; the complete SaliencyGAN
method is represented as ’GI+DI+GS+DS’. All the tested models are trained on the MSRA10K dataset where the proportion of labelled
data varies between 10% and 100%. Lower MAE and higher maxF indicate better performances.

Fig. 5: PR curves and F-measure curves of four benchmark datasets. The first line is PR curves, where the horizontal and vertical axes are
recall and precision respectively. The second line is F-measure curves, where the horizontal and vertical axes are threshold and F-measure
score. (best viewed in color and with zoom)

variance in the estimated data distribution. Furthermore, semi-

supervised training enables GS to preserve larger uncertainty

in distributions of each subclass.

B. Comparison 2: SaliencyGAN vs. ablated fully supervised

benchmarks

As explained above, we trained the saliency generator GS

with fully supervised loss and trained GS and DS with

adversarial loss, both using labelled data in MSRA10K. This

gave us a supervised baseline and an adversarial baseline.

Performance of SaliencyGAN method trained from scratch

on MSRA10K were them compared to the two baseline. To

estimate the optimal combination of labelled and unlabelled

data, we collected results percentages labelled data (pl “
10%, 30%, 50%, 70%, 90%, 100% ).

Table I presents the quantitative results of the compared

models obtained on the six benchmark datasets, where MAE

and maxF were used as the metrics of performances. For

simplicity, we use the involved subnetworks to represent the

compared methods: “GS” represents the supervised baseline,

“GS ` DS” the adversarial baseline, and “GI + DI + GS

+ DS” the full SaliencyGAN framework. It can be seen
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that, performance of the two baselines increased significantly

when pl growing from 10% to 90%. For SaliencyGAN, when

pl is larger than 30%, it obtained comparable performance

with supervised baseline trained with 100% ground truths.

Further increment of pl didn’t lead to obvious improvement

of SaliencyGAN’s performance. The adversarial baseline,

“GS+DS”, gave better SOD results than the supervised base-

line “GS”. In most cases, the SaliencyGAN model outperforms

the “GS+DS” model. Figure 5 presents the PR-curves and

F-measure curves of the compared methods. It shows that

SaliencyGAN trained with pl “ 50% gave higher PR-curves

and F-measure curves than the supervised baseline trained

with 100% labelled images. When pl “ 30%, SaliencyGAN

achieved comparable performances with the fully supervised

and adversarial baselines. Increasing pl slightly improves the

performances of all models, but less obvious for SaliencyGAN.

For convenient visual inspection, some examples of saliency

maps produced by different methods are shown in Figure 6.

C. Comparison 3: Comparison with state-of-the-art methods

We compared performances of SaliencyGAN and state-

of-the-art models on five benchmark datasets. Unsupervised

methods (MST [29], DRFI [5]) were used as baselines for a

lower bound of performance. Three popular fully supervised

methods, DCL+ [14], SRM [15], and HDFP [13] were selected

as upper bond baselines. Most importantly, we also compared

SaliencyGAN the weakly supervised model WSS [6]. Because

pl “ 30% is the minimum ratio of labelled images for

SaliencyGAN to obtain performance comparable to fully-

supervised and adversarial baselines, we use only 30% of

ground-truth saliency maps to train SaliencyGAN. The size

of the input images were set to 128 ˆ 128 and 256 ˆ 256.

Quantitative results are shown in table II. Results of the best

performed method on each dataset are presented in red. Results

of the SaliencyGAN methods that outperformed the weakly

supervised model are shown in bold.

Fig. 6: Visualized examples of saliency maps generated the Salien-
cyGAN model under different configurations. From top to bottom,
the input images are from the dataset of DUT-OMRON, DUT-TE,
ECSSD, HKU-IS, PASCAL-S and THUR-15K. From left to right,
each column shows the results obtained when the ratio of labelled data
is 10%, 30%, 50% and 100%. In each column, the three subcolumns
are the results of supervised baseline (“GS”), the adversarial baseline
(“GS+DS”) and the proposed SaliencyGAN (“GI + DI + GS +
DS”) from left to right.

Based on the MAE and F-measure values, our SaliencyGAN

outperformed the WSS on 4 out of 5 datasets, and displayed

comparable performance with fully supervised state-of-the-

art models. The only exception is the result obtained on the

THUR-15K dataset where WSS even achieved lower MAE

value than the fully supervised methods. This may because

THUR-15K provides categorical data from only 5 classes.

These classess are all overlapped with the ImageNet data with

which WSS was pretrained.

Note that the unsupervised models are initiated by VGG

weights which are trained on ImageNet (1281k images with

over 1000 category labels), the weakly-supervised method is

trained on a ImageNet subset of 456k images with over 200

category labels. Our SaliencyGAN was trained from scratch

with only 3k ground-truth saliency maps. According to [16],

manual annotation for training SaliencyGAN requires less than

1/3 labelling time of training WSS.

D. Ablation Study 1: Influence of ω

We validated the chosen value of the weight ω (see Al-

gorithm 1 step 9) using all the six test datasets. Figure 7

shows the performance of SaliencyGAN when different ω

(0.001, 0.0001, 0.00001) is assigned to the saliency generator

adversarial loss LGS ,adv . When ω “ 0.0001, SaliencyGAN

achieves the best performance. Too small ω might lead to a

drop of SOD accuracy. Too large ω might force the model to

focus on generating a saliency map that looks real, but ignores

the input image.

Fig. 7: Comparison of SaliencyGAN with different ω assigned to the
saliency generator adversarial loss. Quantitative results are obtained
from the “GS`DS” model trained with 50% labelled data. “DUT-O”
represents the DUT-OMRON dataset. (best view in color)

E. Ablation 2: End-to-end v.s. separate training

To validate the importance of our end-to-end training pro-

cedure (joint optimization shown in Algorithm 1), we also

separately trained the two sets of GANs in the proposed

model with the datasets used in Comparison Experiment 3.

We first trained GI and DI until converge, then GS and

DS . All images are scaled to 128 ˆ 128. Table III show the

performances of GS trained by these two methods. Separating

the training process of the two sets of GANs led to worse

performance based on both MAE and F-measure results. This

ablated model only slightly outperformed the unsupervised

baseline methods.
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Dataset Metric
Unsupervised Weakly Supervised SaliencyGAN (30% labelled)

MST[29] DRFI [5] WSS [6] DCL+ [14] SRM [15] HDFP [13] SaliencyGAN-128 SaliencyGAN-256

DUT-TE [23]
MAE Ó 0.163 0.155 0.100 0.082 0.059 0.061 0.095 0.090

F-measure Ò 0.594 0.650 0.737 0.786 0.826 0.827 0.730 0.748

ECSSD [25]
MAE Ó 0.157 0.170 0.104 0.068 0.054 0.049 0.071 0.062

F-measure Ò 0.723 0.782 0.856 0.900 0.917 0.916 0.878 0.888

PACSAL-S [27]
MAE Ó 0.194 0.211 0.142 0.116 0.087 0.093 0.152 0.141

F-measure Ò 0.661 0.694 0.781 0.817 0.848 0.837 0.721 0.776

HKU-IS [26]
MAE Ó 0.139 0.145 0.079 0.064 0.046 0.042 0.059 0.050

F-measure Ò 0.704 0.777 0.859 0.892 0.906 0.907 0.858 0.872

THUR-15K [28]
MAE Ó 0.148 0.147 0.066 0.097 0.077 0.087 0.096 0.094

F-measure Ò 0.617 0.666 0.736 0.747 0.778 0.752 0.710 0.722

TABLE II: Comparison of unsupervised and weakly-supervised methods. SaliencyGAN is trained with 30% labelled images and 70%

unlabelled images from MSRA10K. Results of the best performed method is shown in red. The SaliencyGAN method outperformed the
weakly supervised method is shown in bold.

Dataset Metric Separate Joint

DUT-TE [23]
MAE Ó 0.121 0.095

F-measure Ò 0.633 0.730

ECSSD [25]
MAE Ó 0.108 0.071

F-measure Ò 0.793 0.878

PACSAL-S [27]
MAE Ó 0.192 0.152

F-measure Ò 0.657 0.721

HKU-IS [26]
MAE Ó 0.096 0.059

F-measure Ò 0.772 0.858

THUR-15K [28]
MAE Ó 0.122 0.096

F-measure Ò 0.638 0.710

TABLE III: Performance of SaliencyGAN networks that are sepa-
rately trained against jointly trained using Algorithm 1. The better
results obtained on each dataset are shown in bold.

VI. CONCLUSION

This paper introduces a semi-supervised SaliencyGAN

model for SOD in modern vision based IoT systems. Saliency-

GAN train a deep SOD CNN within its duo-GAN architecture

and the associated learning procedure where the SOD CNN

can be flexibly selected based on specific fog devices. We

tested the proposed method in an simulated fog-based IoT en-

vironment. Experiments on multiple benchmark datasets have

shown that the proposed model can achieve comparable per-

formances with the fully trained supervised model using much

less images. Simulated and ablation experiments also proved

the ability of SaliencyGAN to precisely model image and

saliency-map distribution using both labelled and unlabelled

data. This enables fast adoption to a broad range of visual IoT

applications and fog devices with various computing power.
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