
R. Ohbuchi, K. Osada, T. Furuya, T. Banno, Salient Local Visual Features for Shape-Based 3D Model Retrieval, accepted, Proc. IEEE International 

Conference on Shape Modeling and Applications (SMI’08), Stony Brook University, June 4 - 6, 2008. 

 1 

Salient Local Visual Features for Shape-Based 3D Model Retrieval 
 

Ryutarou Ohbuchi 

University of Yamanashi 

Kunio Osada 

University of Yamanashi 

Takahiko Furuya 

University of Yamanashi 

Tomohisa Banno  

University of Yamanashi 
 
 

 
 

ABSTRACT 

In this paper, we describe a shape-based 3D model retrieval 
method based on multi-scale local visual features. The features are 
extracted from 2D range images of the model viewed from 
uniformly sampled locations on a view sphere. The method is 
appearance-based, and accepts all the models that can be rendered 
as a range image. For each range image, a set of 2D multi-scale 
local visual features is computed by using the Scale Invariant 
Feature Transform [22] algorithm. To reduce cost of distance 
computation and feature storage, a set of local features describing 
a 3D model is integrated into a histogram using the Bag-Of-
Features approach. Our experiments using two standard 
benchmarks, one for articulated shapes and the other for rigid 
shapes, showed that the methods achieved the performance 
comparable or superior to some of the most powerful 3D shape 
retrieval methods.  
 
KEYWORDS: Content-based retrieval, multi-scale feature, bag-of-
features, Scale Invariant Feature Transform. 
 
INDEX TERMS: H.3.3 [Information Search and Retrieval]: 
Information filtering. I.3.5 [Computational Geometry and Object 
Modeling]: Surface based 3D shape models. I.4.8 [Scene 
Analysis]: Object recognition.  

1 INTRODUCTION 

Three-dimensional (3D) models have become ubiquitous, for 
games running on mobile-phones and on game consoles, for such 
Web-based applications as the Google Earth, for medical 
diagnostics, and for mechanical or architectural design. The need 
to organize these 3D models, for example for effective reuse, has 
prompted research into shape-based retrieval of 3D models [35, 
15]. 

A 3D shape comparison method must satisfy several 
requirements for invariance. A typical set of requirements includes 
(1) invariance to similarity transformations, (2) invariance to 
shape representations, (3) invariance to geometrical and 
topological noise, and (4) invariance to articulation or global 
deformation. Most of the 3D model retrieval methods try to satisfy 
the invariance to a certain class of geometrical transformation. The 
invariance to geometrical transformation can be gained by using a 
shape feature inherently invariant to the class of transformation, 
by using pose normalization, of by a combination of both. Some 
shape comparison methods are very tolerant of shape 
representations, accepting polygonal meshes, polygon soup, or 
even point sets. Others, however, assume certain shape 

representation, e.g., watertight mesh. The invariance to noise and 
error in geometry and/or topology is important if similarity, not 
exact, matching is desired. This invariance to noise and error is 
also related to the invariance or tolerance to shape representation.  

The invariance to articulation, or pose change, of 3D models is 
addressed much less frequently than the other invariance 
mentioned above. Figure 1 shows examples of articulated 3D 
models. Using a typical shape comparison method, two models in 
the “human” class (or “snake” class) will not be very similar.  

 

  
“human” class 

     

“snake” class 

Figure 1. Examples of articulated shapes found in the McGill 
University 3D shape benchmark database. 

 
In this paper, we propose a method for shape-based 3D model 

retrieval that performs well for both articulated and rigid models. 
The method also has a high degree of invariance to shape 
representation; the method accepts a diverse set of 3D shape 
representation so far as range image can be rendered.  The method 
describes a 3D model by using a set of local, multi-scale, salient, 
visual features. The method first renders asset of range images of 
the model from multiple view directions about the model, as in the 
Light Field Descriptor (LFD) [5] or the Multiple-Orientation 
Depth Fourier Descriptor (MODFD) [25]. To extract local features 
from each range image, the proposed method uses the Scale 
Invariant Feature Transform (SIFT) algorithm proposed by Lowe 
[Lowe04]. As each depth image yields a few dozen features, and 
there are a few dozen range images per model, a 3D model is 
associated with thousands of local features.  

Computing dissimilarity between two sets of local features 
having thousands of local features each can be quite expensive. 
Assuming n features per model, comparing all the pairs of features 
of two models would cost 2( )O n . For a database of nontrivial size, 
such method would take too long to search. The cost of storing all 
the local features for large number of models per database is also 
very high. Our proposed method avoids the costly pair-wise 
distance computation by integrating all the local features of a 
model into a single feature vector by using the Bag-Of-Features 
(BoF) approach. The bag-of-features approach is inspired 
originally by the bag-of-words approach in text retrieval, which 
characterizes a text document by a histogram of words’ 
occurrences in the document. In our proposed method, vector-
quantized local features, or visual words, from multiple range 
images are accumulated into single histogram to become a feature 
vector for the 3D model. The codebook for the vector quantization 
is learned via k-means clustering of local features extracted from 
the 3D models in the database. The bag-of-features approach is 
simple to implement, efficient to run, and as the experiments show, 
quite effective in retrieving 3D models. 
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We have experimentally evaluated the proposed Bag-of-features 
SIFT (BF-SIFT) method. To evaluate retrieval performance for 
articulated models, we used the McGill 3D Shape Benchmark 
(MSB) [43]. To evaluate retrieval performance for rigid models, 
we used the Princeton Shape Benchmark (PSB) [30]. We 
compared the BF-SIFT with six other methods, which are, the 
Individual Match SIFT (IM-SIFT) algorithm, the LFD [5], the 
Spherical Harmonics Descriptor (SHD) [19], and our 
implementations of the D2 Shape Distribution [23], the Absolute 
Angle Distance histogram (AAD) [25], and the Surflet-Pair 
Relation Histograms (SPRH) [42].  

Our experiments showed that the proposed BF-SIFT performed 
the best among those compared in retrieving articulated 3D 
models of the MSB. The BF-SIFT produced R-precision=75% for 
the MSB, compared to the LFD having R-Precision=57%. In 
retrieving rigid models, the BF-SIFT with R-Precision=45% 
performed comparably to the LFD (R-Precision=46%) or the SHD 
(R-Precision=40.5%).  

If we may summarize the contribution of this paper, they are: 

 A new local, multi-scale, visual feature for 3D model 
retrieval that combines the SIFT [22] 2D image feature with 
the multi-view range-image renderings of 3D models. 

 Successful application of the bag-of-features approach to 3D 
model retrieval that reduced the cost of feature storage and 
feature distance computation. 

 Experimental evaluation of the proposed 3D model retrieval 
method compared to the other such methods by using a rigid 
model database and an articulated model database. 

We will briefly review related work in the next section. 
Section 3 will describe our proposed method, and Section 4 will 
describe the experiments and their results. We will summarize the 
paper in Section 5. 

2 RELATED WORK 

Recently, there is an increasing body of work on 3D model 

retrieval. Please refer to survey papers [35, 15] and reports of 

recent 3D model retrieval contests [38, 39] for comprehensive lists. 

There are many requirements for a shape comparison method. 

Most of the time, geometrical transformation invariance of the 

method to at least similarity transformation is expected. Some 

methods, such as the D2 [23], the AAD [25], and the SPRH [42] 

are inherently invariant to similarity transformation. The SHD by 

Khazdan requires partial normalization of pose, in terms of 

position and scale, before the conversion from polygon-based 

model to voxel-based model is performed and a set of spherical-

harmonic features is extracted. As the spherical harmonic feature 

rotation invariant, the SHD achieves invariant to similarity 

transformation. The LFD [5] and the MODFD [24] uses a different 

method to achieve rotation invariance. Both methods perform 

normalization of position and scale. The rotation invariance is 

achieved by the combination of multiple-view rendering of the 

object and a 2D image feature invariant to rotation in the image 

plane.  

While most of the published methods addressed the issue of 

geometrical transformation invariance, only a small minority of 

the methods addressed the issue of invariance to articulation or 

global deformation. For example, in most application scenarios, a 

human model would be considered the same if the figure is 

standing, running, or crouching.  

A group of methods that aim at articulation invariance uses 

topological approach to 3D shape comparison. Methods by Hilaga, 

et al [13] and by Tung et al [36] used extended Reeb graph. 

Methods by Biasotti [4] and Siddiqi et al [32] used medial-axis or 

skeleton-like representation and graph-based matching. These 

methods, however, are complex and difficult to compute under the 

presence of geometrical or topological error and noise. Another 

group of methods, e.g., the methods by Elad [7], Jain [16, 17], and 

Ran Gal [10, 11] uses curvature and other local geometrical and/or 

topological properties of manifold surfaces as the feature for pose 

invariant shape comparison. The method by Jain et al [Jain06, 

Jain07] employs a joint geometrical-topological analysis based on 

mesh spectral analysis for surface mesh models.  

These two classes of methods, however, are not applicable 

directly to many of the models used in computer graphics, e.g., 

polygon soup, meshes having multiple connected components, or 

point set models. For example, the method by Ran Gal et al 

[Gal07] in their paper evaluated their methods using only a subset 

of the PSB, since the method accepts only closed mesh that has 

single connected component and has no internal structure.  

Another class of approach employs segmentation to partition a 

model into “meaningful” sub-parts [34]. The method then extracts 

a feature form each sub-part for a part-based, pose-invariant 

retrieval. Due to the decomposition, however, the method could 

miss features associated with the relation of parts, for example, 

concavities in the shape.  

Yet another class of approaches uses a set of local features to 

achieve pose invariance for 3D model comparison [18, 2, 14, 34, 

21, 31]. This class of method typically samples the surface of the 

model by using either 2D [18, 21, 2, 14] or 3D [31] local features.  

The 2D local feature based retrieval algorithms [2, 21] employ 

Spin Images algorithm by Johnson et al [18]. They sample the 

geometry by positioning cameras, e.g. cameras that capture images 

of vertices at numerous positions on the surfaces of the model 

[Johnson]. These images taken by the cameras are compared for 

shape matching. While powerful in their own rights, these 

methods have limitations. Using strictly a local feature, these 

methods miss global geometrical features. Consequently, their 

retrieval performances are low when applied to rigid models.  

The “distinctive regions” method by Shilane et al [31] used a 

multi-scale 3D feature centered at numerous locations of the 

model’s surface to sample local 3D geometrical features. This 

method is capable of capturing global as well as local feature, 

resulting in a good retrieval performance when applied to rigid 

model retrieval.  

Costs of feature comparison and feature storage are important 

issues for the methods based on local features. Assuming n 

features per model, comparing all the pairs of features of two 

models would cost 2( )O n . For a database of nontrivial size, such 

method would take too long to search thorough it. Cost of storage 

is significant also. A SIFT feature is a 128-dimensional vector, 

occupying 512Bytes per feature. A model containing 1,000 

features requires 512kBytes to store the feature per model.  

To reduce these costs, a method could limit the area in the 

model B that is compared against a feature in the model A. This 

would work if the models have similar enough shapes and 

articulation (e.g., two standing human models) for correspondence 

and pose normalization.  We used this approach in the Individual 

Match SIFT (IM-SIFT) algorithm described in Section 3.2. 

However, this approach would likely to fail if the models are 

completely different, or a model in a different articulation. In 

another approach by Shilne et al [31, for each sub-region of the 3D 

model to be compared, a small number of distinctive features are 

selected. The sub-region is found by essentially segmenting the 

model based on the similarity of local features within the sub-

region [31]. This distinctive regions approach is effective when 

evaluated for rigid model retrieval. Another, so-called bag-of-

features (BoF) approach is employed by Liu et al [21] for partial 

match retrieval of 3D models. The BoF approach integrates many 
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local features into a single feature vector [21], ignoring position of 

each feature. As the method used a single-resolution local feature, 

their method fails to capture global geometric shape of the models.  

The BoF approach is one of the most popular and powerful 

methods to compute distance among sets, or bags of features in 

the field of object recognition for 2D images [33, 6, 9, 43]. The 

BoF approach is inspired by the bag-of-words approach in text 

retrieval. Typically, the approach encodes a given local feature 

into one of several hundreds to thousands of visual word, by using 

a visual codebook. The visual codebook is often generated by 

performing k-means clustering on the set of local features by 

setting k to the size of vocabulary. Then, for each image, a 

histogram of visual words having the size of dictionary is created 

through vector quantization of local features. The histogram then 

becomes the feature vector for the image. Note that the locations 

of the local features in the image are not considered. A bicycle is a 

bicycle regardless of its position, orientation, or scale in the image.  

Our proposed method achieves transformation invariance by 

first performing partial pose normalization up to translation and 

scaling, followed by multiple-orientation rendering of the object 

coupled with 2D image features that are invariant to in-plane 

rotation.  

3 METHOD 

In this section, we first describe the proposed 3D model 
comparison methods, Bag-of-Feature SIFT (BF-SIFT) algorithm.  
We also describe a similar algorithm based on multi-view local 
feature called Individual Match SIFT (IM-SIFT) algorithm. These 
two algorithms use the same multi-scale, multi-orientation, local, 
visual feature called Scale Invariant Feature Transform (SIFT) 
[22]. A combination of the SIFT feature, which is invariant to in-
plane rotation, with the multiple-orientation range-image 
rendering of 3D models to be compared achieves rotation 
invariance. Full pose invariance to similarity transformation is 
realized by normalizing scale and position of the models prior to 
the multiple-orientation range-image rendering. Our method 
produces tens to thousands of local features per 3D model. The 
number of features per 3D model depends on the 3D model to be 
compared, the number of images rendered of the model, and the 
parameters used to extract the SIFT feature, e.g., image size and 
the number of sub-bands per octave in the scale space.  

The BF-SIFT and the IM-SIFT differs in their ways to compute 
distance between two sets of visual features. The BF-SIFT aims at 

retrieving articulated models, It employs so-called “bag-of-
features” approach [33, 6, 9, 43] for the distance computation. The 
BF-SIFT perform pose normalization only for position and scale 
so that the model is rendered with an appropriate size in each of 
the multiple-view images. The BF-SIFT completely ignores the 
locations of local features for model similarity comparison.  

The IM-SIFT is aimed at retrieving rigid models. The IM-SIFT, 
on the other hand, tries to take advantage of positions of the local 
features in the pose-normalized model coordinate frame. Thus, the 
IM-SIFT performs full pose normalization, including scale, 
position, and rotation. By leveraging the positions of the features, 
it tries to avoid irrelevant comparison of local features. Avoidance 
of irrelevant comparison also reduces the cost of feature 
comparison, but not the cost of feature storage. 

3.1 BAG-OF-FEATURES SIFT ALGORITHM 

The BF-SIFT algorithm compares 3D models by following the 
steps below.  

1. Pose normalization (position and scale): The BF-SIFT 
performs pose normalization only for position and scale so 
that the model is rendered with an appropriate size in each of 
the multiple-view images. Pose normalization is not 
performed for rotation. 

2. Multi-view rendering: Render range images of the model 
from iN  viewpoints placed uniformly on the view sphere 
surrounding the model.  

3. Local feature extraction: From the range images, extract 
local, multi-scale, multi-orientation, visual features by using 
the SIFT [Lowe04] algorithm.  

4. Vector quantization and histogram generation: Vector 
quantize a local feature into a visual word in a vocabulary of 
size vN  by using a visual codebook. Prior to the retrieval, 
the visual codebook is learned, unsupervised, from 
thousands of features extracted from a set of models, e.g., 
the models in the database to be retrieved. 

5. Histogram generation: Quantized local features are 
accumulated into a histogram having vN  bins, which 
becomes the feature vector of the corresponding 3D model. 

6. Distance computation: Dissimilarity among a pair of 
feature vectors (the histograms) is computed by using 
Kullback-Leibler divergence (KLD); 

Figure 2. Generating a feature vector in the Bag-of-Feature SIFT algorithm. For each of the range images the 3D model viewed from multiple 
viewpoints, SIFT [Lowe04] algorithm extracts local visual features. Each local feature is vector quantized by using a visual codebook into a 
visual word. Frequency of visual word occurred in multiple range images are accumulated into a histogram per 3D model to be the feature 
vector. 

Extract local 

visual features

Vector quantize features 

into visual words 

5

7

4

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

Histogram

Feature 
vector

Bag-of- 

features

Generate a 

histogram  

Bags-of- 

visual words 

Render range-

images from 

multiple views 

… 

Number of  

views Ni 

View 1 

View Ni 

View i 

… 

k clusters 
Vocabulary size k 



R. Ohbuchi, K. Osada, T. Furuya, T. Banno, Salient Local Visual Features for Shape-Based 3D Model Retrieval, accepted, Proc. IEEE International 

Conference on Shape Modeling and Applications (SMI’08), Stony Brook University, June 4 - 6, 2008. 

 4 

( )
1

( , ) ln

n

i
i i

ii

y
D y x

x
=

= −∑x y  

where ( )ix=x , ( )iy=y are the feature vectors and n is the 

dimension of the vectors. The KLD is sometimes referred to 

as information divergence, or relative entropy, and is not a 

distance metric, for it is not symmetric. 

For pose normalization, the scale of the model is normalized by 

finding the smallest enclosing sphere, and the centroid of the 

model is placed at the global coordinate origin. The centroid is 

computed by using the quasi Monte-Carlo sampling of mass 

distribution on the surfaces of the model [25].  

In rendering the multi-view range-images, the viewpoints are 

spaced evenly in the solid angle by placing them at vertices of 

regular or near-regular polyhedrons enclosing the model. In our 

experiments, we compared the numbers of views  iN  of  6, 20, 

and 42. Viewpoints are placed at the vertices of octahedron (6 

vertices), icosahedron (20 vertices), and an 80-face (42 vertices) 

semi-regular polyhedron generated from the icosahedron by using 

Butterfly subdivision (Figure 3). The range-image rendering uses 

orthographic projection, and its front and rear clipping planes are 

set to tightly enclose the 3D model. The numbers of views  iN  are 

6, 20, and 42 in our experiments. We used the range-image size of 
2256 . 

After the range images are rendered, the SIFT algorithm is 

applied to each of the range images to detect interest points and 

then to compute features at these interest points. The SIFT 

algorithm first finds positions of features of what it thinks are 

salient. The saliency decision is based on a multi-scale, multi-

orientation, difference of Gaussian detector for gray-level changes, 

and each SIFT feature encodes these information. The salient 

points and features generated by the SIFT algorithm are more or 

less invariant to position, scale, orientation, and photometric (e.g., 

brightness) variances of the feature. The size of the SIFT 

descriptor is determined by a few parameters, such as the number 

of subdivision of the scale space and the size of bins that encode 

the orientation of the local feature. We set the parameters to their 

defaults, which produces a 128D vector as a feature. To compute 

the SIFT features, we used the C++ implementation named 

SIFT++ by Vedaldi [37]. 

The SIFT algorithm typically produces anywhere from ten to a 

few hundreds of local features per image, depending on the image. 

According to our experiments, the numbers of features extracted 

averaged over a database are; 37~38 per view for the MSB and 

44~48 for the PSB. More features in the PSB models can be 

explained by the fact that the models in the PSB are more detailed 

and complex than those in the MSB. These numbers of features 

per range image means that a model is associated with thousands 

of local features. Using 42 views, a MSB model and a PSB model 

is associated with up to 1,500 and 2,000 SIFT features, 

respectively.  

Figure 5 shows the examples of SIFT interest points generated 

on four silhouette images that are sheared, rotated, and scaled. 

Interest points appear at similar locations in these four images in 

spite of the geometrical transformations. This robustness against 

geometric transformations appears to contribute to the 3D model 

retrieval performance. Note also that the interest points appear  

both inside and outside the body, detecting both concave and 

convex features. Segmentation approach such as [34] could miss 

many of these convex features. 

   
Figure 3. Cameras are placed at vertices of a polyhedron having 
either 6, 12, or 42 vertices, looking at the center of the polyhedron, 
for uniformly spaced (in terms of solid angle) view directions. 

 

Figure 4. Interest point detection and local visual feature extraction 
from range images rendered from multiple views (in this case six 
orthogonal views) by using Lowe’s SIFT algorithm [Lowe04]. 

 

 

Figure 5. Interest points of the SIFT algorithm are robust, to a 
certain degree, against various geometric transformations. Note 
also that the interest points appear inside and outside the body.  

Each SIFT feature extracted from 3D models is vector-

quantized into a visual word by using a visual codebook. To 

quantize, for each feature, we simply searched linearly through the 

codebook to find a visual word closest to the feature. The visual 

codebook is learned, unsupervised, prior to the retrieval by using 

k-means clustering of the features collected from every view of 

every model stored in the database. After the clustering, each 

cluster is represented by a representative code vector at the 

barycenter of the cluster. The k-means clustering requires quite 

significant spatial and computational cost when millions of 
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features are to be processed. Thus the algorithm sub-samples the 

feature set down to 50,000 or 40,000 features.  

Once the vector quantization is done, frequencies of visual 

words generated from a model are accumulated into a histogram 

having vN  bins.  The histogram becomes the -dimensionalvN  

feature vector for the 3D model, in which 1,000 ~ 1,500vN = . A 

distance among a pair of feature vectors is computed by using the 

Kullback-Leibler divergence. 

The codebook learning via k-means clustering and vector 

quantization via linear search are expensive to compute. The k-

means clustering of 55 10× features with vocabulary size k=1,000 

took about 2,500s, or 40 minutes. The vector quantization of the 
55 10×  features, or the feature for about 250 models, took about 7 

minutes. Note, however, that these lengthy computations need 

only take place during the pre-processing stage, prior to the query 

sessions. For a query, the cost of computation is (1) extracting and 

vector quantizing about 2k features for the model, and, (2) 

computing a KLD distance par model pair using feature vectors 

having dimension of 1,000~1,500. 

3.2 INDIVIDUAL MATCH SIFT ALGORITHM 

The IM-SIFT assumes rigid models, and compare features 

extracted from “corresponding” areas in the pose-normalized 

global coordinate frame (Figure 6). To do this, the method 

performs full pose-normalization against similarity transformation. 

To improve performance, the IM-SIFT compute two independent 

distances using two pose normalization methods, and integrate the 

distance at the last stage by taking the minimum of the two 

distances.  

The IM-SIFT algorithm proceeds as follows; 

1. Pose normalization (position, scale, and rotation): Pose 

normalization is performed for full similarity transformation, 

that is, for translation, (uniform) scaling, and rotation prior 

to rendering depth images. To normalize for rotation, either 

the mass-PCA or the normal-PCA is employed. These two 

rotation normalization methods are described later. If pose 

normalization is successful, “head to head” or “tire to tire” 

comparison of local features can be achieved for rigid 

models.  

2. Multi-view rendering: Same as in the BF-SIFT. 

3. Local feature extraction: Same as in the BF-SIFT.  

4. Feature dimension reduction: Prior to the feature-to-

feature distance computation, the method performs feature 

dimension reduction on each SIFT feature using PCA 

[Ke04].  

5. Distance computation: In the IM-SIFT algorithm, the per-

image distance per pose normalization method is computed 

by individually matching local features in the image pair. 

The method computes, for each range image, the sum of 

individual L1 distance between a local feature pair. During 

the process, the method weighs the inter-image distance so 

that the image pair having significantly different number of 

feature points will have a larger distance. An overall 

distance between a pair of 3D models (per pose 

normalization method) is the sum of per-image distances.  

6. Distance integration: Two inter-3D-model distance values, 

one computed using the mass-PCA and the other computed 

using the normal-PCA, is integrated by taking the minimum 

of the two. 

One of the pose normalization methods, called mass-PCA, is 

based on inertial moment of a mass uniformly distributed on the 

surfaces of the model [41]. We approximate the mass by quasi-

Monte-Carlo sampling the surfaces of the model with points 

having unit mass, the method we used for the AAD feature [25]. 

After the points are generated, a 3x3 covariance matrix of point 

distribution is computed. The eigenvectors of the covariance 

matrix becomes the principal axes of the model. The mass-PCA 

determines the orientation, but not the direction of the models. The 

position of barycenter relative to the center of the rectangular 

bounding box of the model determines the direction of the model 

in the normalized coordinate system. Another pose normalization 

method is called normal-PCA. It again performs PCA but this time 

on the surface normal orientation [29].  

Oftentimes, the mass-PCA performs better than the normal-

PCA. However, there are occasions in which normal-PCA does 

better. Our method thus computes two distances using the two 

pose normalization methods, and merge the two at the last stage 

by taking the minimum of the two.  

 

Figure 6. A feature in the model to the left is restricted to its 
proximity in the model to the right in the pose-normalized coordinate 
space. The correspondence assumes successful pose 
normalization, however.  

   

 

 

Figure 7. Examples of rotational pose normalization using the 
mass-PCA (avobe) and normal-PCA (below) methods. The mass-
PCA is more successful in general but normal-PCA occasionally is 
better. 
 

During the preliminary experiments, we compared the 

performances of several linear dimension reduction algorithms, 

the PCA, Indipendent Compondent Analysis (ICA) using the 

FastICA algorithm [8] and the Locality Preserving Projections 

(LPP) [12]. In the set of parameters we experimented, the PCA 

performed the best. We use the subspace dimension of the PCA at 

which the contribution from the subspace is 99%. 

In pairing local features for individual-match distance 

computations, we pair those features that lie close to each other in 

the pose normalized global coordinate frame. For each feature in a 

model, the algorithm picks k-nearest features for distance 

computation. This reduces the number of local-feature-to-local-

Model q Model d 
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Compare q with m nearest 
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feature distance computation from 2( )O n  down to ( )O n k⋅ , 

where n k . In reality, pose normalizations fail, and a pair of 3D 

models may have no natural correspondence. In such cases the 

retrieval performance of the method won’t be high.  

When computing a distance among a pair of local features, the 

method increases the distance if the feature pair is extracted the 

image pair having a large discrepancy in the number of interest 

points. To do this, we multiply the inter-image distance by the 

following weight w; 

( )
( )

2

2
exp

2max ,

p q
w

p q

⎛ ⎞−⎜ ⎟=
⎜ ⎟
⎝ ⎠

 

where p  and q  are the local feature set for the two images taken 

from the same view, and p and q  are the number of features in 

the pair of images. 

 

Figure 8. An image pair having nor natural correspondence. The 
pair also has a large difference in the number of features. 

4 EXPERIMENTS AND RESULTS 

We experimentally evaluated the retrieval performance of our 

approach by using two benchmark databases: the McGill 

university benchmark database (MSB) [44] for articulated shapes 

and Princeton Shape Benchmark (PSB) [30] for a set of diverse, 

rigid shapes. The MSB consists of 255 models in 10 classes. The 

MSB include such articulated shapes as “human”, “octopus”, 

“snake”, “pliers”, and “spiders”. The PSB contains two equal-

sized subsets, the training set and test set, each consisting of 907 

models and about 90 classes. For our evaluation, we used the PSB 

test set partitioned into 92 classes. The PSB contains a more 

diverse set of 3D shapes than the MSB. 

We used the same database for learning a visual codebook and 

for performance evaluations. That is, the codebook generated by 

using the MSB (PSB) is used to query the MSB (PSB). To 

generate visual codebook by using k-mean clustering, we used the 

training set size 50,000tN =  SIFT features extracted from multi-

view images of models. There is an exception to this; we used 

420,000tN =  SIFT features generated using 42 views for the 

MSB models to see if the impact of training set size on the 

retrieval performance (See Section 4.1 for the details.) For both 

BF-SIFT and IM-SIFT, we used the images size of 256 256×  

pixels. 

As performance measures, we used R-precision and and recall-

precision plot [Baeza-Yates99]. R-precision is a ratio, in percentile, 

of the models retrieved from the desired class kC  (i.e., the same 

class as the query) in the top R retrievals, in which R is the size of 

the class kC  . R-precision is in fact the same as the First-Tier 

measure used by Shilane, et al [PSB2004]. We use the term R-

precision, which is commonly used in the information retrieval 

literature  [3]. 

In the first set of experiments, we evaluated the influence the 

number of views and the number of vocabulary size have on the 

retrieval performance. In the second set of experiments, we used 

the best performing of the BF-SIFT and IM-SIFT methods and 

compared their performance with those of several well-known 

(global) shape descriptors. 

4.1 NUMBER OF VIEWS, VOCABULARY SIZE AND RETRIEVAL 

PERFORMANCE 

In the first set of experiments, we evaluated the influence the 

number of views iN   and the number of vocabulary size vN   

have on the retrieval performance. 

Figure 9a and Figure 9b show the results of experiments for the 

MSB and PSB, respectively. Retrieval performance is measured 

using R-precision. As mentioned above, for BF-SIFT, all but one 

of the codebooks are generated by clustering 50,000 features. We 

tried a larger training set size of 420,000 for the 42-view BF-SIFT 

(BF-SIFT-42*) retrieving MSB to see the effect of the training set 

size on the performance curve. 

Every one of the plots of the vocabulary size v.s. the 

performance has a peak; a retrieval performance suffers if the 

vocabulary size vN  is either too small or too big. The peaks shift 

from left to right (toward larger vocabulary size) as the number of 

views increase from 6 to 42 and the total number of local features 

increases. We thus suspect that these peaks appeared probably 

because the number of feature points generated by the SIFT 

algorithm are not enough for each view. If we could somehow 

increase the number of local features per view, further increase in 

vocabulary size might have produced better overall retrieval 

performance. 

We observe that, for the MSB, the 20-view case clearly 

outperforms the 6-view case. But the 20-view and 42-view cases 

are very close in their maximum performance attained. The 

difference between the 20-view and the 42-view cases is the 

sharpness of the peaks; the 42-view case has a much broader peak 

than the 20-view case. In case of the PSB, the 42-view case clearly 

outperforms both the 6-view and the 20-view cases. This may be 

due to the greater diversity of shapes in the PSB compared to the 

MSB, which made a larger vocabulary preferable for the PSB. For 

the PSB also, a peak is much broader for a larger vocabulary size. 

The broader peak for a larger number of views (and thus a 

larger number of local features) may be explained as follows; with 

increasing number of views, a local visual feature tend to be 

described by multiple visual words so that the robustness 

increased. 

In Figure 9a for the MSB, we also list the performance curve for 

the visual codebook generated by clustering 420,000 features, 

instead of 50,000 features. Increasing the training set size tN  

appears to slightly improve retrieval performance in this case. We 

need to investigate this aspect further. Note that the training set 

size can’t simply be increased; the larger the training set size, the 

more time the k-means requires to cluster the samples. 

4.2 PERFORMANCE COMPARISON WITH OTHER SHAPE 

DESCRIPTORS 

Figure 10 summarizes the retrieval performance of seven 3D 

model shape comparison algorithms evaluated by using both MSB 

(articulated figure) and PSB (rigid figure) benchmark databases. In 

Figure 10, the numbers for BF-SIFT and IM-SIFT are those of 42 

views. The MSB-50k and MSB-420k generated the visual  
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codebooks by clustering 50,000 and 4200,000 samples, 

respectively.  

The other four fetures are global shape features. We 

implemented the D2 [23], AAD [25], and the SPRH [42] ourselves 

while the SHD [19] and the LFD [5] are computed by using the 

executables found on the web sites of the original authors of the 

papers. Our implementation of the D2 differs from that of Osada’s 

in some details, e.g., the use of quasi-random sequence and the 

number of bins. The details of the AAD are described in [25]. As 

the SPRH is originally developed for point set models, we 

borrowed the surface sampling step of the AAD to convert 

surface-based models into point set models. Our implementations 

of the D2, AAD, and the SPRH are available online as Windows 

XP (32bit) executables at our web site [26]. 

Figure 11a and Figure 11b shows, for the MSB and PSB, 

respectively the recall-precision plots for the five shape 

descriptors, the BF-SIFT, IM-SIFT, D2, SHD, and LFD 

descriptors 

For the articulated models in the MSB, the proposed BF-SIFT 

with its R-Precision=75% outperformed, with a large margin, all 

the others we have compared against. The second place was the 

IM-SIFT-42 with R-Precision=64%, followed by the LFD and 

SHD in the third place with R-Precision=57%. Figure 8 also 

shows that the codebook learned from a larger (420,000) training 

set performed marginally better than the one learned from smaller 

number (50,000) of samples. 

By visual comparison of the recall-precision plots the IM-SIFT 

appears to perform comparably to the method for articulated 

model retrieval by Jain et al [16, 17]. An advantage of the BF-

SIFT over the method by Jain, et al is its capability to accept 

diverse shape representations, including polygon soup, point set, 

and B-rep solids. On the contrary, Jain’s method is directly 

applicable only to a singly connected mesh. 

Figure 12 shows retrieval examples for querying the MSB by 

the “snake” and “hand” models. In these examples, the retrieval 

results due to the BF-SIFT are clearly better than the LFD. 

For the generic, rigid models in the PSB, The LFD performed 

the best (R-precision=45.9%), followed closely by the proposed 

BF-SIFT-42 (R-precision=45.5%). It can be said that the BF-

SIFT-42 performs fairly, but not exceedingly, well in retrieving 

generic, rigid 3D models. Note also that, for the PSB, the IM-

SIFT-42 performed roughly as well as the BF-SIFT-42. The local-

feature-in-global-context approach of the IM-SIFT appears to 

work well for the rigid models, but not for the articulated models.  
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Figure 10. Retrieval performances, in R-precision [%], of the seven 
algorithms measured using both MSB (articulated figure) and PSB 
(rigid figure) databases.  
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Figure 9a. Vocabulary size and retrieval performance of BF-SIFT 
for the MSB with three numbers of views. The codebook for the 
case marked by “Nt=420000” used 420,000 training features. All the 
other codebooks are generated by 50,000 training features. 
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In retrieving rigid model of the PSB, some of the recent 

methods, such as the SPRH feature combined with the 

multiresolution feature extraction and Semi-Supervised Dimension 

Reduction (SSDR) [27] with R-precision=53%, would outperform 

the LFD, the SHD, and the BF-SIFT-42. While direct comparison 

has not been made, other recent methods such as the one by 

Napoléon, et al [39] or the one by Akgul et al [1] would also 

outperform the BF-SIFT in retrieving the PSB.  

Overall, the BF-SIFT performed quite well for both articulated 

models in the MSB and the rigid models in the PSB. Unlike most 

of the global features, the BF-SIFT clearly excelled in retrieving 

articulated models in the MSB and performed on a par with some 

of the best method for articulated models know to us. If the 

retrieval task includes both articulated and rigid models, and the 

models to be retrieved include diverse set of shape representations, 

e.g., polygon soup and meshes having multiple connected 

components, the advantages of the BF-SIFT would become 

significant.  

The distinctive regions method by Shilane, et al reports First 

Tier performance for the PSB Test Set of 45.5%, which 

comparable to the that of the BF-SIFT-42 with its R-

Precision=45.5%. (As mentioned before, R-precision and First 

Tier are the same.) We don’t know the performance of Shilane’s 

method [31] in retrieving the MSB. A comparison of our method 

with that of the method by Ran Gal, et al [11] is not possible, as 

his method accepts (without significant preprocessing) only a 

model that is watertight, has one connected component, and has no 

internal structure. As the PSB contains significant number of 

models that does not satisfy these conditions, the paper by Ran 

Gal reports results using only a “nicer” subset of the PSB using an 

undisclosed ground truth classifications.  

The Figure 10 also shows discrepancies of performance among 

shape features for retrieving models in the MSB and the PSB. For 

example, while the AAD lags far behind the LFD or SHD in 

retrieving PSB, the AAD almost tied the LFD and SHD in 

retrieving the MSB. The rand of the SPRH and the AAD actually 

reversed; while the SPRH did better for the PSB, the AAD did 

better for the MSB.  

5 SUMMARY AND FUTURE WORK 

This paper proposed a powerful, computationally efficient 

algorithm for 3D model retrieval that handles both articulated and 

rigid models quite well. The method, named Bag-of-Features 

SIFT (BF-SIFT), employs a powerful 2D local image feature 

called Scale Invariant Feature Transform (SIFT) by Lowe [22]. 

The SIFT is invariant to translation, scaling, and rotation of 

features in 2D. The SIFT algorithm is applied to a set of multiple 

view depth images rendered from the 3D model to be compared, 

producing thousands of local visual features per model. Thanks to 

the multi-scale nature of the SIFT, the method captures both local 

and global shape features.  

To compute distance, the method employs the Bag-of-Features 

(BoF) approach that fuses all the local features into a single 

feature vector. The BoF approach vector-quantizes local features 

into visual words, and accumulates the frequency of the words into 

a histogram. The quantizer, or the codebook, is learned a priori by 

using a large set of local features extracted from the kind of 

models to be retrieved, e.g., the models in the database. The 

integration of thousands of local features into the feature vector 

reduced the cost of feature storage and the cost of feature 

comparison.  

We have experimentally evaluated the method by using the 

McGill Shape Benchmark (MSB) [44] of articulated 3D models 

and the Princeton Shape Benchmark (PSB) [30] of the rigid 

generic 3D models. The MSB contains only watertight meshes, 

while the PSB contains polygon soup models and non-manifold 

features.  

In retrieving articulated models in the MSB, the BF-SIFT 

performed the best. The proposed method have the R-

Precision=75%, a value significantly higher than all the others. 

The IM-SIFT in the 2nd place had R-Precision=64.2% and the 

Light Field Descriptor (LFD) [5] in the 3rd place had R-

Precision=56.9%. While a direct comparison was not performed, 

the proposed method appears to have comparable retrieval 

performance to the method by Jain et al for articulated models 

[Jain07] that uses mesh spectral analysis.  

In retrieving rigid models in the Princeton Shape Benchmark 

[30], the BF-SIFT with R-Precision=45% performed comparably 
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Figure 11a. Recall-precision plot for retrieving articulated shapes 
in the MSB.  
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to the LFD (R-Precision=46%) or the local-feature based method 

by Shilane, et al [31] (R-Precision=46%).  

In the future, we would like to explore the approach further for 

a better retrieval performance and more efficient computation. For 

example, we would like to find a faster and more efficient 

codebook generation algorithm that is able to handle larger 

training set. Extraction of features of feature comparison may be 

accelerated further, e.g., by using a Graphics Processing Unit. We 

would also like to explore methods to solve the issue of occlusion 

so a complex shape or a shape having internal structure may be 

compared.  
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Figure 12. Retrieval results using the McGill articulated shape benchmark database (MSB). Retrieval results are shown in 2 by 6 matrix in 
which models are ordered left-to-right, top-to-bottom, by their similarity to the query to the left. In these examples, the BF-SIFT-42 clearly 
outperforms the Light Field Descriptor [5].  
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