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Abstract

The goal of saliency detection is to locate important pix-

els or regions in an image which attract humans’ visual at-

tention the most. This is a fundamental task whose output

may serve as the basis for further computer vision tasks like

segmentation, resizing, tracking and so forth.

In this paper we propose a novel salient region detec-

tion algorithm by integrating three important visual cues

namely uniqueness, focusness and objectness (UFO). In

particular, uniqueness captures the appearance-derived vi-

sual contrast; focusness reflects the fact that salient regions

are often photographed in focus; and objectness helps keep

completeness of detected salient regions. While uniqueness

has been used for saliency detection for long, it is new to

integrate focusness and objectness for this purpose. In fac-

t, focusness and objectness both provide important salien-

cy information complementary of uniqueness. In our ex-

periments using public benchmark datasets, we show that,

even with a simple pixel level combination of the three com-

ponents, the proposed approach yields significant improve-

ment compared with previously reported methods.

1. Introduction

Humans have the capability to quickly prioritize external

visual stimuli and localize their most interest in a scene. As

such, how to simulate such human capability with a com-

puter, i.e., how to identify the most salient pixels or regions

in a digital image which attract humans’ first visual atten-

tion, has become an important task in computer vision. Fur-

ther, results of saliency detection can be used to facilitate

other computer vision tasks such as image resizing, thumb-

nailing, image segmentation and object detection.

Due to its importance, saliency detection has received

intensive research attention resulting in many recently pro-

posed algorithms. The majority of those algorithms are
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Figure 1. From left to right: source images, uniqueness, focusness,

objectness, combined results and ground truth.

based on low-level features of the image such as appear-

ance uniqueness in pixel or superpixel level (See Sec. 2).

One basic idea is to derive the saliency value from the local

contrast of various channels, such as in terms of unique-

ness defined in [29]. While uniqueness often helps generate

good saliency detection results, it sometimes produces high

values for non-salient regions, especially for regions with

complex structures. As a result, it is desired to integrate

complementary cues to address the issue.

Inspired by the above discussion, in this paper we pro-

pose integrating two additional cues, focusness and object-

ness to improve salient region detection. First, it is com-

monly observed that objects of interest in an image are often

photographed in focus. This naturally associates the focus-

ness (i.e., degree of focus) with the saliency. We derive an

algorithm for focusness estimation by treating focusness as

a reciprocal of blurriness, which is in turn estimated by the

scale of edges using scale-space analysis. Second, intuitive-

ly, a salient region usually completes objects instead of cut-

ting them into pieces. This suggests us to use object com-

pleteness as a cue to boost the salient region detection. The

recently proposed objectness estimation method [3] serves

well for this purpose by providing the likelihood that a re-

gion belongs to an object.
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Combining focusness and objectness with uniqueness,

we propose a new salient region detection algorithm, named

UFO saliency, which naturally addresses the aforemen-

tioned issues in salient region detection. To evaluate the

proposed approach, we apply it first to the intensively tested

MSRA-1000 dataset [2] and then to the challenging BSD-

300 dataset [25]. In both experiments, our method demon-

strates excellent performance in comparison with state-of-

the-arts. Finally, the source code and experimental results

of the proposed approach are shared for research uses.1

2. Related Work

2.1. Saliency Detection

According to [26, 35], saliency can be computed either

in a bottom-up fashion using low level features or in a top-

down fashion driven by specific tasks.

Many early works approach the problem of saliency de-

tection with bottom-up methods. Koch et al. [19] sug-

gest that saliency is determined by center-surround contrast

of low-level features. Itti et al. [14] define image salien-

cy using a Difference of Gaussians approach. Motivated

by this work, some approaches were proposed later which

combine local, regional and global contrast-based features

[1, 12, 22, 24]. Also some methods turn to the frequency

domain to search for saliency cues [10, 13, 21]. The above

methods strive to highlight the object boundaries without

propagating saliency to the areas inside, limiting their ap-

plicability for some vision tasks like segmentation.

Later on, many works were proposed which utilize var-

ious types of features in a global scope for saliency detec-

tion. Zhai and Shah [40] compute pixel-level saliency using

the luminance information. Achanta et al. [2] achieve glob-

ally consistent results by defining pixel’s color difference

from the average image color. However, these two methods

do not take full advantage of color information and there-

fore may not give good results for images (e.g., natural im-

ages) with high color complexity. Cheng et al. [7] study

color contrast in the Lab color space and measure the con-

trast in the global scope. Perazzi et al. [29] promote Cheng

et al.’s work through elements distribution analysis and pro-

pose a linear-time computation strategy. Depth cues are also

introduced to saliency analysis by Niu et al. [27] and Lang

et al. [23]. These methods heavily depend on color infor-

mation and therefore may not work well for images with

not much color variation, especially when foreground and

background objects have similar colors. Comparing with

these works, our study focuses more on image statistics ex-

tracted from edges.

High-level information from priors and/or special objec-

t detectors (e.g., face detector) has also been incorporated

into recently proposed algorithms. Wei et al. [37] turn to

1http://www.dabi.temple.edu/˜hbling/code/UFO-saliency.zip

background priors to guide the saliency detection. Gofer-

man et al. [11] and Judd et al. [18] integrate high-level

information, making their methods potentially suitable for

specific tasks. Shen and Wu [34] unify the higher-level pri-

ors to a low rank matrix recovery framework. As a fast

evolving topic, there are many other emerging saliency de-

tection approaches worth notice. For example, shape prior

is proposed in [15], context information is exploited in [36],

region-based salient object detection is introduced in [16],

and manifold ranking approach is introduced for salien-

cy detection in [39], submodular optimization-based solu-

tion is presented in [17], hierarchical saliency is exploited

in [38], etc.

Borji et al. [4] compare the state-of-the-art algorithms

on five databases. They find that combining evidences (fea-

tures) from existing approaches may enhance the saliency

detection accuracy. On the other hand, their experiment also

shows that simple feature combination does not guarantee

the improvement of saliency detection accuracy, suggesting

that the widely used features may not be complementary

and some may even be mutually exclusive to each other.

2.2. Uniqueness, Focusness and Objectness

In the following we briefly summarize the work related

to the three ingredients used in our approach. Uniqueness

stands for the color rarity of a segmented region or pixel

in a certain color space. Cheng et al. [7] and Perazzi et

al. [29] mainly rely on this concept to detect saliency. It

is worth noting that the two methods use different segmen-

tation methods to get superpixels (regions) and the results

turn out to be very different, suggesting the important role

of segmentation algorithms in saliency region detection.

We use the term focusness to indicate the degree of fo-

cus. Focusness of an object is usually inversely related to

its degree of blur (blurriness) in the image. Focusness or

blurriness has been used for many purposes such as depth

recovery [41] and defocus magnification [31]. The blurri-

ness is usually measured in edge regions and it is therefore

a key step to propagate the blurriness information to the w-

hole image. Bae and Durand [31] use colorization method

to spread the edge blurriness which may work well only

for regions with smooth interiors. Zhuo et al. [41] use im-

age matting method to compute the blurriness of non-edge

pixels. Baveye et al. [30] also compute saliency by taking

blur effects into account, but their method identifies blur by

wavelet analysis while our solution by scale space analysis.

The term objectness, proposed by Alexe et al. [3], mea-

sures the likelihood of there being a complete object around

a pixel or region. The measurement is calculated by fusing

hybrid low level features such as multi-scale saliency, color

contrast, edge density and superpixels straddling. The ob-

jectness is later used popularly in various vision tasks such

as object detection [6] and image retargeting [32].
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3. Salient Region Detection by UFO

3.1. Problem Formulation and Method Overview

We now formally define the problem of salient region

detection studied in this paper. We denote an input color

image as � : Λ → ℝ
3, where Λ ⊂ ℝ

2 is the set of pixels

of � . The goal is to compute a saliency map denoted as

� : Λ → ℝ, such that �(x) indicates the saliency value of

pixel x.

Given the input image � , the proposed UFO saliency first

calculates the three components separately, denoted as � :
Λ → ℝ for uniqueness, ℱ : Λ → ℝ for focusness, and

� : Λ → ℝ for objectness. The three components are then

combined into the final saliency �.

Although the saliency map is defined for per pixel, we

observe that region-level estimation provides more stable

results. For this purpose, in the preprocessing stage, we seg-

ment the input image into a set of non-overlapping regions,

Λ�, � = 1, . . . , � , such that

Λ =
∪

1≤�≤� Λ�.

A good segmentation for our task should reduce broken

edges and generate regions with proper granularity. In our

implementation we use the mean-shift algorithm [5] for this

purpose.

In the following subsections we give details on how to

calculate each component and hwo to combine them for the

final result.

3.2. Focusness Estimation by Scale Space Analysis

Pixel-level Focusness. In general, sharp edges of an object

may get spatially blurred when projected to the image plane.

There are three main types of blur: penumbral blur at the

edge of a shadow, focal blur due to finite depth of field and

shading blur at the edge of a smooth object [8].

Focal blur occurs when a point is out of focus, as illus-

trated in Fig. 2. When the point is placed at the focus dis-

tance, �� , from the lens, all the rays from it converge to a

single sensor point and the image will appear sharp. Oth-

erwise, when � ∕= �� , these rays will generate a blurred

image in the sensor area. The blur pattern generated this

way is called the circle of confusion (CoC), whose size is

determined by the diameter �. The focusness can be derived

from the degree of blur.

The effect of focus/defocus is often easier to be identi-

fied from edges than from object interiors. According to [8],

the degree of blur can be measured by the distance between

each pair of minima and maxima of the second derivative

responses of the blurred edge. In practice, however, sec-

ond derivatives are often sensitive to noise and clutter edges.

Therefore, it is often hard to accurately localize extrema of

the second derivatives [31].

Figure 2. A thin lens model for image blur (revised from [41]).

The defocus blur can be modeled as the convolution

of a sharp image [28], denoted by 	(x), with a point

spread function (PSF) approximated by a Gaussian kernel

Φ(x, 
) = 1√
2��

exp(−∣x∣2
2�2 ). The scale 
 = �� is propor-

tional to the CoC diameter �, and can be used to measure

the degree of blur. Consequently, the estimation of focus-

ness relies on the estimation of the scale of edges, i.e., 
.

Inspired by Lindeberg’s seminal work on scale estima-

tion [20], we derive an approach for estimating 
. In partic-

ular, let ��(�) be a 1D edge model depicting a vertical edge

at position 
,

��(�) =

{

� + ℎ if � < 
;

� otherwise.

The blurred edge image �(�) can be modeled as the convo-

lution of ��(�) with the Gaussian kernel, �(�) = ��(�) ⊗
Φ(�, 
). Denoting the Differential-of-Gaussian (DOG) op-

eration by ∇�(�, 
1) = ∇(�) ⊗ Φ(�, 
1), the response of

DOG on � is

�(
, 
1) =∇�(�, 
1)⊗ Φ(�, 
)⊗ ��(�) (1)

within the neighborhood of an edge pixel, the response

reaches its maximum when 
 = 0. Let �(
1) = �(0, 
1),
denote the response on the edge pixel

�(
1) =
ℎ
2

1
√

2�(
2 + 
2
1)

,

its first and second derivatives with respect to 
1 are

� ′(
1) =
ℎ
1(2


2 + 
2
1)√

2�(
2 + 
2
1)

3

2

, � ′′(
1) =
ℎ
2(2
2 − 
2

1)√
2�(
2 + 
2

1)
5

2

,

It can be proven that when 
1 =
√
2
, � ′′(
1) = 0. It

means that � ′(
1) reaches its maximum. The above deriva-

tion leads to the following way to calculate the focusness at

edge pixels of an input image � ,

1. Detect edges from �;

2. For each edge pixel x, calculate its DOG responses �

using different scales in Σ = {1, 2, . . . , 16};

3. Estimate � ′ at x as

� ′ = (�(�)− �(� − 1) : � = 2, . . . , 16);
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4. Define the degree of blur �(x) at x as

�(x) =
√
2
2 argmax	(�

′);

5. Approximate the pixel-level focusness of x as

ℱ
(x) =
1

�(x) .

In our implementation, we set half of the window width

of the filters � = 4
1, since 2
1 corresponds to the distance

between the peak and valley of the DOG filter and [−�,�]
thus covers the dominant part of the filter.

Region-level Focusness. It would be ideal to compute the

saliency for each object as a whole. However, accurate ob-

ject segmentation by itself is a hard problem and we hence

make saliency computation in the sub-object level instead.

Specifically, we conduct saliency computation for each sep-

arate region Λ�, � = 1, . . . , � .

For region Λ�, we use �� to denote the set of �� bound-

ary pixels, and 	� to denote the set of �� interior edge pixel-

s. It naturally follows that the focusness of Λ� is positively

related to the sum of the focusness values at all the pixels

in �� ∪ 	�. Further, observing that a region with a sharper

boundary usually stands out more salient, we use the bound-

ary sharpness as a weight in the computation. The boundary

sharpness is quantified as the mean of the gradient values,

as obtained with the DOG operator, at the boundary pix-

els. Specifically, we formulate the region-level focusness,

ℱ�(Λ�), of Λ� as:

ℱ�(Λ�) =
1

��

∑

p∈
�

∣∇�(p)∣ ⋅ exp
( 1

��+��

∑

q∈(
�∪��)

ℱ
(q)
)

.

(2)

It is worth noting that an exponential function is used in E-

qn. 2 to emphasize the significance of the pixels’ focusness

values. Since the above calculation does not apply directly

to image margins, we manually assign fixed negative values

to margin pixels by assuming low saliency.

After the focusness is computed for a region, we assign

this value to every pixel in it. By doing this, we obtain a

focusness map over the whole image � , which we denote as

ℱ(�) or ℱ for short.

It is noteworthy that our region-level focusness compu-

tation essentially corresponds to a propagation of the fo-

cusness and/or sharpness at the boundary and interior edge

pixels to the whole area of a region. Compared with the

previous propagation methods [31, 41], ours is simple, sta-

ble and able to process regions with non-smooth interiors.

3.3. Objectness Estimation

Human eyes tend to identify an object as either salien-

t or not as a whole. Therefore, it is desirable to estimate

the probability of each region belonging to a well identifi-

able object in order to prioritize the regions in salient region

detection.

Figure 3. From left to right: source images, uniqueness, focusness

and ground truth.

Recently, Alexe et al. [3] proposed a novel trained

method to compute an objectness score for any given im-

age window, which measures the probability of that win-

dow containing a complete object. The objectness measure

is based on image cues such as multi-scale saliency, color

contrast, edge density and superpixel straddling.

According to [3], an object as shown in an image usually

has the following general properties:

∙ it has a well-defined closed boundary in space,

∙ its appearance is different from its surroundings, and

∙ it is sometimes unique and stands out saliently.

These properties match well our perception of saliency in

general. As such, utilizing this work, we propose a method

to measure the objectness of each region, resulting in a com-

plete objectness map over the image. This is done in two

steps: pixel-level objectness estimation and region-level ob-

jectness estimation, as detailed below.

Pixel-level Objectness. In order to compute the objectness

of each pixel (i.e., the probability of there being a complete

object in a local window centered on each pixel), we ran-

domly sample � windows over the image, and assign each

window w a probability score � (w) to indicate its object-

ness calculated by [3]. Thereafter, we overlap all the set of

all windows, denoted as W, to obtain the pixel-level object-

ness �
(x) for each pixel x by

�
(x) =
∑

w∈W and x∈w

� (�x), (3)

where w denotes any window in W that contains pixel x.

We set � = 10000 in our experiment. Similar pixel-level

objectness was used in [33] for image thumbnailing.

Region-level Objectness. For every region Λ�, we compute

its region-level objectness ��(Λ�) as:

��(Λ�) =
1

∣Λ�∣
∑

x∈Λ�

�
(x). (4)
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After the objectness is computed for a region, we assign

this value to every pixel in it. By doing this, we obtain an

objectness map over the whole image � , which we denote

as �(�) or � for short.

3.4. Uniqueness Estimation

Uniqueness, i.e., the color contrast feature, has been

effectively used for saliency detection in previous work-

s [7, 27, 29]. They have used either pixel-level or region-

level uniqueness, but none has used both simultaneously.

By contrast, we combine them to capture both macro-level

and micro-level features in the image. Furthermore, in

preparation for the region-level uniqueness estimation, we

segment the image using a different approach which leads

to adaptive region sizes and better segmentation results.

The uniqueness ��(Λ�) for a region Λ� is computed as:

��(Λ�) =
∑

1≤�≤�,� ∕=�

∣Λ�∣�(Λ�,Λ�), (5)

where �(Λ�,Λ�) is the color distance metric between re-

gions Λ� and Λ� in the Lab color space [7].

For generating superpixels, we use the meanshift algo-

rithm [5] that is different than the graph-based one [9] used

in [7]. Our choice is based on the advantages of meanshift in

boundary alignment, shape adaptivity and region size con-

trol, we use it instead for image segmentation. For a bet-

ter object-size adaptivity, we set the minimum region area

parameter to one tenth of the foreground area in the bina-

rized pixel-level objectness map as computed using Eqn. 3.

The other two parameters, spatial bandwidth and the feature

bandwidth are empirically set to 20 and 15, respectively.

This difference in image segmentation method significantly

boosts the performance over [7], as will be demonstrated in

Section 4.

Since our computations of ℱ ,� and �� are all on the

region level, they can work together to locate the overall

structure of salient objects. However, they may sometimes

miss small local color details that appear salient to human

vision as well. Therefore, we incorporate the pixel-level

uniqueness into the computation in order to capture those

small color details that may be locally salient. For each

pixel x, its uniqueness �
(x) is computed as

�
(x) =
∑

x′∈�∖{x}
�(x′, x), (6)

where �(x′, x) is the color distance metric between pixels

x and x′ in the Lab color space [7].

Finally, we define the overall uniqueness map � as:

� = �� + �
. (7)

� ��� ��� ��� ��� �
���

���

���

��	

���

��


�

��
���

�
��
�
��
��
�

�
�

�

�
�
��

�
�

�����
�
�� !�

�

������� !�
�

����� !�
�

����� !�
�

Figure 4. Evaluation of several combinations of our algorithm on

the MSRA-1000 dataset [2].

3.5. Combination of Components

Combining the focusness, the objectness and the unique-

ness maps as computed above, we define our final saliency

map � as:

� = exp(ℱ + �)×�, (8)

where all operations are pixelwise, and ℱ , � and � are all

normalized.

4. Experiments

4.1. Database and Evaluation Methods

Our experiments are conducted on the MSRA-1000

dataset [2] and the BSD-300 dataset [25]. The MSRA-1000

dataset is a subset of the MSRA database [22], and each

image in MSRA-1000 is associated with a human-labeled

ground truth. The BSD-300 dataset contains many images

with multiple (salient) objects and is considered the most

difficult dataset in [4]. In order to study the performance of

saliency detection algorithms, we use three popular evalua-

tion protocols used in previous studies.

In the first protocol, we binarize each saliency map with

a fixed threshold 
 ∈ [0, 255]. After the binarization, ‘1’-

valued regions correspond to the foreground. We compare

this binarized image and the ground truth mask to obtain the

precision and recall. Varying 
 from 0 to 255 generates a

sequence of precision-recall pairs, from which a precision-

recall curve can be plotted. Combining the results from all

the test images, we may obtain an average precision-recall

curve.

In the second protocol, we compute the F-Measure as:

�� =
(1 + �2)× Precision× Recall

�2 × Precision + Recall
. (9)

We set �2 = 0.3 as in [2,7,29,34]. We also follow [2,7,29,

34] to use an adaptive binarization threshold 
� to binarize

the saliency map before calculate the �� . The threshold is
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(a) Precision-recall curves for all algorithms
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(b) Average precisions, recall, F-beta and overlap

Figure 5. (a) Precision and recall rates for all algorithms on the MSRA-1000 dataset [2], results distributed into two sub-figures for better

illustration. (b) Average precision, recall, F-beta and overlap using the adaptive thresholds on the MSRA-1000 dataset [2].

set as proportional to the mean saliency of the image:


� =
�

� ×�

�
∑

�=1

�
∑

�=1

�(�,  ), (10)

in which we empirically choose � = 1.5. Furthermore, in

order to comprehensively report the F-Measure characteris-

tics, we uniformly sample a set of � in [0.1, 6] with an in-

terval 0.1, compute the average F-Measure for each �, and

then plot the average ��-� curve correspondingly.

In the third protocol, we use the overlap rate to evaluate

the saliency detection algorithms, which is defined as

!� =
�� ∩"�

�� ∪"�

, (11)

where �� and "� are the areas of the detected foreground

and the marked ground truth, respectively.

4.2. Quantitative Comparison

On the MSRA-1000 dataset [2], we compare our method

with other state-of-the-art approaches, including contrast-

based approaches (IT [14], MZ [24], AC [1], FT [2], R-

C [7], HC [7] and SF [29]), a graph-based approach (G-

B [12]), a spectrum-based approach (SR [13]), priors-based

approaches (GS [37], CBSAL [15]), and the ones with high-

level priors (CA [11], LC [40], LR [34]). To evaluate these

methods, we either use the results from the original authors

(when available) or run our own implementations.

Fig. 5(a) shows the precision-recall curves of the above

approaches on the MSRA-1000 dataset. As observed from

Fig. 5(a), our method significantly promotes the precision

and recall rate, and obtains the best result that maintains

the recall rate at above 0.85 when the precision rate goes

beyond 0.9, meaning that our method can get results close

to the ground truth.

Besides, we compare the performance of various meth-

ods using the adaptive binarization threshold as computed

in Eqn. 10 for each test image. As plotted in Fig. 5(b), we

measure the average precision, the average recall, the aver-

age �� and the average overlap for those methods. From

Fig. 5(b), we see that, among the seven methods, ours has

the highest precision, �� and overlap and the third largest

recall. This demonstrates the superior overall performance

of our algorithm.

Furthermore, to comprehensively report the F-Measure

characteristics, the ��-� curves for various methods are

shown in Fig. 7(a), from which we see that our method has

the top �� values at most selections of the � value.

In order to demonstrate the effects of separate compo-

nents and their combinations in our method, we plot their

precision-recall curves in Fig. 4. From this figure, we see

that region-level uniqueness (��) and objectness (�) both

lead to better performance than focusness (ℱ), when ap-

plied alone. Nevertheless, the combination of region-level

uniqueness and focusness (�� + ℱ) clearly boosts the per-

formance of uniqueness (��). After combining with the

objectness (#ℱ+�� × �), the performance is further im-

proved. Finally, when the pixel-level uniqueness is incor-

porated (#ℱ+� × �), we obtain the top performance. We

also illustrate the performance of (#� × �) and (#ℱ × �)

to demonstrate the importance of ℱ . It should be noted that

ℱ has already achieved better performance than HC [7] and

ℱ + �� has already achieved similar or better performance

than the state-of-the-arts. Besides, uniqueness (��) outper-

forms the RC method [7] in Fig. 5(a), though their only dif-

ference is in the image segmentation method, as discussed

in Sec. 3.4. All of the above proves that the features we

use are effective and complementary which lead to highly

boosted performance when properly combined.

In order to evaluate the performance on detecting multi-

object saliency, we also compare our method with most re-

cent ones [7, 29, 34, 37] on the BSD-300 dataset [25]. The

results are shown in Fig. 7(b) from which we observe out-

standing performance of our method as well.
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SRC RC [7] LR [34] SF [29] GS GD [37] GS SP [37] CBSAL [15] Ours BW GT

Figure 6. Visual comparison of previous approaches to our method and ground truth (GT). Due to space limit, only the results from six

most recent other methods are presented. We also give the binary results of our method (BW) for adaptive threshold (Eq. 10). Our methods

generate saliency maps closest to the ground truth.
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Figure 7. (a): ��-� curve on the MSRA-1000 dataset [2]. (b): ��-� curve on the BSD-300 dataset [25].

4.3. Visual Comparison

Some examples for visual comparison of some ap-

proaches are shown in Fig. 6, from which we see that our

method produces the best results on these images. Note that

the test images of the top four rows and the last two rows

are from MSRA-1000 [2] and BSD-300 [25], respectively.

We also compare the visual results from different com-

ponents and their combinations in our approach. Some re-

sults are shown in Fig. 1, which confirm our intuition that it

is all the components working together that leads to the best

performance. Besides, the samples in Fig. 1 also show the

failing mode of each component. In particular, uniqueness

fails in the second row, objectness fails in the third row and

focusness fails in the fourth row.

We give more samples in Fig. 3 to illustrate the failing

mode of uniqueness and the capability of focusness.

5. Conclusions

In this work, we explicitly combine two important vi-

sual cues, focusness and objectness, with uniqueness for
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saliency region detection. For the focusness estimation, we

propose a novel method by scale-space analysis with solid

mathematical proof; for the objectness estimation, we pro-

pose an effective window-overlapping-based approach uti-

lizing one prior work on discrete window objectness estima-

tion [3]. While uniqueness has been used by other works,

we by contrast use both the pixel-level and the region-level

uniqueness simultaneously to capture both macro-level and

micro-level image features. More importantly, based on the

complementary nature of the three visual cues, we combine

them in an effective way that leads to the top performance

when compared with the state-of-the-arts on two widely

used public benchmark image datasets.
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