
Salient Region Detection and Segmentation

Radhakrishna Achanta, Francisco Estrada, Patricia Wils, and Sabine Süsstrunk
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Abstract. Detection of salient image regions is useful for applications
like image segmentation, adaptive compression, and region-based image
retrieval. In this paper we present a novel method to determine salient
regions in images using low-level features of luminance and color. The
method is fast, easy to implement and generates high quality saliency
maps of the same size and resolution as the input image. We demonstrate
the use of the algorithm in the segmentation of semantically meaningful
whole objects from digital images.
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1 Introduction

Identifying visually salient regions is useful in applications such as object based
image retrieval, adaptive content delivery [11, 12], adaptive region-of-interest
based image compression , and smart image resizing [2]. We identify salient re-
gions as those regions of an image that are visually more conspicuous by virtue of
their contrast with respect to surrounding regions. Similar definitions of saliency
exist in literature where saliency in images is referred to as local contrast [9, 11].

Our method for finding salient regions uses a contrast determination filter
that operates at various scales to generate saliency maps containing “saliency
values” per pixel. Combined, these individual maps result in our final saliency
map. We demonstrate the use of the final saliency map in segmenting whole
objects with the aid of a relatively simple segmentation technique. The novelty
of our approach lies in finding high quality saliency maps of the same size and
resolution as the input image and their use in segmenting whole objects. The
method is effective on a wide range of images including those of paintings, video
frames, and images containing noise.

The paper is organized as follows. The relevant state of the art in salient
region detection is presented in Section 2. Our algorithm for detection of salient
regions and its use in segmenting salient objects is explained in Section 3. The
parameters used in our algorithm, the results of saliency map generation, seg-
mentation, and comparisons against the method of Itti et al. [9] are given in
Section 4. Finally, in Section 5 conclusions are presented.
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2 Approaches for Saliency Detection

The approaches for determining low-level saliency can be based on biological
models or purely computational ones. Some approaches consider saliency over
several scales while others operate on a single scale. In general, all methods
use some means of determining local contrast of image regions with their sur-
roundings using one or more of the features of color, intensity, and orientation.
Usually, separate feature maps are created for each of the features used and
then combined [8, 11, 6, 4] to obtain the final saliency map. A complete survey
of all saliency detection and segmentation research is beyond the scope of this
paper, here we discuss those approaches in saliency detection and saliency-based
segmentation that are most relevant to our work.

Ma and Zhang [11] propose a local contrast-based method for generating
saliency maps that operates at a single scale and is not based on any biological
model. The input to this local contrast-based map is a resized and color quan-
tized CIELuv image, sub-divided into pixel blocks. The saliency map is obtained
from summing up differences of image pixels with their respective surrounding
pixels in a small neighborhood. This framework extracts the points and regions
of attention. A fuzzy-growing method then segments salient regions from the
saliency map.

Hu et al. [6] create saliency maps by thresholding the color, intensity, and
orientation maps using histogram entropy thresholding analysis instead of a scale
space approach. They then use a spatial compactness measure, computed as the
area of the convex hull encompassing the salient region, and saliency density,
which is a function of the magnitudes of saliency values in the saliency feature
maps, to weigh the individual saliency maps before combining them.

Itti et al. [9] have built a computational model of saliency-based spatial at-
tention derived from a biologically plausible architecture. They compute saliency
maps for features of luminance, color, and orientation at different scales that ag-
gregate and combine information about each location in an image and feed into a
combined saliency map in a bottom-up manner. The saliency maps produced by
Itti’s approach have been used by other researchers for applications like adapting
images on small devices [3] and unsupervised object segmentation [5, 10].

Segmentation using Itti’s saliency maps (a 480x320 pixel image generates a
saliency map of size 30x20 pixels) or any other sub-sampled saliency map from a
different method requires complex approaches. For instance, a Markov random
field model is used to integrate the seed values from the saliency map along with
low-level features of color, texture, and edges to grow the salient object regions
[5]. Ko and Nam [10], on the other hand, use a Support Vector Machine trained
on the features of image segments to select the salient regions of interest from
the image, which are then clustered to extract the salient objects. We show that
using our saliency maps, salient object segmentation is possible without needing
such complex segmentation algorithms.

Recently, Frintrop et al. [4] used integral images [14] in VOCUS (Visual
Object Detection with a Computational Attention System) to speed up com-
putation of center-surround differences for finding salient regions using separate



Salient Region Detection and Segmentation 3

feature maps of color, intensity, and orientation. Although they obtain better
resolution saliency maps as compared to Itti’s method, they resize the feature
saliency maps to a lower scale, thereby losing resolution. We use integral images
in our approach but we resize the filter at each scale instead of the image and
thus maintain the same resolution as the original image at all scales.

3 Salient region detection and segmentation

This section presents details of our approach for saliency determination and
its use in segmenting whole objects. An overview of the complete algorithm is
presented in Figure 1. Using the saliency calculation method described later,
saliency maps are created at different scales. These maps are added pixel-wise
to get the final saliency maps. The input image is then over-segmented and the
segments whose average saliency exceeds a certain threshold are chosen.

Fig. 1. Overview of the process of finding salient regions. (a) Input image. (b) Saliency
maps at different scales are computed, added pixel-wise, and normalized to get the final
saliency map. (c) The final saliency map and the segmented image. (d) The output
image containing the salient object that is made of only those segments that have an
average saliency value greater than the threshold T (given in Section 3.1).

3.1 Saliency calculation

In our work, saliency is determined as the local contrast of an image region with
respect to its neighborhood at various scales. This is evaluated as the distance
between the average feature vector of the pixels of an image sub-region with the
average feature vector of the pixels of its neighborhood. This allows obtaining a
combined feature map at a given scale by using feature vectors for each pixel,
instead of combining separate saliency maps for scalar values of each feature. At
a given scale, the contrast based saliency value ci,j for a pixel at position (i, j) in
the image is determined as the distance D between the average vectors of pixel
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Fig. 2. (a) Contrast detection filter showing inner square region R1 and outer square
region R2. (b) The width of R1 remains constant while that of R2 ranges according to
Equation 3 by halving it for each new scale. (c) Filtering the image at one of the scales
in a raster scan fashion.

features of the inner region R1 and that of the outer region R2 (Figure 2) as:
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where N1 and N2 are the number of pixels in R1 and R2 respectively, and v is the
vector of feature elements corresponding to a pixel. The distance D is a Euclidean
distance if v is a vector of uncorrelated feature elements, and it is a Mahalanobis
distance (or any other suitable distance measure) if the elements of the vector
are correlated. In this work, we use the CIELab color space [7], assuming sRGB
images, to generate feature vectors for color and luminance. Since perceptual
differences in CIELab color space are approximately Euclidian, D in Equation
1 is:

ci,j = ‖v1 − v2‖ (2)

where v1 = [L1, a1, b1]
T and v2 = [L2, a2, b2]

T are the average vectors for regions
R1 and R2, respectively. Since only average feature vector values of R1 and
R2 need to be found, we use the integral image approach as used in [14] for
computational efficiency. A change in scale is affected by scaling the region R2

instead of scaling the image. Scaling the filter instead of the image allows the
generation of saliency maps of the same size and resolution as the input image.
Region R1 is usually chosen to be one pixel. If the image is noisy (for instance
if high ISO values are used when capturing images, as can often be determined
with the help of Exif data (Exchangeable File Information Format [1]) then R1

can be a small region of N × N pixels (in Figure 5(f) N is 9).

For an image of width w pixels and height h pixels, the width of region R2,
namely wR2

is varied as:
w

2
≥ (wR2

) ≥
w

8
(3)

assuming w to be smaller than h (else we choose h to decide the dimensions of
R2). This is based on the observation that the largest size of R2 and the smaller
ones (smaller than w/8) are of less use in finding salient regions (see Figure
3). The former might highlight non-salient regions as salient, while the latter
are basically edge detectors. So for each image, filtering is performed at three
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Fig. 3. From left to right, original image followed by filtered images. Filtering is done
using R1 of size one pixel and varying width of R2. When R2 has the maximum
width, certain non salient parts are also highlighted (the ground for instance). It is
the saliency maps at the intermediate scales that consistently highlight salient regions.
The last three images on the right mainly show edges.

different scales (according to Eq. 3) and the final saliency map is determined as
a sum of saliency values across the scales S:

mi,j =
∑

S

ci,j (4)

∀ i ∈ [1, w], j ∈ [1, h] where mi,j is an element of the combined saliency map
M obtained by point-wise summation of saliency values across the scales.

3.2 Whole Object Segmentation using Saliency Maps

The image is over-segmented using a simple K-means algorithm. The K seeds for
the K-means segmentation are automatically determined using the hill-climbing
algorithm [13] in the three-dimensional CIELab histogram of the image. The

Fig. 4. (a) Finding peaks in a histogram using a search window like (b) for a one
dimensional histogram.

hill-climbing algorithm can be seen as a search window being run across the
space of the d-dimensional histogram to find the largest bin within that window.
Figure 4 explains the algorithm for a one-dimensional case. Since the CIELab
feature space is three-dimensional, each bin in the color histogram has 3d−1 = 26
neighbors where d is the number of dimensions of the feature space. The number
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of peaks obtained indicates the value of K, and the values of these bins form the
initial seeds.

Since K-means algorithm clusters pixels in the CIELab feature space, an 8-
neighbor connected-components algorithm is run to connect pixels of each cluster
spatially. Once the segmented regions rk for k = 1, 2...K are found, the average
saliency value V per segmented region is calculated by adding up values in the
final saliency map M corresponding to pixels in the segmented image:

Vk =
1

|rk|

∑

i,j∈rk

mi,j (5)

where |rk| is the size of the segmented region in pixels. A simple threshold based
method can be used wherein the segments having average saliency value greater
than a certain threshold T are retained while the rest are discarded. This results
in an output containing only those segments that constitute the salient object.

4 Experiments and Results

Experiments were performed on images from the Berkely database and from
flickrTM, 1. The saliency maps for Itti’s model2 were generated using iLAB Neu-
romorphic Vision Toolkit3. The results of salient region segmentation from our
method4 are compared with those from Itti’s model for the same input image
and same segmentation algorithm. For segmentation, a window size of 3× 3× 3
is used for the hill-climbing search on a 16×16×16 bin CIELab histogram. The
average saliency threshold used for selecting segments T is set at 25 (about 10%
of the maximum possible average saliency in the normalized final saliency map)
based on observations on about 200 images. This threshold is not too sensitive
and can be varied by 10% of its value without affecting the segmentation results.
The results5 in Figures 6 and 7 show that salient pixels using our computational
method correspond closely to those using Itti’s method, which is based on a bi-
ological model. In addition, because of the high resolution of the saliency maps,
the entire salient region is clearly highlighted (Figures 6 and 7, column 3). This
facilitates a clean segmentation of semantically more meaningful whole objects
without having to use an overly complex segmentation algorithm.

We compared speed of salient map generation of our proposed method against
that of Itti’s method. The results are shown in Table 1. Our algorithm is at least
five times faster in generation of saliency maps for a given image size. Although
both algorithms have roughly have a complexity of O(n) (which is also evident

1 http://www.flickr.com/
2 Since Itti’s model generates very small saliency maps relative to the original input

image, in Figures 6 and 7 these images are shown up-scaled.
3 http://ilab.usc.edu/toolkit/
4 http://ivrg.epfl.ch/˜achanta/SalientRegionDetection/SalientRegionDetection.html
5 The saliency maps from Itti’s method as well as our method shown in the results

are contrast-stretched for better print quality.
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Fig. 5. (a) Original image with 5db gaussian noise. (b) Itti’s saliency map. (c) Seg-
mentation result using map (b). (d) Saliency map with our method using R1 of size
1× 1. (e) Segmentation result using map (d). (f) Saliency map with our method using
R1 of size 9× 9. (g) Segmentation result using map (f).

from the speeds vs. image size values in Table 1), there is a lot more processing
taking place in Itti’ method, where apart from color and luminance maps several
orientation maps are also created. As opposed to this only three maps created by
our method for the features of color and luminance treated as one vector value.
Itti’s method computes center-surround differences by performing subtraction
between Gaussian pyramid levels. This speedup results in a loss of resolution.
Our method instead changes the size of the filter at each scale through the
use of integral images, which achieves even greater speed without lowering the
resolution.

Table 1. Table comparing time (in seconds) required to find salient regions for different
sizes of input images. The two algorithms were run on an Intel Dual Core 2.26 GHz
machine with 1GB RAM.

Algorithm used 320x240 640x480 800x600 1024x768

Itti-Koch Method 0.75 2.54 4.40 7.50
Our algorithm for saliency 0.12 0.46 0.68 1.29

In cases when the salient object occupies a large part of the image or if certain
parts of the salient objects do not show sufficient contrast w.r.t their surround-
ings (eg. the back of the deer in Figure 7), the salient object segmentation is
not satisfactory. At times there are some holes left in the salient objects or some
extra segments are present in the final result (eg. spots of the Jaguar in Figure
7). These can be handled in a post-processing step. In the experiments done with
noisy images it was observed that (see Figure 5), for moderate amounts of noise
(less than 1dB), one pixel size for R1 suffices. The size of R1 can be increased in
the presence greater amount of noise for better salient region detection.

5 Conclusions

We presented a novel method of finding salient regions in images, using low level
features of color and luminance, which is easy to implement, noise tolerant, and
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Fig. 6. Visual attention region detection results on images from the Berkeley database.
From left to right: Original image, Itti’s saliency map, segmentation using Itti’s map,
saliency map using our method, and segmentation using our saliency map. Note that
the regions of saliency in Itti’s maps and our maps are often the same, however, in our
maps, the detail is much greater and the regions are well defined.
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Fig. 7. Visual attention region detection results on images from the Berkeley database.
From left to right: Original image, Itti’s saliency map, segmentation using Itti’s map,
saliency map using our method, and segmentation using our saliency map.

fast enough to be useful for real time applications. It generates saliency maps
at the same resolution as the input image. We demonstrated the effectiveness
of the method in detecting and segmenting salient regions in a wide range of
images. The approach is at least five times as fast as a prominent approach to
finding saliency maps and generates high resolution saliency maps that allow
better salient object segmentation.
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