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Abstract Detecting and segmenting salient objects

from natural scenes, often referred to as salient object

detection, has attracted great interest in computer

vision. While many models have been proposed and

several applications have emerged, a deep understanding

of achievements and issues remains lacking. We aim to

provide a comprehensive review of recent progress in

salient object detection and situate this field among

other closely related areas such as generic scene

segmentation, object proposal generation, and saliency

for fixation prediction. Covering 228 publications, we

survey i) roots, key concepts, and tasks, ii) core

techniques and main modeling trends, and iii) datasets

and evaluation metrics for salient object detection. We

also discuss open problems such as evaluation metrics

and dataset bias in model performance, and suggest

future research directions.

Keywords salient object detection; saliency; visual

attention; regions of interest

1 Introduction

Humans are able to detect visually distinctive, so

called salient, scene regions effortlessly and rapidly

in a pre-attentive stage. These filtered regions

are then perceived and processed in finer detail

for the extraction of richer high-level information,

in an attentive stage. This capability has long

been studied by cognitive scientists and has recently

attracted much interest in the computer vision
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community, mainly because it helps to find the

objects or regions that efficiently represent a scene,

a useful step in complex vision problems such as

scene understanding. Some topics that are closely or

remotely related to visual saliency include: salient

object detection [1], fixation prediction [2, 3], object

importance [4–6], memorability [7], scene clutter

[8], video interestingness [9–12], surprise [13], image

quality assessment [14–16], scene typicality [17, 18],

aesthetics [11], and scene attributes [19]. Given space

limitations, this paper cannot fully explore all of the

aforementioned research directions. Instead, we only

focus on salient object detection, a research area that

has greatly developed in the past twenty years, and

in particular since 2007 [20].

1.1 What is salient object detection about?

Salient object detection or salient object segmentation

is commonly interpreted in computer vision as a

process that includes two stages: 1) detecting the

most salient object and 2) segmenting the accurate

region of that object. Rarely, however, models

explicitly distinguish between these two stages (with

few exceptions such as Refs. [21–23]). Following the

seminal works by Itti et al. [24] and Liu et al. [25],

models adopt the saliency concept to simultaneously

perform the two stages together. This is witnessed by

the fact that these stages have not been separately

evaluated. Further, mostly area-based scores have

been employed for model evaluation (e.g., precision–

recall). The first stage does not necessarily need to be

limited to only one object. The majority of existing

models, however, attempt to segment the most salient

object, although their prediction maps can be used

to find several objects in a scene. The second stage

falls into the realm of classic segmentation problems

in computer vision but with the difference that here,

accuracy is only determined by the most salient object.
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In general, it is agreed that for good saliency

detection a model should meet at least the following

three criteria: 1) good detection: the probability

of missing real salient regions and falsely marking

the background as a salient region should be low,

2) high resolution: saliency maps should have

high or full resolution to accurately locate salient

objects and retain original image information, and

3) computational efficiency: as front-ends to other

complex processes, these models should detect salient

regions quickly.

1.2 Situating salient object detection

Salient object detection models usually aim to detect

only the most salient objects in a scene and segment

the whole extent of those objects. Fixation prediction

models, on the other hand, typically try to predict

where humans look, i.e., a small set of fixation points

[31, 32]. Since both types of method output a single

continuous-valued saliency map, where a higher value

in this map indicates that the corresponding image

pixel is more likely to be looked at, they can be used

interchangeably.

A strong correlation exists between fixation

locations and salient objects. Furthermore, humans

often agree with each other when asked to choose the

most salient object in a scene [22, 23, 26]. See Fig. 1.

Unlike salient object detection and fixation

prediction models, object proposal models aim at

Fig. 1 An example image in Borji et al. ’s experiment [26] along

with annotated salient objects. Dots represent 3-second free-viewing

fixations.

producing a small set, typically a few hundreds or

thousands, of overlapping candidate object bounding

boxes or region proposals [33]. Object proposal

generation and salient object detection are highly

related. Saliency estimation is explicitly used as a

cue in objectness methods [34, 35].

Image segmentation, also called semantic scene

labeling or semantic segmentation, is one of the

very well researched areas in computer vision

(e.g., Ref. [36]). In contrast to salient object detection,

where the output is a binary map, these models aim

to assign a label, one out of several classes such as

sky, road, and building, to each image pixel.

Figure 2 illustrates the differences between these

research themes.

1.3 History of salient object detection

One of the earliest saliency models, proposed by Itti

et al. [24], generated the first wave of interest across

multiple disciplines including cognitive psychology,

neuroscience, and computer vision. This model is

an implementation of earlier general computational

frameworks and psychological theories of bottom–

up attention based on center–surround mechanisms

(e.g., feature integration theory by Treisman and

Gelade [50], the guided search model by Wolfe et

al. [51], and the computational attention architecture

by Koch and Ullman [52]). In Ref. [24], Itti et

al. show some examples where their model is able to

detect spatial discontinuities in scenes. Subsequent

behavioral (e.g., Ref. [53]) and computational

(e.g., Ref. [54]) investigations used fixations as a

means to verify the saliency hypothesis and to

compare models.

A second wave of interest surged with the works of

Liu et al. [25, 55] and Achanta et al. [56] who defined

saliency detection as a binary segmentation problem.

These authors were inspired by some earlier models

striving to detect salient regions or proto-objects

(e.g., Ma and Zhang [57], Liu and Gleicher [58], and

Fig. 2 Sample results produced by different models. Left to right: input image, salient object detection [27], fixation prediction [24],

image segmentation (regions with various sizes) [28], image segmentation (superpixels with comparable sizes) [29], and object proposals (true

positives) [30].
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Walther and Koch [59]). A plethora of saliency models

has emerged since then. It has been, however, less clear

how this new definition relates to other established

computer vision areas such as image segmentation

(e.g., Refs. [60, 61]), category independent object

proposal generation (e.g., Refs. [30, 34, 62]), fixation

prediction (e.g., Refs. [54, 63–66]), and object

detection (e.g., Refs. [67, 68]).

A third wave of interest has appeared recently

with the surge in popularity of convolutional neural

networks (CNNs) [69], and in particular with the

introduction of fully convolutional neural networks

[70]. Unlike the majority of classic methods based

on contrast cues [1], CNN-based methods both

eliminate the need for hand-crafted features, and

alleviate the dependency on center bias knowledge,

and hence have been adopted by many researchers.

A CNN-based model normally contains hundreds

of thousands of tunable parameters and neurons

with variable receptive field sizes. Neurons with

large receptive fields provide global information that

can help better identify the most salient region in

an image, while neurons with small receptive fields

provide local information that can be leveraged

to refine saliency maps produced by the higher

layers. This allows highlighting salient regions and

refining their boundaries. These desirable properties

enable CNN-based models to achieve unprecedented

performance compared to hand-crafted feature-based

models. CNN models are gradually becoming the

mainstream direction in salient object detection.

2 Survey of the state-of-the-art

In this section, we review related works in 3 categories,

including: 1) salient object detection models, 2)

applications, and 3) datasets. The similarity of

various models means that it is sometimes hard to

draw sharp boundaries between them. Here we mainly

focus on the models contributing to the major waves

in the chronicle shown in Fig. 3.

2.1 Old testament: classic models

A large number of approaches have been proposed

for detecting salient objects in images in the past

two decades. Except for a few models which attempt

to segment objects-of-interest (e.g., Refs. [71–73]),

most approaches aim to identify salient subsets from

images first (i.e., compute a saliency map) and then

integrate them to segment the entire salient object.

Visual subsets could be pixels, blocks, superpixels,

or regions. Blocks are rectangular patches uniformly

sampled from the image; pixels are 1 × 1 blocks. A

superpixel or a region is a perceptually homogeneous

image patch that is confined within intensity

edges. Superpixels, in the same image, often have

comparable but different sizes, while the shapes and

sizes of regions may change remarkably. In this

review, the term block is used to represent pixels

and patches, while superpixel and region are used

interchangeably.

In general, classic approaches can be categorized in

two different ways depending on the type operation

or attributes they exploit.

1. Block-based versus region-based analysis.

Two types of visual subsets have been utilized:

blocks and regions, to detect salient objects. Blocks

were primarily adopted by early approaches, while

regions became popular with the introduction of

superpixel algorithms.

Fig. 3 A simplified chronicle of salient object detection modeling. The first wave started with the Itti et al. model [24], followed by the second

wave with the introduction of the approach of Liu et al. [25] who were the first to define saliency as a binary segmentation problem. The third

wave started with the surge of deep learning models and the model of Li and Yu [47].
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2. Intrinsic cues versus extrinsic cues. A key

step in detecting salient objects is to distinguish

them from distractors. To do so, some approaches

extract various cues only from the input image

itself, to highlight targets and to suppress

distractors (i.e., the intrinsic cues). However,

other approaches argue that intrinsic cues are

often insufficient to distinguish targets and

distractors, especially when they share common

visual attributes. To overcome this issue, they

incorporate extrinsic cues such as user annotation,

depth maps, or statistical information about

similar images to facilitate detection of salient

objects in the image.

Using the above model categorization, four

combinations are thus possible. To structure our

review, we group the models into three major

subgroups: 1) block-based models with intrinsic cues,

2) region-based models with intrinsic cues, and 3)

models with extrinsic cues (both block- and region-

based). Some approaches that do not easily fit into

these subgroups are discussed in an other classic

models subgroup. Reviewed models are listed in

Table 1 (intrinsic models), Table 2 (extrinsic models),

and Table 3 (other classic models).

2.1.1 Block-based models with intrinsic cues

In this subsection, we mainly review salient object

detection models which utilize intrinsic cues extracted

Table 1 Salient object detection models with intrinsic cues (sorted by year). Elements: {PI = pixel, PA = patch, RE = region}, where

prefixes m and h indicate multi-scale and hierarchical versions, respectively. Hypothesis: {CP = center prior, G = global contrast, L = local

contrast, D = edge density, B = background prior, F = focus prior, O = objectness prior, CV = convexity prior, CS = center-surround contrast,

CLP = color prior, SD = spatial distribution, BC = boundary connectivity prior, SPS = sparse noise}. Aggregation/optimization: {LN =

linear, NL = non-linear, AD = adaptive, HI = hierarchical, BA = Bayesian, GMRF = Gaussian MRF, EM = energy minimization, and LS =

least-square solver}. Code: {M= Matlab, C= C/C++, NA = not available, EXE = executable}

# Model Pub Year Elements
Hypothesis Aggregation

Code
Uniqueness Prior (optimization)

1 FG [57] MM 2003 PI L — — NA

2 RSA [74] MM 2005 PA G — — NA

3 RE [58] ICME 2006 mPI+RE L — LN NA

4 RU [83] TMM 2007 RE — P LN NA

5 AC [56] ICVS 2008 mPA L — LN NA

6 FT [37] CVPR 2009 PI CS — — C

7 ICC [77] ICCV 2009 PI L — LN NA

8 EDS [76] PR 2009 PI — ED — NA

9 CSM [90] MM 2010 PI+PA L SD — NA

10 RC [84] CVPR 2011 RE G — — C

11 HC [84] CVPR 2011 RE G — — C

12 CC [91] ICCV 2011 mRE — CV — NA

13 CSD [78] ICCV 2011 mPA CS — LN NA

14 SVO [92] ICCV 2011 PA+RE CS O EM M+C

15 CB [93] BMVC 2011 mRE L CP LN M+C

16 SF [27] CVPR 2012 RE G SD NL C

17 ULR [94] CVPR 2012 RE SPS CP+CLP — M+C

18 GS [95] ECCV 2012 PA/RE — B — NA

19 LMLC [96] TIP 2013 RE CS — BA M+C

20 HS [42] CVPR 2013 hRE G — HI EXE

21 GMR [97] CVPR 2013 RE — B — M

22 PISA [89] CVPR 2013 RE G SD+CP NL NA

23 STD [85] CVPR 2013 RE G — — NA

24 PCA [80] CVPR 2013 PA+PE G — NL M+C

25 GU [86] ICCV 2013 RE G — — C

26 GC [86] ICCV 2013 RE G SD AD C

27 CHM [79] ICCV 2013 PA+mRE CS+L — LN M+C

28 DSR [98] ICCV 2013 mRE — B BA M+C

29 MC [99] ICCV 2013 RE — B — M+C

30 UFO [100] ICCV 2013 RE G F+O NL M+C

31 CIO [101] ICCV 2013 RE G O GMRF NA

32 SLMR [102] BMVC 2013 RE SPS BC — NA

33 LSMD [103] AAAI 2013 RE SPS CP+CLP — NA

34 SUB [87] CVPR 2013 RE G CP+CLP+SD — NA

35 PDE [104] CVPR 2014 RE — CP+B+CLP — NA

36 RBD [105] CVPR 2014 RE — BC LS M
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Table 2 Salient object detection models with extrinsic cues grouped by their adopted cues. For cues: {GT = ground-truth annotation, SI =

similar images, TC = temporal cues, SCO = saliency co-occurrence, DP = depth, and LF = light field}. For saliency hypothesis: {P = generic

properties, PRA = pre-attention cues, HD = discriminativity in high-dimensional feature space, SS = saliency similarity, CMP = complement

of saliency cues, SP = sampling probability, MCO = motion coherence, RP = repeatedness, RS = region similarity, C = corresponding, and

DK = domain knowledge}. Others: {CRF = conditional random field, SVM = support vector machine, BDT = boosted decision tree, and

RF = random forest}

# Model Pub Year Cues Elements
Hypothesis Aggregation

GT form Code
Uniqueness Prior (optimization)

1 LTD [25] CVPR 2007 GT mPI+PA+RE L+CS SD CRF BB NA

2 OID [109] ECCV 2010 GT mPI+PA+RE L+CS SD mixtureSVM BB NA

3 LGCR [110] BMVC 2010 GT RE — P BDT BM NA

4 DRFI [40] CVPR 2013 GT mRE L B+P RF BM M+C

5 LOS [111] CVPR 2014 GT RE L+G PRA+B+SD+CP SVM BM NA

6 HDCT [112] CVPR 2014 GT RE L+G SD+P+HD BDT+LS BM M

# Model Pub Year Cues Elements
Hypothesis Aggregation

GT necessity Code
Uniqueness Prior (optimization)

7 VSIT [113] ICCV 2009 SI PA — SS — yes NA

8 FIEC [114] CVPR 2011 SI PI+PA L — LN no NA

9 SA [115] CVPR 2013 SI PI — CMP CRF yes NA

10 LBI [35] CVPR 2013 SI PA SP — — no M+C

# Model Pub Year Cues Elements
Hypothesis Aggregation

Type Code
Uniqueness Prior (optimization)

11 LC [116] MM 2006 TC PI+PA L — LN online NA

12 VA [117] ICPR 2008 TC mPI+PA+RE L CS+SD+MCO CRF offline NA

13 SEG [108] ECCV 2010 TC PA+PI CS MCO CRF offline M+C

14 RDC [118] CSVT 2013 TC RE L — — offline NA

# Model Pub Year Cues Elements
Hypothesis Aggregation

Image number Code
Uniqueness Prior (optimization)

15 CSIP [119] TIP 2011 SCO mRE — RS LN two M+C

16 CO [120] CVPR 2011 SCO PI+PA G RP — multiple NA

17 CBCO [121] TIP 2013 SCO RE G SD+C NL multiple NA

# Model Pub Year Cues Elements
Hypothesis Aggregation

Source Code
Uniqueness Prior (optimization)

18 LS [122] CVPR 2012 DP RE G DK NL stereo images NA

19 DRM [123] BMVC 2013 DP RE G — SVM Kinect NA

20 SDLF [107] CVPR 2014 LF mRE G F+B+O NL Lytro camera NA

Table 3 Other salient object detection models

# Model Pub Year Type Code

1 COMP [128] ICCV 2011 Localization NA

2 GSAL [129] CVPR 2012 Localization NA

3 CTXT [130] ICCV 2011 Segmentation NA

4 LCSP [131] IJCV 2014 Segmentation NA

5 BENCH [132] ECCV 2012 Aggregation M

6 SIO [133] SPL 2013 Optimization NA

7 ACT [21] PAMI 2012 Active C

8 SCRT [22] CVPR 2014 Active NA

9 WISO [23] TIP 2014 Active NA

from blocks. Following the seminal work of Itti et

al. [24], salient object detection is widely defined as

capturing uniqueness, distinctiveness, or rarity in a

scene.

In early works [56–58], uniqueness was often

computed as the pixel-wise center–surround contrast.

Hu et al. [74] represent the input image in a 2D

space using the polar transformation of its features.

Each region in the image is then mapped into

a 1D linear subspace. Afterwards, generalized

principal component analysis (GPCA) [75] is used

to estimate the linear subspaces without actually

segmenting the image. Finally, salient regions

are selected by measuring feature contrast and

geometric properties of regions. Rosin [76] proposes

an efficient approach for detecting salient objects.

His approach is parameter-free and requires only very

simple pixel-wise operations such as edge detection,

threshold decomposition, and moment preserving

binarization. Valenti et al. [77] propose an isophote-

based framework where the saliency map is estimated

by linearly combining saliency maps computed in

terms of curvedness, color boosting, and isocenter

clustering.

In an influential study, Achanta et al. [37] adopt a
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frequency-tuned approach to compute full resolution

saliency maps. The saliency of pixel x is computed

as

s(x) =‖ Iµ − Iωhc
(x) ‖2 (1)

where Iµ is the mean pixel value of the image

(e.g., RGB/Lab features) and Iωhc
is a Gaussian

blurred version of the input image (e.g., using a 5 × 5

kernel).

Without prior knowledge of the sizes of salient

objects, multi-scale contrast is frequently adopted for

robustness [25, 58]. An L-layer Gaussian pyramid is

first constructed (as in Refs. [25, 58]). The saliency

score of pixel x in the image at the lth level of this

pyramid (denoted as I(l)) is defined as

s(x) =
L

∑

l=1

∑

x′∈N (x)

||I(l)(x) − I(l)(x′)||2 (2)

where N (x) is a neighborhood window centered at

x (e.g., 9 × 9 pixels). Even with such multi-scale

enhancement, intrinsic cues derived at pixel level

are often too poor to support object segmentation.

To address this, some works (e.g., Refs. [25, 56, 78,

79]) extended contrast analysis to the patch level

(comparing patches to their neighbors).

Later in Ref. [78], Klein and Frintrop proposed

an information-theoretic approach to compute

center–surround contrast using the Kullback–Leibler

divergence between distributions of features such

as intensity, color, and orientation. Li et al. [79]

formulated center–surround contrast as a cost-

sensitive max-margin classification problem. The

center patch is labeled as a positive sample while the

surrounding patches are all used as negative samples.

The saliency of the center patch is then determined

by its separability from surrounding patches based

on a trained cost-sensitive support vector machine

(SVM).

Some works have defined patch uniqueness as

a patch’s global contrast to other patches [39].

Intuitively, a patch is considered to be salient if it

is significantly different from the other patches most

similar to it; their spatial distances are taken into

account. Similarly, Borji and Itti computed local and

global patch rarity in RGB and Lab color spaces and

fused them to predict fixation locations [65]. In recent

work [80], Margolin et al. define the uniqueness of a

patch by measuring its distance to the average patch

based on the observation that distinctive patches are

more scattered than non-distinctive ones in the high-

dimensional space. To further incorporate the patch

distributions, the uniqueness of a patch is measured

by projecting its path to the average patch onto the

principal components of the image.

To sum up, approaches in this section aim to detect

salient objects based on pixels or patches utilizing

only intrinsic cues. These approaches usually suffer

from two shortcomings: 1) high-contrast edges usually

stand out instead of the salient object, and 2) the

boundary of the salient object is not preserved well

(especially when using large blocks). To overcome

these issues, some methods propose to compute

saliency based on regions. This offers two main

advantages. First, the number of regions is far fewer

than the number of blocks, offering the potential

to develop highly efficient and fast algorithms.

Second, more informative features can be extracted

from regions, leading to better performance. Such

region-based approaches are discussed in the next

subsection.

2.1.2 Region-based models with intrinsic cues

Saliency models in the second subgroup adopt

intrinsic cues extracted from image regions generated

using methods such as graph-based segmentation

[81], mean-shift [28], SLIC [29], or Turbopixels [82].

Unlike block-based models, region-based models often

segment an input image into regions aligned with

intensity edges first, and then compute a regional

saliency map.

As an early attempt, in Ref. [58], regional saliency

score is defined as the average saliency score of

the region’s pixels, defined in terms of multi-scale

contrast. Yu and Wong [83] propose a set of rules

to determine the background scores of each region

based on observations from background and salient

regions. Saliency, defined as uniqueness in terms of

global regional contrast, is widely studied in many

approaches [42, 84–87]. In Ref. [84], a region-based

saliency algorithm is introduced by measuring the

global contrast between the target region and all

other image regions. In a nutshell, an image is first

segmented into N regions {ri}
N
i=1. Saliency of region

ri is measured as

s(ri) =
N

∑

j=1

wijDr(ri, rj) (3)

where Dr(ri, rj) captures the appearance contrast

between two regions. Higher saliency scores are
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assigned to regions with large global contrast. wij is

a weight linking regions ri and rj , which incorporates

spatial distance and region size. Perazzi et al. [27]

demonstrate that if Dr(ri, rj) is defined as the

Euclidean color distance between ri and rj , global

contrast can be computed using efficient filtering

based techniques [88].

In addition to color uniqueness, distinctiveness

of complementary cues such as texture [85] and

structure [89] are also considered for salient object

detection. Margolin et al. [80] propose to combine

regional uniqueness and patch distinctiveness to form

a saliency map. Instead of maintaining a hard region

index for each pixel, a soft abstraction is proposed in

Ref. [86] to generate a set of large-scale perceptually

homogeneous regions using histogram quantization

and Gaussian mixture models (GMMs). By avoiding

hard decisions about boundaries of superpixels, such

soft abstraction provides large spatial support which

results in a more uniform saliency region.

In Refs. [93], Jiang et al. propose a multi-scale

local region contrast based approach, which calculates

saliency values across multiple segmentations for

robustness purposes and combines these regional

saliency values to obtain a pixel-wise saliency map. A

similar idea for estimating regional saliency using

multiple hierarchical segmentations is adopted in

Refs. [42, 98]. Li et al. [79] extend pairwise local

contrast by building a hypergraph, constructed by

non-parametric multi-scale clustering of superpixels,

to capture both internal consistency and external

separation of regions. Salient object detection is then

cast as finding salient vertices and hyperedges in the

hypergraph.

Salient objects, in terms of uniqueness, can also

be defined as sparse noise in a certain feature space

in which the input image is represented as a low-

rank matrix [94, 102, 103]. The basic assumption is

that non-salient regions (i.e., background) can be

explained by the low-rank matrix while the salient

regions are indicated by sparse noise.

Based on such a general low-rank matrix recovery

framework, Shen and Wu [94] propose a unified

approach to incorporate traditional low-level features

with higher-level guidance, e.g., center prior, face

prior, and color prior, to detect salient objects based

on a learned feature transformation. (Although

extrinsic ground-truth annotations are adopted to

learn high-level priors and the feature transformation,

we classify this model with intrinsic models to

better organize the low-rank matrix recovery based

approaches. Additionally, we treat face and color

priors as universal intrinsic cues for salient object

detection). Instead, Zou et al. [102] propose to

exploit bottom–up segmentation as a guidance cue

for low-rank matrix recovery, for robustness. Similar

to Ref. [94], high-level priors are also adopted in

Ref. [103], where tree-structured sparsity-inducing

norm regularization is introduced to hierarchically

describe the image structure, in order to uniformly

highlight the entire salient object.

In addition to capturing uniqueness, more and

more priors have also been proposed for salient object

detection. The spatial distribution prior [25] implies

that the more widely a color is distributed in the

image, the less likely a salient object is to contain

this color. The spatial distribution of superpixels

can also be efficiently evaluated in linear time using

the Gaussian blurring kernel, in a similar way to

computing global regional contrast in Eq. (3). Such a

spatial distribution prior is also considered in Ref. [89],

and is evaluated in terms of both color and structural

cues.

A center prior assumes that a salient object is

more likely to be found near the image center, and

that the background tends to be far away from the

image center. To this end, the backgroundness prior

is adopted for salient object detection in Refs. [95, 97–

99], assuming that a narrow border of the image forms

the background region, i.e., the pseudo-background.

With this pseudo-background as a reference, regional

saliency can be computed as the contrast of regions

versus “background”. In Ref. [97], a two-stage

saliency computation framework is proposed based

on manifold ranking on an undirected weighted

graph. In the first stage, regional saliency scores

are computed based on the relevance given to each

side of the pseudo-background queries. In the second

stage, the saliency scores are refined based on the

relevance given to the initial foreground. In Ref. [98],

saliency computation is formulated in terms of dense

and sparse reconstruction errors with respect to the

pseudo-background. The dense reconstruction error

of each region is computed from principal component

analysis (PCA) of the background templates, while

the sparse reconstruction error is defined as the
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residual after sparse representation of the background

templates. These two types of reconstruction errors

are propagated to pixels in multiple segmentations,

which are fused to form the final saliency map. Jiang

et al. [99] formulate saliency detection via absorbing

Markov chains, in which the transient and absorbing

nodes are superpixels around the image center and

border respectively. The saliency of each superpixel

is computed as the absorption time between the

transient node and the absorbing nodes of the Markov

chain.

Beyond these approaches, the generic objectness

prior is also used to facilitate salient object detection

by leveraging object proposals [34]. Although it is

learned from training data, we also tend to treat

it as a universal intrinsic cue for salient object

detection. Chang et al. [92] present a computational

framework by fusing the objectness and regional

saliency into a graphical model. These two terms are

jointly estimated by iteratively minimizing an energy

function that encodes their mutual interaction. In

Ref. [100], region objectness is defined as the average

objectness values of the pixels within the region; it is

incorporated into regional saliency computation. Jia

and Han [101] compute the saliency of each region by

comparing it to the “soft” foreground and background

according to the objectness prior.

Salient object detection relying on the pseudo-

background assumption may fail sometimes,

especially when the object touches the image border.

To overcome this problem, a boundary connectivity

prior is utilized in Refs. [84, 105]. Intuitively, salient

objects are much less connected to the image border

than objects in the background are. Thus, the

boundary connectivity score of a region can be

estimated according to the ratio of its length along

the image border to the spanning area of this region

[105]. The latter can be computed based on the

region’s geodesic distances to the pseudo-background

and other regions respectively. Such a boundary

connectivity score is integrated into a quadratic

objective function to get the final optimized saliency

map. It is worth noting that similar ideas of

boundary connectivity prior are also investigated in

[102] as segmentation prior and as surroundingness

in Ref. [106].

The focus prior, the fact that a salient object

is often photographed in focus to attract more

attention, has been investigated in Refs. [100, 107].

Jiang et al. [100] calculate the focus score from the

degree of focal blur. By modeling defocusing as the

convolution of a sharp image with a point spread

function, approximated by a Gaussian kernel, the

pixel-level degree of focus can be estimated as the

standard deviation of the Gaussian kernel by scale

space analysis. A regional focus score is computed

by propagating the focus score and/or sharpness at

the boundary and interior edge pixels. The saliency

score is finally derived from a non-linear combination

of uniqueness (global contrast), objectness, and focus

scores.

Performance of salient object detection based on

regions can be affected by choice of segmentation

parameters. In addition to other approaches based on

multi-scale regions [42, 79, 93], single-scale potential

salient regions are extracted by solving the facility

location problem in Ref. [87]. An input image is first

represented as an undirected graph of superpixels,

where a much smaller set of candidate region centers

is then generated through agglomerative clustering.

On this set, a submodular objective function is built

to maximize the similarity. By applying a greedy

algorithm, the objective function can be iteratively

optimized to group superpixels into regions whose

saliency values are further measured via the regional

global contrast and spatial distribution.

The Bayesian framework can also be exploited

for saliency computation [96, 108], formulated as

estimating the posterior probability of pixel x being

foreground given the input image I. To estimate

the saliency prior, a convex hull H is first estimated

around the detected points of interest. The convex

hull H, which divides the image I into the inner

region RI and outer region RO, provides a coarse

estimation of foreground as well as background, and

can be adopted for likelihood computation. Liu et

al. [104] use an optimization-based framework for

detecting salient objects. As in Ref. [96], a convex

hull is roughly estimated to partition an image into

pure background and potential foreground. Then,

saliency seeds are learned from the image, while a

guidance map is learned from background regions, as

well as human prior knowledge. Using these cues, a

general linear elliptic system with Dirichlet boundary

is introduced to model diffusion from seeds to other

regions to generate a saliency map.
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Among the models reviewed in this subsection,

there are three main types of region adopted

for saliency computation. Irregular regions of

varying sizes can be generated using a graph-based

segmentation algorithm [81], mean-shift algorithm

[28], or clustering (quantization). On the other

hand, with recent progress in superpixel algorithms,

compact regions with comparable sizes are also

popular choices, using the SLIC algorithm [29],

Turbopixel algorithm [82], etc. The main difference

between these two types of regions is whether the

influence of region size should be taken into account.

Furthermore, soft regions can also be considered

for saliency analysis, where each pixel maintains a

probability of belonging to each region (component)

instead of having a hard region label (e.g., fitted

by a GMM). To further enhance robustness of

segmentation, regions can be generated based on

multiple segmentations or in a hierarchical way.

Generally, single-scale segmentation is faster, while

multi-scale segmentation can improve the overall

quality of results.

To measure the saliency of regions, uniqueness,

usually in the form of global and local regional

contrast, is still the most frequently used feature.

In addition, more and more complementary priors

for regional saliency have been investigated to

improve the overall results, such as backgroundness,

objectness, focus, and boundary connectivity.

Compared to block-based saliency models,

incorporation of these priors is the main advantage

of region-based saliency models. Furthermore,

regions provide more sophisticated cues (e.g., a color

histogram) to better capture the salient object in a

scene, in contrast to pixels and patches. Another

benefit of defining saliency using regions is related to

efficiency. Since the number of regions in an image

is far fewer than the number of pixels, computing

saliency at region level can significantly reduce the

computational cost while producing full-resolution

saliency maps.

Notice that the approaches discussed in this

subsection only utilize intrinsic cues. In the next

subsection, we review how to incorporate extrinsic

cues to facilitate the detection of salient objects.

2.1.3 Models with extrinsic cues

Models in the third subgroup adopt extrinsic cues to

assist in the detection of salient objects in images and

videos. In addition to those visual cues observed in

the single input image, extrinsic cues can be derived

from ground-truth annotation of training images,

similar images, video sequences, a set of input images

containing the common salient objects, depth maps,

or light field images. In this section, we will review

such models according to the type of extrinsic cues

used. Table 2 lists all models with extrinsic cues;

each method is highlighted with several predefined

attributes.

Salient object detection with similar images. With

the availability of an increasingly large amount of

visual content on the web, salient object detection by

leveraging visually similar images to the input image

has been studied in recent years. Generally, given

the input image I, K similar images CI = {Ik}K
k=1

are first retrieved from a large collection of images C.

Salient object detection in the input I can be assisted

by examining these similar images.

In some studies, it is assumed that saliency

annotations of C are available. For example,

Marchesotti et al. [113] propose to describe each

indexed image Ik by a pair of descriptors (f+
Ik

, f−
Ik

),

which respectively denote the feature descriptors

(Fisher vector) of the salient and non-salient regions

according to the saliency annotations. To compute

the saliency map, each patch px of the input image

is described by a Fisher vector fx. Saliencies of

patches are computed according to their contrast

with foreground and background region features:

{(f+
Ik

, f−
Ik

)}K
k=1.

Alternatively, based on the observation that

different features contribute differently to the saliency

analysis of each image, Mai et al. [115] propose to

learn image specific rather than universal weights to

fuse the saliency maps computed on different feature

channels. To this end, the CRF aggregation model

of saliency maps is trained only on retrieved similar

images to account for the dependence of aggregation

on individual images. We will give further technical

details of Ref. [115] in Section 2.1.4.

Saliency based on similar images works well if

large-scale image collections are available. Saliency

annotation, however, is time consuming, tedious, and

even intractable on such collections. To mitigate this,

some methods leverage unannotated similar images.

Using web-scale image collections C, Wang et al. [114]

propose a simple yet effective saliency estimation
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algorithm. The pixel-wise saliency map is computed

as

s(x) =
∑K

k=1
||I(x) − Ĩk(x)||1 (4)

where Ĩk is a geometrically warped version of Ik with

reference I. The main insight is that similar images

offer good approximations to the background regions

while salient regions might not be well-approximated.

Siva et al. [35] propose a probabilistic formulation

for saliency computation as a sampling problem. A

patch px is considered to be salient if it has the low

probability of being sampled from the images CI ∪ I.

In other words, a high saliency score will be given to

px if it is unusual among a bag of patches extracted

from similar images.

Co-saliency object detection. Instead of con-

centrating on computing saliency in a single image,

co-salient object detection algorithms focus on

discovering common salient objects shared by multiple

input images {Ii}M
i=1. Such objects can be the same

object from different viewpoints, or objects in the

same category, sharing similar visual appearance.

Note that the key characteristic of co-salient object

detection algorithms is that their input is a set of

images, while classical salient object detection models

only need a single input image.

Co-saliency detection is closely related to the

concept of image co-segmentation, which aims to

segment similar objects from multiple images [124,

125]. As stated in Ref. [121], three major differences

exist between co-saliency and co-segmentation. First,

co-saliency detection algorithms only focus on

detecting common salient objects, while similar but

non-salient background might be also segmented out

in co-segmentation approaches [126, 127]. Second,

some co-segmentation methods, e.g., Ref. [125], need

user input to guide the segmentation process in

ambiguous situations. Third, salient object detection

often serves as a pre-processing step, and thus

more efficient algorithms are preferred than for co-

segmentation algorithms, especially when processing

a large number of images.

Li and Ngan [119] propose a method to compute

co-saliency for an image pair with some objects

in common. The co-saliency is defined as the

inter-image correspondence, i.e., low saliency values

should be given to dissimilar regions. Similarly in

Ref. [120], Chang et al. propose to compute co-

saliency by exploiting the additional repeatedness

property across multiple images. Specifically, the

co-saliency score of a pixel is defined as the

multiplication of its traditional saliency score [39]

and its repeatedness likelihood over the input images.

Fu et al. [121] propose a cluster-based co-saliency

detection algorithm by exploiting the well-established

global contrast and spatial distribution concepts on

a single image. Additionally, corresponding cues over

multiple images are introduced to account for saliency

co-occurrence.

2.1.4 Other classic models

In this section, we review algorithms that aim to

directly segment or localize salient objects with

bounding boxes, and algorithms that are closely

related to saliency detection. Some subsections offer

a different categorization of some models covered

in the previous sections (e.g., supervised versus

unsupervised). See Table 3.

Localization models. Liu et al. [25] convert the

binary segmentation map to bounding boxes. The

final output is a set of rectangles around salient

objects. Feng et al. [128] define saliency for a sliding

window as its composition cost using the remaining

image parts. Based on an over-segmentation of the

image, the local maxima, which can efficiently be

found among all sliding windows in a brute-force

manner, are assumed to correspond to salient objects.

The basic assumption in many previous approaches

is that at least one salient object exists in the input

image. This may not always hold as some background

images contain no salient objects at all. In Ref. [129],

Wang et al. investigate the problem of localizing and

predicting the existence of salient objects in thumbnail

images. Specifically, each image is described by a

set of features extracted in multiple channels. The

existence of salient objects is formulated as a binary

classification problem. For localization, a regression

function is learned using random forest regression on

training samples to directly output the position of

the salient object.

Segmentation models. Segmenting salient objects is

closely related to the figure-ground problem, which is

essentially a binary classification problem, trying to

separate the salient object from the background. Yu

et al. [90] utilize the complementary characteristics

of imperfect saliency maps generated by different

contrast-based saliency models. Specifically, two

complementary saliency maps are first generated
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for each image, including a sketch-like map and

an envelope-like map. The sketch-like map can

accurately locate parts of the most salient object

(i.e., skeleton with high precision), while the envelope-

like map can roughly cover the entire salient object

(i.e., envelope with high recall). With these two

maps, reliable foreground and background regions

can be detected in each image by first training a

pixel classifier. By labeling all other pixels with this

classifier, salient object can be detected as a whole.

This method is extended in Ref. [131] by learning

complementary saliency maps for the purpose of

salient object segmentation.

Lu et al. [91] exploit the convexity (concavity)

prior for salient object segmentation. This prior

assumes that the region on the convex side of a curved

boundary tends to belong to the foreground. Based

on this assumption, concave arcs are first found on the

contours of superpixels. The convexity context of a

concave arc is defined by windows close to the arc. An

undirected weight graph is then built over superpixels

with concave arcs, where the weights between vertices

are determined by summing the concavity context

at different scales in the hierarchical segmentation

of the image. Finally, the normalized cut algorithm

[134] is used to separate the salient object from the

background.

To leverage contextual cues more effectively, Wang

et al. [130] propose to integrate an auto-context

classifier [135] into an iterative energy minimization

framework to automatically segment the salient

object. The auto-context model is a multi-layer

boosting classifier on each pixel and its surroundings

to predict whether it is associated with the target

concept. The subsequent layer is built on the

classification of the previous layer. Hence, through

the layered learning process, spatial context is

automatically utilized for more accurate segmentation

of the salient object.

Supervised versus unsupervised models. The

majority of existing learning-based works on

saliency detection focus on the supervised scenario,

i.e., learning a salient object detector given a set

of training samples with ground-truth annotation.

The aim here is to separate salient elements from

background elements.

Each element (e.g., a pixel or a region) in the input

image is represented by a feature vector f ∈ R
D,

where D is the feature dimension. Such a feature

vector is then mapped to a saliency score s ∈ R
+

based on the learned linear or non-linear mapping

function f : RD → R
+.

One can assume the mapping function f is linear,

i.e., s = wTf , where w denotes the combination

weights of all components in the feature vector. Liu

et al. [25] learn the weights with a conditional random

field (CRF) model trained on rectangular annotations

of the salient objects. In recent work [111], the

large-margin framework is adopted to learn the

weights w.

Due to the highly non-linear nature of the saliency

mechanism, however, a linear mapping may not

perfectly capture the characteristics of saliency. To

this end, the linear approach is extended in Ref. [109],

where a mixture of linear support vector machines

(SVMs) is adopted to partition the feature space

into a set of sub-regions that are linearly separable

using a divide-and-conquer strategy. In each region, a

linear SVM, its mixture weights, and the combination

parameters of the saliency features are learned for

better saliency estimation. Alternatively, other non-

linear classifiers such as boosted decision trees (BDTs)

[110, 112] and random forest (RFs) [40] may also be

utilized.

Generally speaking, supervised approaches allow

richer representations for the elements compared with

heuristic methods. In seminal work on supervised

salient object detection, Liu et al. [25] propose a

set of features including local multi-scale contrast,

regional center–surround histogram distance, and

global color spatial distribution. As for models

with only intrinsic cues, region-based representation

for salient object detection has become increasingly

popular as more sophisticated descriptors can be

extracted at region level. Mehrani and Veksler

[110] demonstrate promising results by considering

generic regional properties, e.g., color and shape,

which are widely used in other applications like

image classification. Jiang et al. [40] propose a

regional saliency descriptor including regional local

contrast, regional backgroundness, and regional

generic properties. In Refs. [111, 112], each region

is described by a set of features such as local and

global contrast, backgroundness, spatial distribution,

and the center prior. Pre-attentive features are also

considered in Ref. [111].
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Usually, richer representations result in feature

vectors with higher dimensions, e.g., D = 93 in

Ref. [40] and D = 75 in Ref. [112]. With the

availability of large collections of training samples,

the learned classifier is capable of automatically

integrating such richer features and selecting the most

discriminative ones. Therefore, better performance

can be expected than with heuristic methods.

Some models have utilized unsupervised techniques.

In Ref. [35], saliency computation is formulated in a

probabilistic framework as a sampling problem. The

saliency of each image patch is proportional to its

sampling probability from all patches extracted from

both the input image and similar images retrieved

from a corpus of unlabeled images. In Ref. [136],

cellular automata are exploited for unsupervised

salient object detection.

Aggregation and optimization models. Given M

saliency maps {Si}
M
i=1, coming from different salient

object detection models or hierarchical segmentations

of the input image, aggregation models try to form

a more accurate saliency map. Let Si(x) denote the

saliency value of pixel x in the ith saliency map. In

Ref. [132], Borji et al. propose a standard saliency

aggregation method as follows:

S(x) = P (sx = 1|fx) ∝
1

Z

M
∑

i=1

ζ(Si(x)) (5)

where fx = (S1(x), · · · , SM (x)) are the saliency

scores for pixel x and sx = 1 indicates x is labeled as

salient. ζ(·) is a real-valued function which takes the

following form:

ζ1(z) = z, ζ2(z) = exp(z), ζ3(z) = −
1

log(z)
(6)

Inspired by the aggregation model in Ref. [132],

Mai et al. [115] propose two aggregation solutions.

The first solution adopts pixel-wise aggregation:

P (sx = 1|fx; λ) = σ

(

M
∑

i=1

λiSi(x) + λM+1

)

(7)

where λ = {λi|i = 1, · · · , M + 1} is the set of model

parameters and σ(z) = 1/(1 + exp(−z)). However,

they note one potential problem of such direct

aggregation, its ignorance of interactions between

neighboring pixels. Inspired by Ref. [55], they propose

the second solution which uses the CRF to aggregate

saliency maps of multiple methods to capture the

relation between neighboring pixels. The parameters

of the CRF aggregation model are optimized on the

training data. The saliency of each pixel is the

posterior probability of being labeled as salient with

the trained CRF.

Alternatively, Yan et al. [42] integrate saliency

maps computed on hierarchical segmentations of

the image into a tree-structured graphical model,

where each node corresponds to a region in every

level of the hierarchy. Thanks to the tree structure,

saliency inference can efficiently be conducted using

belief propagation. In fact, solving the three

layer hierarchical model is equivalent to applying

a weighted average to all single-layer maps. Unlike

naive multi-layer fusion, this hierarchical inference

algorithm can select optimal weights for each region

instead of a global weighting.

Li et al. [133] propose to optimize the saliency

values of all superpixels in an image to simultaneously

meet several saliency criteria including visual rarity,

center-bias, and mutual correlation. Based on the

correlations (similarity scores) between region pairs,

the saliency value of each superpixel is optimized

by quadratic programming when considering the

influences of all other superpixels. Let wij denote

the correlation between two regions ri and rj . The

saliency values {si}
N
i=1 (denoting s(ri) as si for short)

can be optimized by solving:

min
{si}N

i=1

N
∑

i=1

si

N
∑

j �=i

wij + λc

N
∑

i=1

sie
di/dD

+ λr

N
∑

i=1

N
∑

j �=i

(si − sj)2wije−dij/dD

such that 0 � si � 1, ∀i, and
N

∑

i=1

si = 1 (8)

Here dD is half the image diagonal length, and dij

and di are spatial distances from ri to rj and the

image center, respectively. In the optimization, the

saliency value of each superpixel is optimized by

quadratic programming, considering the influences of

all other superpixels. Zhu et al. [105] also adopt a

similar optimization-based framework to integrate

multiple foreground/background cues as well as

smoothness terms to automatically infer optimal

saliency values.

The Bayesian framework is adopted to more

effectively integrate the complementary dense and

sparse reconstruction errors [98]. A fully-connected

Gaussian Markov random field between each pair

of regions is constructed to enforce consistency

between salient regions [101], which permitting
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efficient computation of the final regional saliency

scores.

Active models. Inspired by interactive segmentation

models (e.g., Refs. [137, 138]), a new trend has

emerged recently, explicitly decoupling the two

stages of saliency detection mentioned in Section 1.1:

1) detecting the most salient object and 2) segmenting

it. Some studies propose to perform active segmenta-

tion by utilizing the advantages of both fixation

prediction and segmentation models. For example,

Mishra et al. [21] combine multiple cues (e.g., color,

intensity, texture, stereo, and/or motion) to predict

fixations. The “optimal” closed contour for the salient

object around the fixation point is then segmented in

polar space. Li et al. [22] propose a model composed

of two components: a segmenter that proposes

candidate regions and a selector that gives each region

a saliency score (using a fixation prediction model).

Similarly, Borji [23] proposes to first roughly locate

the salient object at the peak of the fixation map (or

its estimation using a fixation prediction model) and

then segment the object using superpixels. The last

two algorithms adopt annotations to determine the

upper-bound of segmentation performance, propose

datasets with multiple objects in scenes, and provide

new insight into the inherent connections between

fixation prediction and salient object segmentation.

Salient object detection in video. In addition to

spatial information, video sequences provide temporal

cues, e.g., motion, which facilitates salient object

detection. Zhai and Shah [116] first estimate keypoint

correspondences between two consecutive frames.

Motion contrast is computed based on planar motions

(the homography) between images, which is estimated

by applying RANSAC to point correspondences. Liu

et al. [117] extend their spatial saliency features

[25] to the motion field resulting from an optical

flow algorithm. Using the colorized motion field

as the input image, local multi-scale contrast,

regional center-surround distance, and global spatial

distribution are computed and finally integrated in

a linear way. Rahtu et al. [108] integrate spatial

saliency into an energy minimization framework by

considering the temporal coherence constraint. Li

et al. [118] extend regional contrast-based saliency

to the spatio-temporal domain. Given an over-

segmentation of the frames of the video sequence,

spatial and temporal region matches between each

two consecutive frames are estimated in a interactive

manner on an undirected unweighted matching graph,

based on the regions’ colors, textures, and motion

features. The saliency of a region is determined

by computing its local contrast to the surrounding

regions not only in the present frame but also in the

temporal domain.

Salient object detection with depth. We live in a 3D

environment in which stereoscopic content provides

additional depth cues for guiding visual attention

and understanding our surroundings. This point

is further validated by Lang et al. [139] through

experimental analysis of the importance of depth

cues for eye fixation prediction. Recently, researchers

have started to study how to exploit depth cues for

salient object detection [122, 123]; these might be

captured indirectly from stereo images or directly

using a depth camera (e.g., Kinect).

The most straightforward extension is to adopt the

widely used hypotheses introduced in Section 2.1.1

and 2.1.2 to the depth channel, e.g., global contrast

on the depth map [122, 123]. Furthermore, Niu

et al. [122] demonstrate how to leverage domain

knowledge in stereoscopic photography to compute

the saliency map. The input image is first segmented

into regions {ri}. In practice, the regions at the

focus of attention are often assigned small or zero

disparities to minimize the vergence-accommodation

conflict. Therefore, the first type of regional saliency

based on disparity is defined as

sd,1(ri) =

{

(dmax − d̄i)/dmax, d̄i � 0

(dmin − d̄i)/dmin, d̄i < 0
(9)

where dmax and dmin are the maximal and minimal

disparities, respectively. d̄i denotes the average

disparity in region ri. Additionally, objects with

negative disparities are perceived as popping out of

the scene. The second type of regional stereo saliency

is then defined as

sd,2(ri) =
dmax − d̄i

dmax − dmin
(10)

Stereo saliency is linearly computed by an adaptive

weight.

Salient object detection on light fields. The idea of

using light fields for saliency detection was proposed

in Ref. [107]. A light field, captured using a

specifically designed camera, e.g., Lytro, is essentially

an array of images shot by a grid of cameras viewing

the scene. Light field data offers two benefits for
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salient object detection: 1) it allows synthesis of

a stack of images focused at different depths, and

2) it provides an approximation of scene depth and

occlusions.

With this additional information, Li et al. [107]

first utilize the focus and objectness priors to

robustly choose the background and select foreground

candidates. Specifically, the layer with the estimated

background likelihood score is used to estimate the

background regions. Regions, coming from a mean-

shift algorithm, with high foreground likelihood score

are chosen as salient object candidates. Finally, the

estimated background and foreground are utilized

to compute a contrast-based saliency map on the

all-focus image.

A new challenging benchmark dataset for light-

field saliency analysis, known as HFUT-Lytro, was

recently introduced in Ref. [140].

2.2 New testament: Deep learning based

models

All methods reviewed so far use heuristics to detect

salient objects. While hand-crafted features allow

real-time detection performance, they suffer from

several shortcomings that limit their ability to capture

salient objects in challenging scenarios.

Convolutional neural networks (CNNs) [69], one

of the most popular tools in machine learning, have

been applied to many vision problems such as object

recognition [141], semantic segmentation [70], and

edge detection [142]. Recently, it has been shown that

CNNs [44, 47] are also very effective when applied

to salient object detection. Thanks to their multi-

level and multi-scale features, CNNs are capable of

accurately capturing the most salient regions without

any prior knowledge (e.g., segment-level information).

Furthermore, multi-level features allow CNNs to

better locate the boundaries of the detected salient

regions, even when shades or reflections exist. By

exploiting the strong feature learning ability of CNNs,

a series of algorithms has been proposed to learn

saliency representations from large amounts of data.

These CNN-based models continually improve upon

the best results so far on almost all existing datasets,

and are becoming the main stream solution. The

rest of this subsection is dedicated to reviewing CNN-

based models.

Basically, salient object detection models based on

deep learning can be split into two main categories.

The first category includes models that use multi-

layer perceptrons (MLPs) for saliency detection.

In these models, the input image is usually over-

segmented into single- or multi-scale small regions.

Then, a CNN is used to extract high-level features

which are later fed to an MLP to determine the

saliency value of each small region. Though high-

level features are extracted from CNNs, unlike

fully convolutional networks (FCNs), the spatial

information from CNN features cannot be preserved

because of the utilization of MLPs. To highlight the

differences between these methods and FCN-based

methods, we call them classic convolutional network

based (CCN-based) methods. The second category

includes models that are based on fully convolutional

networks (FCN-based). The pioneering work of Long

et al. [70] falls under this category and aims to solve

the semantic segmentation problem. Since salient

object detection is inherently a segmentation task,

a number of researchers have adopted FCN-based

architectures because of their ability to preserve

spatial information.

Table 4 shows a list of CNN-based saliency models.

2.2.1 CCN-based models

One-dimensional convolution based methods. As

an early attempt, He et al. [44] followed a region-

based approach to learn superpixel-wise feature

representations. Their approach dramatically reduces

the computational cost compared to pixel-wise CNNs,

while also taking global context into consideration.

However, representing a superpixel with its mean

color is not informative enough. Further, the spatial

structure of the image is difficult to fully represent

using 1D convolution and pooling operations, leading

to cluttered predictions, especially when the input

image is a complex scene.

Leveraging local and global context. Wang et

al. consider both local and global information for

better detection of salient regions [160]. To this end,

two subnetworks are designed, one each for local

estimation and global search. A deep neural network

(DNN-L) is first used to learn local patch features to

determine the saliency value of each pixel, followed

by a refinement operation which captures high-level

objectness. For global search, they train another

deep neural network (DNN-G) to predict the saliency

value of each salient region using a variety of global

contrast features such as geometric information, etc.
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Table 4 CNN-based salient object detection models and information used by them during training. Above: CCN-based models. Below:

FCN-based models

# Model Pub Year #Training images Training set Pre-trained model Fully conv

1 SuperCNN [44] IJCV 2015 800 ECSSD — ✗

2 LEGS [45] CVPR 2015 3,340 MSRA-B+PASCALS — ✗

3 MC [46] CVPR 2015 8,000 MSRA10K GoogLeNet [143] ✗

4 MDF [47] CVPR 2015 2,500 MSRA-B — ✗

5 HARF [48] ICCV 2015 2,500 MSRA-B — ✗

6 ELD [144] CVPR 2016 nearly 9,000 MSRA10K VGGNet ✗

7 SSD-HS [145] ECCV 2016 2,500 MSRA-B AlexNet ✗

8 FRLC [146] ICIP 2016 4,000 DUT-OMRON VGGNet ✗

9 SCSD-HS [147] ICPR 2016 2,500 MSRA-B AlexNet ✗

10 DISC [148] TNNLS 2016 9,000 MSRA10K — ✗

11 LCNN [149] Neuro 2017 2,900 MSRA-B+PASCALS AlexNet ✗

12 DHSNET [150] CVPR 2016 6,000 MSRA10K VGGNet ✓

13 DCL [151] CVPR 2016 2,500 MSRA-B VGGNet [152] ✓

14 RACDNN [153] CVPR 2016 10,565 DUT+NJU2000+RGBD VGG ✓

15 SU [154] CVPR 2016 10,000 MSRA10K VGGNet ✓

16 CRPSD [155] ECCV 2016 10,000 MSRA10K VGGNet ✓

17 DSRCNN [156] MM 2016 10,000 MSRA10K VGGNet ✓

18 DS [157] TIP 2016 nearly 10,000 MSRA10K VGGNet ✓

19 IMC [158] WACV 2017 nearly 6,000 MSRA10K ResNet ✓

20 MSRNet [159] CVPR 2017 2,500 MSRA-B+HKU-IS VGGNet ✓

21 DSS [49] CVPR 2017 2,500 MSRA-B VGGNet ✓

The top K candidate regions are utilized to compute

the final saliency map using a weighted summation.

In Ref. [46], as in most classic salient object

detection methods, both local context and global

context are taken into account to construct a multi-

context deep learning framework. The input image

is first fed to the global-context branch to extract

global contrast information. Meanwhile, each image

patch, which is a superpixel-centered window, is fed to

the local-context branch to capture local information.

A binary classifier is finally used to determine the

saliency value by minimizing a unified softmax loss

between the prediction value and the ground truth

label. A task-specific pre-training scheme is adopted

to jointly optimize the designed multi-context model.

Lee et al. [144] exploit two subnetworks to encode

low-level and high-level features separately. They

first extract a number of features for each superpixel

and feed them into a subnetwork composed of a stack

of convolutional layers with 1 × 1 kernel size. Then,

the standard VGGNet [152] is used to capture high-

level features. Both low- and high-level features are

flattened, concatenated, and finally fed into a two-

layer MLP to judge the saliency of each query region.

Bounding box based methods. In Ref. [48], Zou

and Komodakis propose a hierarchy-associated rich

feature (HARF) extractor. A binary segmentation

tree is first built to extract hierarchical image regions

and to analyze the relationships between all pairs

of regions. Two different methods are then used to

compute two kinds of features (HARF1 and HARF2) for

regions at the leaf-nodes of the binary segmentation tree.

They leverage all the intermediate features extracted

from the RCNN [161] to capture various characteristics

of each image region. With these high-dimensional

elementary features, both local regional contrast

and border regional contrast for each elementary

feature type are computed, to build a more compact

representation. Finally, the AdaBoost algorithm is

adopted to gradually assemble weak decision trees to

construct a composite strong regressor.

Kim and Pavlovic [145] design a two-branch CNN

architecture to obtain coarse- and fine-representations

of coarse-level and fine-level patches, respectively.

The selective search [162] method is utilized to

generate a number of region candidates that are

treated as input to the two-branch CNN. Feeding

the concatenation of the feature representations of

the two branches into the final fully connected layer

allows a coarse continuous map to be predicted.

To further refine the coarse prediction map, a

hierarchical segmentation method is used to sharpen

its boundaries and improve spatial consistency.

In Ref. [146], Wang et al. detect salient objects

by employing the fast R-CNN [161] framework. The

input image is first segmented into multi-scale regions
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using both over-segmentation and edge-preserving

methods. For each region, the external bounding

box is used and the enclosed region is fed to the fast

R-CNN. A small network composed of multiple fully

connected layers is connected to the ROI pooling

layer to determine the saliency value of each region.

Finally, an edge-based propagation method is used to

suppress background regions and make the resulting

saliency map more uniform.

Kim and Pavlovic [147] train a CNN to predict the

saliency shape of each image patch. The selective

search method is first used to localize a stack of

image patches, each of which is taken as input to the

CNN. After predicting the shape of each patch, an

intermediate mask MI is computed by accumulating

the product of the mask of the predicted shape class

and the corresponding probability, and averaging all

the region proposals. To further refine the coarse

prediction map, shape class-based saliency detection

with hierarchical segmentation (SCSD-HS) is used to

incorporate more global information, which is often

needed for saliency detection.

Li et al. [149] leverage both high-level features

from CNNs and low-level features extracted using

hand-crafted methods. To enhance the generalization

and learning ability of CNNs, the original R-CNN

is redesigned by adding local response normalization

(LRN) to the first two layers. The selective search

method is utilized [162] to generate a stack of square

patches as the input to the network. Both high-level

and low-level features are fed to an SVM with L1

hinge-loss to help judge the saliency of each square

region.

Models with multi-scale inputs. Li and Yu [47]

utilize a pre-trained CNN as a feature extractor.

Given an input image, they first decompose it into a

series of non-overlapping regions and then feed them

into a CNN with three different-scale inputs. Three

subnetworks are then employed to capture advanced

features at different scales. The features obtained

from patches at three scales are concatenated and

then fed into a small MLP with only two fully

connected layers, using it as a regressor to output a

distribution over binary saliency labels. To solve the

problem of imperfect over-segmentation, a superpixel-

based saliency refinement method is used.

Fiugre 4 illustrates a number of popular FCN-

based architectures. Table 5 lists different types of

information leveraged by these architectures.

Discussion. As can be seen, MLP-based works

rely mostly on segment-level information (e.g., image

patches) and classification networks. These image

patches are normally resized to a fixed size and

are then fed into a classification network which is

used to determine the saliency of each patch. Some

models use multi-scale inputs to extract features at

several scales. However, such a learning framework

cannot fully leverage high-level semantic information.

Fig. 4 Popular FCN-based architectures. Apart from the classical architecture (a), more and more advanced architectures have been developed

recently. Some of them (b–e) exploit skip layers from different scales so as to learn multi-scale and multi-level features. Some (e, g–i) adopt an

encoder–decoder structure to better fuse high-level features with low-level ones. Others (f, g, i) introduce side supervision as in Ref. [142] in

order to capture more detailed multi-level information. See Table 5 for details of these architectures.
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Table 5 Different types of information leveraged by existing FCN-

based models. Abbreviations: SP: superpixel, SS: side supervision,

RCL: recurrent convolutional layer, PCF: pure CNN feature, IL:

instance-level, Arch: architecture

# Model SP SS RCL PCF IL CRF Arch.

1 DCL [151] ✓ ✓ ✗ ✓ ✗ ✓ Fig. 4(b)

2 CRPSD [155] ✓ ✗ ✗ ✗ ✗ ✗ Fig. 4(c)

3 DSRCNN [156] ✗ ✓ ✓ ✓ ✗ ✗ Fig. 4(f)

4 DHSNET [150] ✗ ✓ ✓ ✓ ✗ ✗ Fig. 4(g)

5 RACDNN [153] ✗ ✗ ✓ ✓ ✗ ✗ Fig. 4(h)

6 SU [154] ✗ ✓ ✗ ✓ ✗ ✓ Fig. 4(d)

7 DS [157] ✓ ✗ ✗ ✗ ✗ ✗ Fig. 4(a)

8 IMC [158] ✓ ✗ ✗ ✗ ✗ ✗ Fig. 4(a)

9 MSRNet [159] ✓ ✗ ✗ ✓ ✓ ✓ Fig. 4(h)

10 DSS [49] ✗ ✓ ✗ ✓ ✗ ✓ Fig. 4(i)

Further, spatial information cannot be propagated

to the last fully connected layers, thus resulting in

global information loss.

2.2.2 FCN-based models

Unlike CCN-based models that operate at the

patch level, fully convolutional networks (FCNs) [70]

consider pixel-level operations to overcome problems

caused by fully connected layers such as blurring and

inaccurate predictions near the boundaries of salient

objects. Due to the desirable properties of FCNs, a

great number of FCN-based salient object detection

models have been introduced recently.

Li and Yu [151] design a CNN with two com-

plementary branches: a pixel-level fully convolutional

stream (FCS) and a segment-wise spatial pooling

stream (SPS). The FCS introduces a series of skip

layers after the last convolutional layer of each stage;

the skip layers are fused together as the output of the

FCS. Note that a stage of the CNN is composed of all

layers with the same resolution. The SPS leverages

segment-level information for spatial pooling. Finally,

the outputs of FCS and SPS are fused, followed by a

balanced sigmoid cross entropy loss layer as used in

Ref. [142].

Liu and Han [150] propose two subnetworks to

produce a prediction map working in a coarse-to-fine

and global-to-local manner. The first subnetwork

can be considered as an encoder whose goal is to

generate a coarse global prediction. Then, a refine-

ment subnetwork composed of a series of recurrent

convolution layers is used to refine the coarse

prediction map from coarse scales to fine scales.

In Ref. [155], Tang and Wu consider both region-

level saliency estimation and pixel-level saliency

prediction. For pixel-level prediction, two side paths

are connected to the last two stages of the VGGNet

and then concatenated to learn multi-scale features.

For region-level estimation, each given image is first

over-segmented into multiple superpixels and then

the Clarifai model [163] is used to predict the saliency

of each superpixel. The original image and the two

prediction maps are taken as the inputs to a small

CNN to generate a more convincing saliency map as

the final output.

Tang et al. [156] take the deeply supervised net

[164] and adopt a similar architecture as in the

holistically-nested edge detector [142]. Unlike HED,

they replace the original convolutional layers in

VGGNet with recurrent convolutional layers to learn

local, global, and contextual information.

In Ref. [153], Kuen et al. propose a two-stage CNN

by utilizing spatial transformer and recurrent network

units. A convolutional–deconvolutional network is

first used to produce an initial coarse saliency map.

The spatial transformer network [165] is applied

to extract multiple sub-regions from the original

images, followed by a series of recurrent network

units to progressively refine the predictions of these

sub-regions.

Kruthiventi et al. [154] consider both fixation pre-

diction and salient object detection in a unified

network. To capture multi-scale semantic information,

four inception modules [143] are introduced which are

connected to the output of the 2nd, 4th, 5th, and

6th stages, respectively. These four side paths are

concatenated and passed through a small network

composed of two convolutional layers to reduce the

aliasing effect of upsampling. Finally, the sigmoid

cross entropy loss is used to optimize the model.

Li et al. [157] consider joint semantic segmentation

and salient object detection. As in the FCN work [70],

the two original fully connected layers in VGGNet

[152] are replaced by convolutional layers. To

overcome the fuzzy object boundaries caused by the

down-sampling operations of CNNs, they make use of

the SLIC [166] superpixels to model the topological

relationships between superpixels in both spatial

and feature dimensions. Finally, graph Laplacian

regularized nonlinear regression is used to change the

combination of the predictions from CNNs and the

superpixel graph from the coarse level to the fine

level.
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Zhang et al. [158] detect salient objects using

saliency cues extracted by CNNs and a multi-level

fusion mechanism. The Deeplab [167] architecture is

first used to capture high-level features. To address

the problem of large strides in Deeplab, a multi-scale

binary pixel labeling method is adopted to improve

spatial coherence, as in Ref. [47].

The MSRNet [159] by Li et al. performs both

salient object detection and instance-level salient

object segmentation. A multi-scale CNN is used

to simultaneously detect salient regions and contours.

For each scale, features from upper layers are merged

with features from lower layers to gradually refine

the results. To generate a contour map, the MCG

[168] approach is used to extract a small number

of candidate bounding boxes and well-segmented

regions that are used to help perform salient object

instance segmentation. Finally, a fully connected

CRF model [169] is employed to refine the spatial

coherence.

Hou et al. [49] design a top–down model based on

the HED architecture [142]. Instead of connecting

independent side paths to the last convolutional

layer of each stage, a series of short connections are

introduced to build a strong relationship between

each pair of side paths. As a result, features from

upper layers with strongly semantic information are

propagated to lower layers, helping them accurately

locate exact positions of salient objects. In the

meantime, rich detailed information from lower layers

allow irregular prediction maps from deeper layers to

be refined. A special fusion mechanism is exploited

to better combine the saliency maps predicted by

different side paths.

Discussion. The foregoing approaches are all

based on fully convolutional networks, which enable

point-to-point learning and end-to-end training

strategies. Compared to CCN-based models, these

methods make better use of the convolution operation

and substantially decrease the time cost. More

importantly, recent FCN-based approaches [49, 159]

that utilize CNN features greatly outperform those

methods with segment-level information.

To sum up, the three following advantages are

obtained in utilizing FCN-based models for saliency

detection:

1. Local versus global. As mentioned in Section

2.2.1, earlier CNN-based models incorporate

both local and global contextual information

explicitly (embedded in separate networks [45–

47]) or implicitly (using an end-to-end framework).

This indeed agrees with the design principles

behind many hand-crafted cues reviewed in

previous sections. However, FCN-based methods

are capable of learning both local and global

information internally. Lower layers tend to

encode more detailed information such as edge

and fine components, while deeper layers favor

global and semantically meaningful information.

Such properties enable FCN-based networks to

drastically outperform classic methods.

2. Pre-training and fine-tuning. The effecti-

veness of fine-tuning a pre-trained network has

been demonstrated in many different applications.

The network is typically pre-trained on the

ImageNet dataset [170] for image classification.

The learned knowledge can be applied to several

different target tasks (e.g., object detection [161],

object localization [171]) through simple fine-

tuning. A similar strategy has been adopted

for salient object detection [46, 151] and has

resulted in superior performance compared to

training from scratch. The learned features,

more importantly, are able to capture high-level

semantic knowledge about object categories, as

the employed networks are pre-trained for scene

and object classification tasks.

3. Versatile architectures. A CNN architecture is

formed by a stack of distinct layers that transform

the input images into an output map through a

differentiable function. The diversity of FCNs

allows designers to design different structures that

are appropriate for them.

Despite great success, FCN-based models still fail

in several cases. Typical examples include scenes with

transparent objects, low contrast between foreground

and background, and complex backgrounds, as shown

in Ref. [49]. This calls for development of more

powerful architectures in future.

Figure 5 provides a visual comparison of maps

generated by classic and CNN-based models.

3 Applications of salient object detection

The value of salient object detection models lies in their

application to many areas of computer vision, graphics,
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Fig. 5 Visual comparisons of two best classic methods (DRFI and DSR), according to Ref. [132], and two leading CNN-based methods (MDF

and DSS).

and robotics. Salient object detection models have

been utilized for several applications such as object

detection and recognition [180–186], image and video

compression [187, 188], video summarization [189–191],

photo collage/media re-targeting/cropping/thumb-

nailing [174, 192, 193], image quality assessment [194–

196], image segmentation [197–200], content-based

image retrieval and image collection browsing [177,

201–203], image editing and manipulation [41, 175,

178, 179], visual tracking [204–210], object discovery

[211, 212], and human-robot interaction [213, 214].

Figure 6 shows example applications.

4 Datasets and evaluation measures

4.1 Salient object detection datasets

As more and more models have been proposed in

the literature, more datasets have been introduced

to further challenge saliency detection models. Early

attempts aim to collect images with salient objects

being annotated with bounding boxes (e.g., MSRA-

A and MSRA-B [25]), while later efforts annotate

such salient objects with pixel-wise binary masks

(e.g., ASD [37] and DUT-OMRON [97]). Typically,

images, which can be annotated with accurate

masks, contain few objects (usually one) and simple

background regions. On the contrary, recent attempts

have been made to collect datasets with multiple

objects in complex scenes with cluttered backgrounds

(e.g., Refs. [22, 23, 26]). As already noted, a more

sophisticated mechanism is required to determine the

most salient object when several candidate objects

are present in the same scene. For example, Borji

[23] and Li et al. [22] use the peak of the human

fixation map to determine which object is the most

salient (i.e., the one that humans look at the most;

see Section 1.2).

A list of 22 salient object datasets including 20

image datasets and 2 video datasets is provided in

Table 6. Notice that all images or video frames

in these datasets are annotated with binary masks

or rectangles. Subjects are often asked to label a

single salient object in an image (e.g., Ref. [25]) or to

annotate the most salient among several candidate
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Fig. 6 Sample applications of salient object detection.

Table 6 Overview of popular salient object datasets. Above: image datasets, below: video datasets. Obj: objects per image, Ann: Annotation,

Sbj: Subjects/Annotators, Eye: Eye tracking subjects, I/V: Image/Video

Dataset Year Imgs Obj Ann Resolution Sbj Eye I/V

MSRA-A [25, 215] 2007 20k ∼1 BB 400 × 300 3 — I

MSRA-B [25, 215] 2007 5k ∼1 BB 400 × 300 9 — I

SED1 [132, 216] 2007 100 1 PW ∼300 × 225 3 — I

SED2 [132, 216] 2007 100 2 PW ∼300 × 225 3 — I

ASD [25, 37] 2009 1000 ∼1 PW 400 × 300 1 — I

SOD [60, 217] 2010 300 ∼3 PW 481 × 321 7 — I

iCoSeg [125] 2010 643 ∼1 PW ∼500 × 400 1 — I

MSRA5K [25, 93] 2011 5k ∼1 PW 400 × 300 1 — I

Infrared [218, 219] 2011 900 ∼5 PW 1024 × 768 2 15 I

ImgSal [205] 2013 235 ∼2 PW 640 × 480 19 50 I

CSSD [42] 2013 200 ∼1 PW ∼400 × 300 1 — I

ECSSD [42, 220] 2013 1000 ∼1 PW ∼400 × 300 1 — I

MSRA10K [25, 221] 2013 10k ∼1 PW 400 × 300 1 — I

THUR15K [25, 221] 2013 15k ∼1 PW 400 × 300 1 — I

DUT-OMRON [97] 2013 5,172 ∼5 BB 400 × 400 5 5 I

Bruce-A [26, 54] 2013 120 ∼4 PW 681 × 511 70 20 I

Judd-A [23, 222] 2014 900 ∼5 PW 1024 × 768 2 15 I

PASCAL-S [22] 2014 850 ∼5 PW Variable 12 8 I

UCSB [223] 2014 700 ∼5 PW 405 × 405 100 8 I

OSIE [224] 2014 700 ∼5 PW 800 × 600 1 15 I

RSD [225] 2009 62,356 Var. BB Variable 23 — V

STC [226] 2011 4,870 ∼1 BB Variable 1 — V

objects (e.g., Ref. [26]). Some image datasets also

provide for each image the fixation data collected

during a free-viewing task.

4.2 Evaluation measures

Five universally-agreed, standard, and easy-to-

compute measures for evaluating salient object

detection models are described next. For simplicity,

we use S to represent the predicted saliency map

normalized to [0, 255] and G to be the ground-truth

binary mask of salient objects. For a binary mask,

we use | · | to represent the number of non-zero entries

in the mask.

4.2.1 Precision–recall (PR)

A saliency map S is first converted to a binary mask

M and then Precision and Recall are computed by

comparing M to the ground-truth G:

Precision =
|M ∩ G|

|M |
, Recall =

|M ∩ G|

|G|
(11)

Binarization of S is the key step in the evaluation.

There are three popular ways to perform binarization.

In the first solution, Achanta et al. [37] propose

image-dependent adaptive threshold for binarizing S,

computed as twice as the mean saliency of S:

Ta =
2

W × H

W
∑

x=1

H
∑

y=1

S(x, y) (12)



Salient object detection: A survey 137

where W and H are the width and the height of the

saliency map S, respectively.

The second way to binarize S is to use a threshold

that varies from 0 to 255. For each threshold, a pair

of (precision, recall) scores are computed and used to

plot a precision–recall (PR) curve.

The third way to perform binarization is to use a

GrabCut-like algorithm (e.g., as in Ref. [84]). Here,

the PR curve is first computed and the threshold that

leads to 95% recall is selected. With this threshold,

an initial binary mask is generated, which is then used

to initialize iterative GrabCut segmentation [138] to

gradually refine the binary mask.

4.2.2 F-measure

Often, neither precision nor recall can fully evaluate

the quality of a saliency map. Instead, the F -measure

is used, defined as the weighted harmonic mean of

precision and recall with a non-negative weight β2:

Fβ =
(1 + β2) Precision × Recall

β2 Precision + Recall
(13)

In many salient object detection works (e.g., Ref. [37]),

β2 is set to 0.3 to give greater weight to precision:

recall rate is not as important as precision (see also

Ref. [55]). For instance, 100% recall can be easily

achieved by setting the whole map to be foreground.

4.2.3 Receiver operating characteristics (ROC)

curve

In the above, false positive rate (FPR) and true

positive rate (TPR) can be computed when binarizing

the saliency map with a set of fixed thresholds:

TPR =
|M ∩ G|

|G|
, FPR =

|M ∩ G|

|M ∩ G| + |M̄ ∩ Ḡ|
(14)

where M̄ and Ḡ denote the complement of the binary

mask M and ground-truth G, respectively. The ROC

curve is the plot of TPR versus FPR for all possible

thresholds.

4.2.4 Area under ROC curve (AUC)

While the ROC is a 2D representation of a model’s

performance, the AUC distils this information into a

single number. As the name implies, it is calculated

as the area under the ROC curve. A perfect model

will score an AUC of 1, while random guessing will

score an AUC of around 0.5.

4.2.5 Mean absolute error (MAE)

The overlap-based evaluation measures introduced

above do not consider true negative saliency assign-

ments, i.e., the pixels correctly marked as non-salient.

They favor methods that successfully assign high

saliency to salient pixels but fail to detect non-salient

regions. Moreover, for some applications [227], the

quality of the weighted continuous saliency maps may

be of higher interest than the binary masks. For a

more comprehensive comparison, it is recommended

to evaluate the mean absolute error (MAE) between

the continuous saliency map S and the binary ground-

truth G, both normalized to the range [0, 1]. The

MAE score is defined as

MAE =
1

WH

W
∑

x=1

H
∑

y=1

‖ S(x, y) − G(x, y) ‖ (15)

Please refer to Ref. [228] for more details on

datasets and scores in the filed of salient object

detection. Code for evaluation measures is available

at http://mmcheng.net/salobjbenchmark.

5 Discussion

5.1 Design choices

In the past two decades, hundreds of classic and

deep learning based methods have been proposed for

detecting and segmenting salient objects in scenes,

and a large number of design choices have been

explored. Although great success has been achieved

recently, there is still large room for improvement.

Our detailed method summarization (see Table 1

and Table 2) sends some clear messages about the

commonly used design choices, and these are valuable

for the design of future algorithms, as we now discuss.

5.1.1 Heuristics versus learning from data

Early methods were mainly based on heuristic cues

(local or global) to detect salient objects [27, 37, 84,

97]. Recently, saliency models based on learning

algorithms have shown to be very effective (see Table 1

and Table 2). Among these models, deep learning

based methods greatly outperform conventional

heuristic methods because of their ability to learn

large amounts of extrinsic cues from large datasets.

Data-driven approaches for salient object detection

seem to have surprisingly good generalization ability.

An emerging question, however, is whether the data-

driven ideas for salient object detection conflict with

the ease of use of these models. Most learning based

approaches are only trained on a small subset of the

MSRA5K dataset, and still consistently outperform

other methods on all other datasets which have
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considerable differences. This suggests that it is

worth further exploring data-driven salient object

detection without losing the advantages of simplicity

and ease-of-use, in particular from an application

point of view.

5.1.2 Hand-crafted versus CNN-based features

The first generation of learning-based methods were

based on many hand-crafted features. An obvious

drawback of these methods is their generalizability,

especially when applied to complex cluttered scenes.

In addition, these methods mainly rely on over-

segmentation algorithms, such as SLIC [166], yielding

incomplete salient objects having high contrast

components. CNN-based models solve these

problems, to some degree, even when complex scenes

are considered. Because of their ability to learn

multi-level features, it is easy for CNNs to accurately

locate salient objects. Low-level features such as

edges enable sharpening boundaries of salient objects

while high-level features allow incorporating semantic

information to identify salient objects.

5.1.3 Recent advances in CNN-based saliency

detection

Various CNN-based architectures have been proposed

recently. Among these approaches, there are several

promising choices that can be further explored

in future. The first one regards models with

deep supervision. As shown in Ref. [49], deeply

supervised networks strengthen the power of features

in different layers. The second choice is the encoder–

decoder architecture, which has been adopted in

many segmentation-related tasks. Such approaches

gradually back-propagate high-level features to lower

layers, allowing effective fusion of multi-level features.

Another choice is to exploit stronger baseline models,

such as using very deep ResNets [229] instead of

VGGNet [152].

5.2 Dataset bias

Datasets have been important in the rapid progress

in saliency detection. On one hand, they supply

large scale training data and enable performance

comparisons of competing algorithms. On the other

hand, each dataset is a unique sampling of an

unlimited application domain, and contains a certain

degree of bias.

To date, there seems to be a unanimous agreement

on the presence of bias (i.e., skew) in underlying

structures of datasets. Consequently, some studies

have addressed the effect of bias in image datasets.

For instance, Torralba and Efros identify three biases

in computer vision datasets, namely: selection bias,

capture bias, and negative set bias [230]. Selection bias

is caused by preference for a particular kind of image

during data gathering. It results in qualitatively

similar images in a dataset. This is witnessed by

the strong color contrast (see Refs. [22, 84]) in most

frequently used salient object benchmark datasets

[37]. Thus, two practices in dataset construction are

to be preferred: i) having independent image selection

and annotation processes [22], and ii) detecting the

most salient object first and then segmenting it.

Negative set bias is the consequence of a lack of

a rich and unbiased negative set, i.e., one should

avoid concentrating on a particular image of interest

and datasets should represent the whole world.

Negative set bias may affect the ground-truth by

incorporating the annotator’s personal preferences

for some object types. Thus, including a variety

of images is encouraged when constructing a good

dataset. Capture bias conveys the effect of image

composition on the dataset. The most popular kind

of such a bias is the tendency to compose images with

important objects in the central region of the image,

i.e., center bias. The existence of bias in a dataset

makes quantitative comparisons very challenging and

sometimes even misleading. For instance, a trivial

saliency model which consists of a Gaussian blob

at the image center often scores higher than many

fixation prediction models [63, 231, 232].

5.3 Future directions

Several promising research directions for constructing

more effective models and benchmarks are discussed

here.

5.3.1 Beyond single images

Most benchmarks and saliency models discussed in

this study deal with single images. Unfortunately,

salient object detection on multiple input images,

e.g., salient object detection on video sequences, co-

salient object detection, and salient object detection

over depth and light field images, are less explored.

One reason behind this is the limited availability

of benchmark datasets for these problems. For

example, as mentioned in Section 4, there are only

two publicly available benchmark datasets for video

saliency (mostly comprising cartoons and news). For
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these videos, only bounding boxes are provided for the

key frames to roughly localize salient objects. Multi-

modal data is becoming increasingly more accessible

and affordable. Integrating additional cues such

as spatio-temporal consistency and depth will be

beneficial for efficient salient object detection.

5.3.2 Instance-level salient object detection

Existing saliency models are object-agnostic (i.e., they

do not split salient regions into objects). However,

humans possess the capability to detect salient objects

at instance level. Instance-level saliency can be useful

in several applications, such as image editing and

video compression.

Two possible approaches for instance-level saliency

detection are as follows. The first uses an object

detection or object proposal method, e.g., Fast-

RCNN [161], to extract a stack of object bounding

box candidates and then segment salient objects

within them. The second approach, initially proposed

in Ref. [159], is to leverage edge information to

distinguish different salient objects.

5.3.3 Versatile network architectures

With the deeper understanding of researchers

on CNNs, more and more interesting network

architectures have been developed. Using advanced

baseline models and network architectures [151] can

substantially improve the performance. On one hand,

deeper networks help better capture salient objects

because of their ability to extract high-level semantic

information. On the other hand, apart from high-

level information, low-level features [49, 159] should

also be considered to build high resolution saliency

maps.

5.3.4 Unanswered questions

Some remaining questions include: how many

(salient) objects are necessary to represent a scene?

Does map smoothing affect the scores and model

ranking? How is salient object detection different

from other fields? What is the best way to tackle

center bias in model evaluation? What is the

remaining gap between models and humans? A

collaborative engagement with other related fields

such as saliency for fixation prediction, scene labeling

and categorization, semantic segmentation, object

detection, and object recognition can help answer

these questions, situate the field better, and identify

future directions.

6 Summary and conclusions

In this paper, we have exhaustively reviewed the

salient object detection literature with respect to

closely related areas. Detecting and segmenting

salient objects is very useful. Objects in images

automatically capture more attention than back-

ground items, such as grass, trees, and sky. Therefore,

if we can detect salient or important objects

first, we can perform detailed reasoning and scene

understanding in the next stage. Compared to

traditional special-purpose object detectors, saliency

models are general, typically fast, and do not need

heavy annotation. These properties allow processing

of a large number of images at low cost.

Exploring connections between salient object

detection and fixation prediction models can help

enhance performance for both types of models. In

this regard, datasets that offer both salient object

judgements of humans and eye movements are

highly desirable. Conducting behavioral studies

to understand how humans perceive and prioritize

objects in scenes and how this concept is related

to language, scene description and captioning,

visual question answering, attributes, etc., can

offer invaluable insights. Further, it is critical to

focus more on evaluating and comparing salient

object models to gauge future progress. Tackling

dataset biases such as center bias and selection

bias and moving towards more challenging images is

important.

Although salient object detection and segmentation

methods have made great strides in recent years,

a very robust salient object detection algorithm

that can generate high quality results for nearly all

images is still lacking. Even for humans, what is

the most salient object in the image, is sometimes

a quite ambiguous question. To this end, a general

suggestion:

Don’t ask what segments can do for you, ask what

you can do for the segments ①.

— Jitendra Malik

is particularly important when attempting to

build robust algorithms. For instance, when

dealing with noisy Internet images, although salient

object detection and segmentation methods do not

guarantee robust performance on individual images,

① http://www.cs.berkeley.edu/$\sim$malik/student-tree-2010.pdf
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their efficiency and simplicity make it possible to

automatically process a large number of images. This

allows the filtering of images for the purposes of

reliability and accuracy, running applications robustly

[84, 174, 175, 177, 179, 233], and unsupervised

learning [176].
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region detection and segmentation. In:Computer Vision

Systems. Lecture Notes in Computer Science, Vol. 5008.

Gasteratos, A.; Vincze, M.; Tsotsos, J. K. Eds. Springer

Berlin Heidelberg, 66–75, 2008.

[57] Ma, Y.-F.; Zhang, H.-J. Contrast-based image

attention analysis by using fuzzy growing. In:

Proceedings of the 11th ACM International

Conference on Multimedia, 374–381, 2003.

[58] Liu, F.; Gleicher, M. Region enhanced scale-invariant

saliency detection. In: Proceedings of the IEEE

International Conference on Multimedia and Expo,

1477–1480, 2006.

[59] Walther, D.; Koch, C. Modeling attention to salient

proto-objects. Neural Networks Vol. 19, No. 9, 1395–

1407, 2006.
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P.; Süsstrunk, S. SLIC superpixels compared to state-

of-the-art superpixel methods. IEEE Transactions on

Pattern Analysis and Machine Intelligence Vol. 34,

No. 11, 2274–2282, 2012.

[167] Chen, L. C.; Papandreou, G.; Kokkinos, I.;

Murphy, K.; Yuille, A. L. DeepLab: Semantic

image segmentation with deep convolutional nets,

atrous convolution, and fully connected CRFs. IEEE

Transactions on Pattern Analysis and Machine

Intelligence Vol. 40, No. 4, 834–848, 2018.

[168] Arbelaez, P.; PontTuset, J.; Barron, J. T.; Marques,

F.; Malik, J. Multiscale combinatorial grouping. In:

Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, 328–335, 2014.
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