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Abstract

Background

Depression and obesity, both of which are highly prevalent and inflammation underlies, often co-

occur.  Microbiome  perturbations  are  implicated  in  obesity-inflammation-depression

interrelationships, but how microbiome alterations contribute to underlying pathologic processes

remains unclear. Metabolomic investigations to uncover microbial neuroactive  metabolites may

offer mechanistic insights into host-microbe interactions.

Methods
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Using  16S  sequencing  and  untargeted  mass  spectrometry  of  saliva,  and  blood  monocyte

inflammation regulation assays, we determined key microbes, metabolites and host inflammation

in association with depressive symptomatology, obesity, and depressive symptomatology-obesity

comorbidity.

Results

Gram-negative  bacteria  with  inflammation  potential  were  enriched  relative  to  Gram-positive

bacteria in comorbid obesity-depression, supporting the inflammation-oral microbiome link in

obesity-depression  interrelationships.  Oral  microbiome  was  highly  predictive  of  depressive

symptomatology-obesity  co-occurrences  than  obesity  and  depressive  symptomatology

independently, suggesting specific microbial signatures associated with obesity-depression co-

occurrences.  Mass  spectrometry  analysis  revealed  significant  changes  in  levels  of  signaling

molecules of microbiota,  microbial or dietary derived signaling peptides and aromatic  amino

acids among host phenotypes.  Furthermore,  integration of the microbiome and metabolomics

data revealed that key oral microbes, many previously shown to have neuroactive potential, co-

occurred  with  potential  neuropeptides  and  biosynthetic  precursors  of  the  neurotransmitters

dopamine, epinephrine and serotonin.  

Conclusions

Together,  our findings offer novel insights into oral microbial-brain connection and potential

neuroactive metabolites involved. 
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Background

Depression and obesity are common, debilitating, and frequently co-occurring chronic conditions

with increasing incidences globally [1]. Nearly 39% of the adult population are overweight and

13% are obese worldwide (WHO, 2016), while 5% of the world population are affected by mood

disorders  (WHO,  2017)  [2,3].  The  relationship  between  obesity  and  depression  is  often

bidirectional  [4], as prevalence of depression among individuals  with obesity is significantly

higher than that in the general population [5,6]. Conversely, individuals with depression are more

likely  to  develop  obesity  compared  to  non-depressed  individuals  [7].  Despite  the  advent  of

antidepressant drugs and their long-term usage in clinical treatment, the majority of patients with

depression  are  treatment-refractory,  and  obesity  may  further  reduce  the  efficacy  of

antidepressants [8]. Furthermore, comorbid depression and obesity are strongly associated with

several diseases such as type 2 diabetes mellitus, cardiovascular diseases, chronic kidney disease

and cancer, reducing both longevity and quality of life [2,9]. Therefore, obesity and depression,

and their co-occurrence, pose a major public health concern worldwide.  

Inflammatory  dysregulation  is  a  common  pathogenic  mechanism  underlying  the  co-

occurrence  of  depression  and  obesity,  as  both  are  associated  with  chronic  low-grade

inflammation [10,11]. Individuals with obesity and depression evidence increased concentrations

of peripheral and central inflammatory cytokines and acute phase reactants, such as interleukin

(IL)-6, tumor necrosis factor alpha (TNF-α), and C-reactive protein (CRP)  [11,12]. In obesity,

macrophages accumulate in adipose tissue leading to local and systemic inflammation  [13,14],

which can contribute to depressive symptoms via multiple mechanisms, such as by decreasing

neurotransmitter  availability,  and  by  potentiating  neuroinflammatory  processes  such  as
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microglial activation and peripheral monocyte trafficking to the central nervous system (CNS)

[10,15,16]. It should be noted, however, that inflammation has been shown to underlie only a

subset of depression cases [17], hence the conceptualization of a theoretical immuno-metabolic

subtype of major depressive disorder  [18]. Nonetheless, inflammatory dysregulation remains a

central mechanism underlying the co-occurrence of depression and obesity, and this is likely

relevant  to  sub-clinical  depressive  symptomatology.  To  this  end,  our  previous  work  has

demonstrated that even in individuals without clinical diagnosis of depression, higher depressive

symptom scores, obesity, and downregulated glucocorticoid and adrenergic receptor-mediated

cellular inflammatory control are interrelated [19–21].

Although psychological stress, host genetics and environmental factors have been shown

to  contribute  to  obesity  and depression,  recently,  the  human  microbiome  (i.e.,  collection  of

diverse microorganisms and their genetic material) and metabolome (i.e., a large collection of

structurally diverse metabolites) have been implicated in processes of energy homeostasis, mood

and behavior, and immune regulation, and may therefore offer a novel mechanism underlying the

co-occurrence of depression and obesity [2]. Animal studies of obesity have shown that depletion

of members of Bifidobacterium, Lactobacillus, and Akkermansia are associated with weight gain,

increased inflammation, increased depressive behavior and changes in neural circuitry  [22,23].

Animal  studies  have also shown that  increased permeability  in  the intestinal  barrier  and the

blood-brain barrier (BBB) are associated with increased plasma lipopolysaccharide (LPS) levels

[22–24] and neuroinflammation  [23]. Altogether, these studies suggest that increased intestinal

barrier permeability and subsequent translocation of gut bacterial  endotoxin, particularly LPS

from Gram-negative bacterial cell walls, into systemic circulation, is a source of chronic low-
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grade  inflammation  and  metabolic  endotoxemia,  which  can  potentiate  neuroinflammatory

processes, and therefore serve as a potential mechanism underlying the occurrence of depressive

symptoms in the context of obesity. However, this remains to be established in humans.

It is to be noted that human microbiome studies in depression and obesity, and indeed in

health and disease, have focused largely on the ecosystem of the distal gut, while few studies

have examined the microbial ecology of the oral cavity outside of oral-related conditions such as

dental caries (i.e., tooth decay) and periodontitis (i.e., severe gum inflammation). The oral cavity,

an entry portal to both the digestive and respiratory tracts,  contains the most diverse microbial

community after the gut, harboring more than 700 unique bacterial  species with at least 150

specialized bacterial species per mouth [25,26]. More than 60% of the microbial species found in

the oral cavity have been shown to be potentially transmitted to the gut, suggesting that oral

cavity is a reservoir for gut microbial strains in shaping the gut microbiome in health and disease

[27].  Dysregulation of the unique microbe-microbe and microbe-host interactions  in the oral

ecosystem has been associated with systemic inflammatory diseases such as inflammatory bowel

syndrome [28,29] beyond an array of oral diseases. In addition, oral microbiota have also been

associated with several neurological diseases, such as Alzheimer’s disease (AD) [30], multiple

sclerosis [31] and Parkinson’s disease [32]. Previously, our group found that salivary microbial

diversity and diurnal variability were associated with both peripheral proinflammatory cytokine

levels and psychological distress in this cohort on which this study is based [33]. The intimate

link between the oral microbiota and systemic human diseases, as evidenced by aforementioned

studies  suggests  that  the  oral  cavity  is  likely  a  promising  site  for  gaining  insight  into  the

pathophysiology  of  depression-obesity  comorbidity.  Moreover,  the  oral  cavity  is  easily
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accessible via non-invasive as well as ‘on-demand’ collection of saliva samples for multi-omics

applications. 

While mechanisms linking the oral microbiota to the brain (i.e. “oral-brain axis”) remain

largely unknown [34,35], recent studies have speculated several transmission routes of how oral

bacteria may reach the brain and influence neuro-immune activity and inflammation  [36]. For

instance,  routine  dental  procedures  such  as  flossing,  brushing  and  cleaning  may  cause  oral

bacteria to enter the blood circulation and cause bacteremia  [37], and some of these microbes

may traverse the BBB. Alteration in the permeability of the BBB may also expose the brain to

bacterial metabolites triggering an inflammatory response, which in turn alters functioning of the

CNS.  For  example,  Porphyromonas  gingivalis,  a  resident  oral  bacterium  and  a  keystone

pathogen in periodontitis has been found in the brain of AD patients [30] as well as neurotoxic

proteases i.e., gingipains produced by  P. gingivalis [30]. 

A recent study has shown that human gut bacteria encode at least 56 gut-brain metabolic

pathways,  which  encompass  both  known  and  novel  microbial  pathways  for  synthesis  and

degradation of a number of neurotransmitters that have potential to cross the intestinal barrier

and BBB [35]. A subset of these gut-brain pathway effectors, for instance dopamine, glutamate,

tryptophan and gamma-aminobutyric acid (GABA) were either enriched or depleted in patients

with major depression [35]. In particular,  tryptophan metabolic pathways have been shown to be

widely distributed across human gut bacterial species [35]. Intriguingly, the majority of these gut

bacterial species with neuroactive potential are also found to be residents of the oral cavity [25].

However, to what extent these bacterial species can truly biosynthesize neurotransmitters within

the host, either in the gut or the oral cavity, remains unknown. Thus, utilization of metabolomics
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offers  a  functional  readout  of  both  host  and  microbial  phenotypes  encoded  in  the  genome

[38,39],  and in conjunction with microbiome analyses,  can provide mechanistic  insights,  yet

current knowledge is greatly limited. In particular, microbial specialized metabolites have been

shown to be canonical  mediators  of  microbe-microbe and microbe-host  interactions,  and the

most predominant specialized metabolites are of great interest for understanding the mechanisms

of these interactions at the molecular level  [38–40]. In this regard, the vast and highly diverse

array  of  short  peptides  shown  to  play  key  roles  in  bacterial  cell  signaling  [41],  immune

modulation, and neuroactive metabolism [42–44] remains largely unexplored. A recent study has

shown that depletion of a variety of structurally uncharacterized dipeptides are associated with

inflammatory bowel disease, a chronic inflammatory condition of the gastrointestinal tract [45].

These observations prompted us to hypothesize that neurotransmitters and dipeptides likely have

pivotal roles in obesity-inflammation-depression interrelationships.

In  this  study  we  aimed  to  investigate  whether  oral  microbiota  and  small-molecule

mediators  of  key  microbe-microbe  and  microbe-host  interactions  differ  by  depressive

symptomatology and obesity as well as their co-occurrence, and are influenced by inflammatory

processes.  We  performed  16S  rRNA  gene-based  sequencing  of  the  oral  microbiome  and

untargeted  mass  spectrometry  of  small-molecules  from saliva,  as  well  as  host  inflammation

regulation profiles in blood from 60 participants. 

Methods

Participants
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A total of 60 lean to obese participants (20-65 years old) with a range of subclinical depressive

symptoms,  participating  in  a  larger  study  investigating  the  impact  of  obesity  on  vascular

inflammation and immune cell activation in normotension versus stage 1 hypertension (Basal

systolic blood pressure (BP): 130-140 mmHg and diastolic BP: 80-90 mmHg), were included in

this study and provided saliva samples. Participant inclusion/exclusion criteria were previously

described in detail [33]. Briefly, participants were excluded if they had diabetes, recent history of

smoking  or  substance  abuse,  history  of  cardiovascular  disease,  history  of  bronchospastic

pulmonary disease, inflammatory disorders or health-related factors affecting immune function,

psychosis,  major  depressive  disorder,  and  stage  2  clinical  hypertension  or  with  average  BP

≥145/90 mmHg measured at the lab visit from six measurements on two separate days, using a

Dinamap Compact BP monitor (Critikon, Tampa, FL). Sociodemographic characteristics (i.e.,

age, sex, and race) and anthropometrics (i.e., height, weight, hip and waist circumference) data

were collected. 

Obesity characterization

BMI was calculated based on height and weight measurements (kg/m2), and individuals were

dichotomized  into  two  groups,  based  on  our  prior  findings  of  little  notable  differences  in

inflammatory or depressive symptoms state between lean and overweight individuals (ref): non-

obese (BMI <30 kg/m2) and obese (BMI ≥30 kg/m2). For further adiposity characterization dual

x-ray absorptiometry was performed to calculate %total and trunk body fat.

Depressive symptomatology assessment
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Depressive  symptoms  were  assessed  using  the  Beck  Depression  Inventory  (BDI-Ia),  a

comprehensive and clinically robust self-report 21-item questionnaire (Beck et al., 1996). Each

question was scored from 0-3, summed to a BDI total score (BDI-T), and then subcategorized

into cognitive-affective (BDI-C) and somatic (BDI-S) depression scores based on the items such

as BDI-C: guilt, pessimism and BDI-S: fatigue, sleep disruption [46]. 

Based on obesity status and mean BDI-T scores, participants were categorized into 4-

groups: non-obese and lower-depressive controls (N=10 participants; n=43 samples; “controls”),

obese and lower-depressive (N=18; n=74; “Ob/lower-Dep”), non-obese and higher-depressive

symptoms  (N=5;  n=22;  “Non-ob/higher-Dep”),  and  obese  and  higher-depressive  symptoms

(N=27; n=122; “Ob/higher-Dep”). 

Blood collection and cellular inflammation assay

For  detailed  protocol,  see  Supplementary  Materials  and  Methods  section.  Briefly,  LPS-

stimulated  blood  was  incubated  with  beta-adrenergic  receptor  agonist  isoproterenol  and

evaluated  for  intracellular  monocyte  TNF-α production  using  flow cytometry,  as  previously

described  [47].  Monocyte  beta-adrenergic  receptor-mediated  inflammation  control  (i.e.,

“BARIC”, a measure of systemic inflammation) was calculated as the arithmetic difference in

%TNF-α-producing monocytes between LPS + media-treated and LPS + isoproterenol-treated

samples. 

Saliva collection, DNA extraction and 16S sequencing
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For  detailed  protocols  of  saliva  collection  procedure  and  16S  analysis,  see  Supplementary

Materials and Methods section. Saliva from each participant was collected at five time points

across a single day: waking, mid-morning (10:00 hrs), midday (12:00 hrs), afternoon (14:00 hrs),

and evening (17:00 hr).

Statistical analyses

Statistical  analyses  were  conducted  using  R  software  (version  3.6.3)  in  RStudio  (version

1.2.5019).  First,  associations  among  continuous  and  categorical  metadata  variables  i.e.,  age,

obesity (BMI, %total body fat and trunk fat), BARIC, BDI scores (BDI-T, BDI-C and BDI-S)

were assessed using univariate Spearman correlations across all participants using psych package

in R software. We applied a simple linear mixed-effects model (LMM) fit to model two alpha

diversity  measures  (Shannon  index  and  Faith’s  PD)  using  restricted  maximum  likelihood

(REML) with a random intercept by participant to account for repeated measurements across the

day, and main effects of obesity status, depressive symptom status, and BARIC. Age, sex, race

were included as covariates in the model. Beta-diversity between groups was tested using non-

parametric  PERMANOVA with 999 permutations  constrained by participant  to  adjust for 3-5

samples per participant, and a test of homogeneity of dispersion was conducted with the same

constraints using PERMDISP2 in vegan package to test overall species composition differences

within the groups. Next, post-hoc pairwise comparison was performed using pairwiseAdonis.

Random forest classifications
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A random forest sample classifier was trained based on the 16S data with tuned hyperparameters

(num.trees=500, mtry=45) in the 20-time repeated, stratified 5-fold cross-validation using caret

package in  R software.  The dataset  was repeatedly  split  into  five  groups  with  similar  class

distributions,  and we trained the classifier  on 80% of the data,  and made predictions on the

remaining 20% of the data in each fold iteration.  We next evaluated the performance of the

classifier  on  predicting  the  four  groups  (i.e.  controls,  Ob/lower-Dep,  Non-ob/higher-Dep,

Ob/higher-Dep) using both area under the receiver operating characteristic curve (AUROC) and

area under the precision-recall curve (AUPRC) based on the samples’ predictions in the holdout

test set using  PRROC package in R. To account for multiple samples per-participant, we next

performed 20-time repeated group 3-fold cross-validation, where each participant is in a different

testing fold and also samples from the same subjects are never in both testing and training folds.

Small molecule metabolite detection through mass spectrometry

Saliva  was  dried  and  resuspended  in  80%  MeOH−20% water  and  submitted  to  untargeted

LC/MS/MS analysis. For a detailed protocol, see Supplementary Materials and Methods section.

To  examine  the  metabolic  potential  in  the  oral  ecosystem and  understand  the  intimate  link

between salivary microbiota and metabolome in obesity-depressive symptom relationships, we

conducted untargeted liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis

of  the  saliva  samples  from the  same participants  who were  first  investigated  for  taxonomic

profiling  in  the  above  analyses  [48,49].  By  integrating  feature  based  molecular  networking

[50] with  an  automated  chemical  classification  [51] and  reference  frame  based  differential
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abundance analysis [52] approaches, we revealed differential representation of the key molecular

features in obesity and depressive symptom conditions.

Feature  based  mass  spectral  molecular  networking  (FBMN)  and  chemically-informed

comparison of metabolomic profiles

A data matrix of MS1 features that triggered MS2 scans were uploaded along with the metadata

file  to  Global  Natural  Product  Social  Molecular  Networking  (GNPS)  (https://gnps.ucsd.edu)

[49]. Feature-based molecular networking (version release_20) [50] was performed, and library

IDs were generated (see Supplementary Materials and Methods section). To further gain a broad

overview of the chemistry of salivary metabolomes from MS/MS data, utilizing an automated

chemical classification approach [51], available via GNPS platform, we performed a chemically-

informed comparison of untargeted metabolomic profiles across the four groups.

Differential ranking of taxa and metabolomic features

Differential ranks of taxa and metabolomic features were calculated using Songbird [52], which

uses reference frames.  Age, sex, race and time of day of saliva collection were  provided as

covariates  in  generating  a   multinomial  regression  model based  on  microbial  features.

Differential microbial features were visualized alongside de novo phylogenetic  tree constructed

from the representative sequences of amplicon sequence variants (ASVs) obtained in this study

using EMPress [23]. Statistical significance was tested by applying LMMs on log-ratios of the

top-and bottom-20 ranked microbes for each group obtained using Qurro rank plots  [53].  We

applied  a  linear  regression  model  by  utilizing  log-ratios  of  bacterial  features  and  BARIC
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inflammatory scores to test interactions between obesity-depressive symptoms and inflammation

relationships. 

To  mitigate  the  inter-batch  effect  often  observed  in  the  metabolomics  data  due  to

technical limitations in the number of samples processed in a batch, relative abundances were

adjusted  for  batch  specific-effect  along  with  age,  sex,  race  and  time  of  day,  utilizing  the

multivariate model in the reference frame-based approach [52]. We chose cluster 1 (90 features)

as the denominator (“reference frame”) for the log-ratio calculations due to its high prevalence

across  samples,  and  moreover,  GNPS  analyses  groups  structurally  similar  molecules  into  a

cluster.  Statistical  significance was tested by applying Friedman test  to account  for repeated

measurements, prior to multiple pairwise comparison analysis using Wilcoxon rank-sum tests.

 

Microbe-metabolite interactions through their co-occurrence probabilities

Permutation based differential abundance testing was performed using discrete false-discovery

rate  correction  method  [54] in  Calour  (https://github.com/biocore/calour)  to  remove  batch-

specific MS1 molecular features. Annotated features that were not identified as batch-specific

were included in the co-occurrence  analysis.  Using ASV (N=1516) and annotated  molecular

features (N=155) as inputs to train neural networks  [55] in QIIME 2  [56], we estimated the

conditional  probability  that  each  molecule  is  present  given  the  presence  of  a  specific

microorganism.  The  resulting  conditional  probability  matrix  representing  microbe-metabolite

interactions was visualized as an EMPeror biplot [55]. 

Results
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Participant characteristics

A total of 261 saliva samples collected from five time points across the day from 60 participants

were analyzed (20 – 65 years): 50 participants had five; 51 had four, and 54 had three samples

which were adjusted in analyses (See Statistical Analyses). Participants were categorized into the

following  four  groups:  non-obese  (BMI  <30  kg/m2)  and  lower-depressive  controls  (N=10

participants;  n=43 saliva samples;  “controls”),  obese (BMI ≥30 kg/m2) and lower-depressive

(N=18; n=74; “Ob/lower-Dep”), non-obese and higher-depressive symptoms (N=5; n=22; “Non-

ob/higher-Dep”), and obese and higher-depressive symptoms (N=27; n=122; “Ob/higher-Dep”).

Sociodemographic characteristics are presented across participant groups (Table 1). 

Obesity is associated with depressive symptomatology and inflammation

Given that individuals with a clinical diagnosis of depression and/or use of antidepressants were

excluded from the study to focus on inflammation-related subclinical depressive symptoms in

relation to obesity among otherwise healthy adults, BDI total scores (BDI-T) on average were

low (median=3;  sd=5;  range=0-22).  The  median  value  of  BDI-T of  ≥3  was  used  to  divide

participants with relatively ‘higher’ or ‘lower’ depressive symptoms in this non-clinical sample. 

In all individuals, BMI was positively correlated with BDI-T scores (r=0.29, p=0.04), as

well as cognitive-affective (r=0.27, p=0.03) and somatic symptom scores with small to medium

effects  (r=0.22,  p=0.08)  (Figure  S1).  BARIC  values,  an  indicator  of  neuro-inflammation

regulation,  were  negatively  correlated  with  BMI  (r=-0.38,  p=0.009),  and  an  estimation  of

adipose tissue volume indicated by %trunk fat (r=-0.25, p=0.034) across all participants (Figure

S1).  Age did  not  moderate  any of  these  relationships,  which  is  in  agreement  with  previous
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findings [20]. Altogether, obesity was significantly associated with both inflammation regulation

and depressive symptoms. However, no significant associations were observed between BARIC

and BDI scores in this study (Figure S1). 

Oral microbiota differ based on obesity-depressive symptom groups and inflammation

status

Principal  coordinates  analysis  (PCoA)  and  post-hoc  pairwise  comparisons  of  unweighted-

UniFrac distances of samples revealed that oral microbiota composition was distinct by obesity

(PERMANOVA  pseudo-F=0.004,  p=0.001,  Figure  1A,  Table  2),  BDI-T  (PERMANOVA

pseudo-F=0.001,  p=0.0, Figure 1B, Table 2) and across the four obesity-depressive symptom

comorbid  groups  (i.e,  Ctrl,  Ob/lower-Dep,  Non-ob/higher-Dep,  Ob/higher-Dep)  (Figure  1C,

Table  2  and Table  3).  Beta-diversity  was also  significantly  differentiated  based on the  host

inflammation across all participants (PERMANOVA pseudo-F=4.71,  p<0.001, Figure 1D and

Table 2). Significant beta-diversity differences were also observed by age, sex, and race but not

by sampling time of day (Table 2). Phylogenetic alpha-diversity increased with inflammation

(Faith’s  PD:  t=-2.312,  p=0.025).  Inflammation  had  slightly  larger  effects  (R2=0.02)  on

microbiome  composition  than  obesity  (R2=0.008)  and  depressive  symptomatology  (R2=0.01)

(Table 2).

Oral microbiota is predictive of the host obesity-depressive symptomatology

To  assess  the  predictive  capacity  of  the  oral  microbiome  in  stratifying  individuals  with

depressive symptoms, obesity and depressive symptomatology-obesity co-occurrence status, we
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utilized  supervised  random  forest  classification.  The  prediction  performance  of  the  model

indicated by both area under the receiver operating characteristic curve (AUROC) and area under

precision  recall  curve  (AUPRC),  revealed  high  prediction  accuracy  (AUROC=0.75  and

AUPRC=0.74) for obesity-depressive symptom status (Ob/higher Dep) than other groups when

multiple samples per-participant were taken into account (Figure 2A and 2B). The Ctrl group

was predicted with AUROC=0.75 and AUPRC=0.58;  Ob/lower Dep status with AUROC=0.70

and AUPRC=0.49;   Non-ob/higher  Dep with AUROC=0.70 and AUPRC=0.46.  However,  at

sample-level both AUROC and AUPRC ranged from 0.93 to 0.97, across all groups (Figure S2A

and S2B). Altogether, oral microbiome was highly predictive of depressive symptomatology-

obesity co-occurrences than obesity and depressive symptomatology independently.

Key oral bacterial taxa are associated with specific host phenotype

Next, we identified the most differentially ranked microbes (99 unique taxa) associated with host

phenotypes  (Figure  2C).  Linear  mixed-effects  model  revealed  significant  differences  in  the

relative  abundances  of  microbes  associated  with  Ob/higher-Dep  (t=6.5,  p=5.07e-08),

Non-ob/higher-Dep (t=-4.2, p=0.0002) and Ob/lower Dep (t=-4.5, p=5.07e-05) in comparison to

Ctrl group, and with inflammation status (t=-4.83, p=3.03e-05).  Most differentially represented

taxa  (84  unique  taxa)  were  assigned  to  Gram-negative  bacteria  such  as  Prevotella,

Aggregatibacter,  Pseudomonas,  Campylobacter,  Clostridia (Selenomonas,  Butyrivibrio,

Veillonella,  Megasphaera  and Schwartzia),  Leptotrichia,  Capnocytophaga,  and  periodontal

pathogens such as  Treponema,  Veillonella,  Porphyromonas and  Fusobacterium. Gram-positive

(15  unique  taxa)  were  assigned  to  Peptostreptococcaceae,  Clostridia  (Catonella,
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Mogibacteriaceae),  Staphylococcus,  Corynebacterium,  Rothia,  Actinomyces,  and

beneficial/probiotic  genera  Bifidobacterium and  Lactobacillus (Figure  2C,  log-fold  change

abundances for each microbe are shown in Table S1). The Ob/higher-Dep group exhibited a

slightly higher abundance of Gram-negative bacteria relative to Gram-positive compared to the

Ctrl group (Wilcoxon test:  p=0.004) (Figure 2D), which were not significantly associated with

BARIC scores (data not shown).

Small  molecules  detected  in  saliva  are  associated  with  obesity-depressive  symptom-

inflammation relationships

Untargeted LC-MS/MS analysis of the saliva samples was performed to examine the metabolic

potential in the oral ecosystem and understand the intimate link between salivary microbiota and

metabolome in obesity-depressive symptom relationships.

The  most  predominant  chemical  classes  identified  from  automated  chemical

classification  [51] of  our  samples  via  GNPS  [49] platform  were  terpenoids,  indoles,

carbohydrates and carbohydrate conjugates,  amino acids, peptides,  derivatives  of purines and

pyrimidines,  eicosanoids  and linoleic  acids  (Figure  S3).  Particularly,  molecular  structures  of

diazines,  benzotraizoles,  imidazopyrimidines  and  azides  were  batch-specific  (Figure  S3).

Feature-based mass spectral molecular networking of 7,818 total MS1 molecular features (which

included retention time and relative quantitative information) enabled the annotation of 248 that

had matches against all publicly available reference spectra [57]. It should be noted that these are

level  2  or  3  annotations  according  to  the  2007  metabolomics  standards  initiative  [58].  A

reference-frame based approach enabled the identification of 155 features distinctly associated
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with  specific  categories  relative  to  Ctrl  group  (i.e.,  Non-Ob/lower-dep)  (Figure  3).  Key

molecules involved in host-microbiota interactions such as the annotation as tyrosine (level 2), a

precursor of catecholamine, dopamine and serotonin, and tryptophan (level 2, cluster 14 and 26

in Figure 3), a precursor of the neurotransmitter serotonin, were depleted in Ob/higher-Dep and

Ob/lower-Dep groups (Figure 2B). The amino acid, phenylalanine (Level 2, cluster 2 Figure 3), a

biosynthetic precursor of tyrosine, catecholamine, dopa and  dopamine was less abundant in the

Ob/higher-Dep and Non-ob/higher-Dep groups, but increased with inflammation status (Figure

4A).

Within  the  molecular  network,  we  also  identified  41  molecular  clusters  primarily

associated with quorum sensing molecules of microbiota, products of microbial transformation

of dietary components or host molecules, and essential aromatic amino acids (Figure 3). Most

intriguingly, we identified 34 structurally distinct dipeptides across groups, making it the most

prevalent molecular cluster within the network (molecular features of clusters 2, 3, 5, 9, 12, 17,

19,  30,  31,  32 and 34 in Figure 3).  Of these,  molecular  features of cluster  2 (present  in 60

participants)  were  differentially  represented  in  Ob/higher-Dep  and  Non-ob/higher-Dep

individuals,  while  features  of  cluster  34  (present  in  58  participants)  were  differentially

represented in Ob/higher-Dep and Ob/lower Dep individuals, when compared to controls (see

left panels in Figure 4A). Moreover, clusters 2, 14 and 26 were depleted in the Ob/higher-Dep

and  non-ob/higher-Dep groups,  while  cluster  34  was  depleted  in  the  Ob/higher-Dep  and

Ob/lower Dep groups. Other differentially represented molecular clusters included clusters 14

(detected in 56 participants) and 26 (detected in 58 participants), which encompassed two of the

essential aromatic amino acids i.e. tryptophan and tyrosine molecules (see clusters 14 and 26 in
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Figure  3,  Figure  4A).  Molecular  features  from these  clusters  are  positively  associated  with

inflammation (right panels in Figure 4A). Abundance of features from the remaining clusters did

not  significantly  vary  across  groups  (data  not  shown).  Other  molecular  features  included

previously reported microbiota-derived dipeptides (Phe-Val and Tyr-Val) (see clusters 2 and 30

in Figure 3) [42,59,60]. Dipeptide (Phe-Phe) reported to be synthesized by Clostridium (cluster 2

Figure  3)  [61] was  predominant  in  the  Ob/higher-Dep  group.  Other  molecules  such  cyclic

dipeptides  (Val-Pro  and  Val-Leu),  commonly  found  to  be  made  by  microbes,  were  also

identified (see cluster 2 and 12 Figure 3, Figure 4A, Table S2) [59,60]. The majority of the other

dipeptides identified were potentially related to host dietary metabolism (i.e. enzymatic digest of

food proteins)  [43,44]. Among these, Tyr-Leu, Phe-Leu and Ile-Tyr (cluster 2 Figure 3), were

significantly  more  abundant  in  the  Ctrl  group  compared  to  the  other  Ob/higher-Dep  and

Ob/lower-Dep groups (Figure 4A) among which, Tyr-Pro (cluster 34 Figure 3) was also depleted

(Figure 4A).

Key oral microbes co-occurred with biosynthetic precursors of the neurotransmitters and

dipeptide signaling molecules

Integration  of  the  microbiome  and  metabolomics  data  revealed  associations  between  oral

microbial  metabolism  and  key  oral  microbes  such  as  Prevotella,  Clostridia,  Selenomonas,

Aggregatibacter, Oribacterium, Corynebacterium, and periodontal pathogens such as Tannerella

and Porphyromonas (Figure 4B). Dipeptide signaling molecules (Phe-Phe, Phe-Val and Tyr-Val)

co-occurred with Clostridia,  Prevotella and  Porphyromonas, corroborating known associations

of dipeptides produced by Clostridium spp. [42,59–61]. Members of Clostridia also co-occurred
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with phenylalanine, a potential biosynthetic precursor of dopamine, epinephrine and tryptophan.

Intriguingly,  Oribacterium belonging  to  Clostridium and  Tannerella co-occurred  with

tryptophan,  shown  to  encompass  tryptophan  biosynthetic  pathways.  Our  findings  further

corroborate known microbial-derived cyclic dipeptides (Val-Leu and Val-Pro) associations with

Selenomonas,  Aggregatibacter and  Clostridium spp.   (Figure  4B)  [59,60].  Potential  dietary

dipeptides  (Phe-Leu,  Tyr-Pro  and  Tyr-Leu)  co-occurred  with  Tannerella,  Selenomonas,

Prevotella, Porphyromonas and Clostridia [43,44]. 

Discussion

We previously  reported  that  obesity  is  significantly  associated  with  both  inflammation  and

depressive symptoms [20,21,47]. Growing evidence also suggests that gut bacterial composition

and  their  specialized  metabolites  may  trigger  chronic  systemic  inflammation  in  obesity-

depression co-occurrences  [2], highlighting the importance of the host immune and microbial

interplay.  In this  study, we showed that  the composition of salivary microbiota differ in co-

occurring obesity-depressive symptoms and in relation to obesity, depression, and inflammation.

We also showed that individual bacterial taxa were linked to specific host obesity-depressive

symptoms  ‘phenotype’,  and  small-molecule  mediated  microbe-microbe  and  microbe-host

interactions  likely  play  a  critical  role  in  these  host  phenotypes.  While  effects  of  obesity,

inflammation and depression phenotypes on gut microbiome have been studied previously, this

study  extends  our  previous  work  [33] that  identified  relationships  between  oral  microbial

composition, host stress profile and inflammatory status, by providing further evidence that oral

microbial  composition  and  metabolic  profiles  are  also  influenced  by  the  specific  host
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phenotypes, and are likely characterized by significant alterations in the biosynthetic precursors

of neurotransmitters and signaling dipeptides. These findings highlight a potential link between

oral  microbiota  and  the  brain  (i.e.  oral-brain  axis),  adding  to  known  gut  microbiota-brain

interactions  [34–36],  as  well  as  biomarker  utility  of  oral  microbiome in  studying brain  and

behavioral outcomes.

Examining the composition of the oral microbiome revealed significant differences based

on obesity, depressive symptomatology and comorbid obesity-depressive symptomatology. At

the same time, the oral microbiome composition differed by the host inflammatory processes

beyond the effects of obesity or depression. This emphasizes the need of further scrutinizing the

central  role  of  microbiome-mediated  inflammation  in  obesity-depressive  symptomatology

interrelationship  and  is  closely  aligned  with  the  existing  literature  in  chronic  low-grade

inflammation at the intersection of depression and obesity.

Random  forest  classification  indicated  that  oral  microbiota  is  highly  predictive  of

obesity-depressive symptom co-occurrences, suggesting specific microbial signatures associated

with  obesity-depression  co-occurrences.  Corroborating  these  findings,  abundances  of  several

microbes were differentially represented across the obesity-depressive symptomatology groups

as revealed by the differential abundance analysis. Gram-negative microbes have been shown to

be associated with inflammation due to their LPS cell wall, the hallmark trait of Gram-negative

bacteria.  We found that  Gram-negative  microbes  Prevotella,  Aggregatibacter,  Pseudomonas,

Campylobacter,  Selenomonas,  Leptotrichia,  Capnocytophaga, and Gram-negative periodontal

pathogens such as Treponema,  Veillonella,  Porphyromonas and Fusobacterium are enriched in

Ob/higher-dep group. However,  we found no significant  correlation  with BARIC scores that
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measured monocytes' responsiveness to a β-AR agonist during an inflammatory response to LPS,

indicating  inflammation  regulatory  processes  [47].  Increased  abundance of  Prevotella in  the

human oral  cavity has been previously ambiguously associated with both health  and disease

conditions  [26,62,63].  Pathogenic  Campylobacter has  been  shown  to  increase  anxiety-like

behavior in mice [64] and Aggregatibacter has been reported to be associated with inflammation.

Notably,  Gram-positive  beneficial  microbes  Bifidobacterium and  Lactobacillus depleted  in

Ob/higher-Dep group are in line with their activity as they are reported to exhibit antidepressant

and anti-obesity effects, and reduced levels of TNF-α in both clinical and animal studies [65–67].

All of these differentially abundant oral taxa present potential biomarkers in obesity-depression

co-occurrences, however, more studies are needed to further confirm these findings, as our study

did not find significant differences in the abundances of microbes at genera-level.

We also found differences in relative abundance patterns in many molecules across the

obesity-depression  symptoms  groups,  including  quorum  sensing  molecules  of  microbiota,

products  of  microbial  transformation  of  dietary  components  or  host  molecules  and aromatic

amino acids. Importantly, metabolites of aromatic amino acids tryptophan and tyrosine, both of

which are precursors of the neurotransmitter serotonin, have been mechanistically implicated in

obesity-depression associations [68], and play signaling roles in host-microbe interactions in the

gut  [69],  were  depleted  in  obese  individuals  compared  to  the  control  group.   Host  dietary

dipeptides  (Tyr-Leu  and  Phe-Leu)  that  were  significantly  less  abundant  among  the  obese

individuals compared to the control group in this study are shown to display anti-depressant-like

activity as greater abundance of Tyr-Leu activates serotonin, dopamine and gamma aminobutyric

acid (GABA) receptors in mice  [43,44]. Tyr-Pro and Ile-Tyr, which were also depleted in the
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obese individuals in our study, are an inhibitor of angiotensin I-converting enzyme (ACE) with

antihypertensive  activity  [70] and  affect  catecholamine  (e.g.  dopamine  and  noradrenaline)

metabolism in the mouse brain [71], respectively. These findings offer initial mechanistic insight

into comorbid obesity and depression, albeit complex.

Furthermore,  we identified several  structurally  distinct  dipeptides  that  were positively

associated  with  inflammation.  To  our  knowledge,  it  is  the  first  time  that  microbial-derived

dipeptide (Phe-Val, Tyr-Val and Phe-Phe) and cyclic dipeptides signaling molecules (Val-Pro

and  Val-Leu)  were  detected  in  salivary  metabolomes.  Biosynthetic  gene  clusters  and  the

production  of  dipeptides  (Phe-Val  and Tyr-Val)  have been recently  identified  in  the  human

microbiome [42,59,60]. These molecules are known to play key roles in quorum sensing (cell-to-

cell communication to maintain cell density) and virulence, and promote growth of beneficial

Bifidobacterium [41]. A previous study showed that Phe-Phe derived from Clostridium sp.  can

inhibit  host  proteins  by  chemical  modification  of  the  host  cellular  proteins,  especially  by

targeting cathepsins in human cell proteomes [61]. Given our findings that Phe-Phe was highly

abundant in the Ob/higher-Dep group, its biological role in the cellular inflammatory process

which likely underlie obesity-depression comorbidity warrants further investigation. 

Our findings of specific microbe-metabolite interactions with potential to influence host’s

brain functioning offer potentially significant insight into the role of host immune-microbiome

interplay  in  comorbid  obesity-depression  and  is  likely  through  microbial  neurotransmitters.

Metabolic  pathways  for  biosynthesis  of  neuroactive  molecules  in  the  genomes  of  human-

associated genera  Clostridium and  Tannerella have been recently reported  [35]. Intriguingly,

members  of  Clostridium and  Tannerella co-occurred with tryptophan and  have  been
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detected/reported to harbor genes for tryptophan biosynthesis  [35]. Members of Clostridia co-

occurred with phenylalanine,  a potential  biosynthetic precursor of dopamine, epinephrine and

tryptophan,  have been shown to  be  key species  in  neuropsychiatric  disorders  and shown to

produce dopamine in mice [36,72]. Many of these molecules including the dipeptides, shown to

have potential to cross the intestinal barrier and blood brain barrier, may modulate the oral–brain

connection  through  neurotransmitter  signaling  pathways  [35,72]. Such  neurotransmitters  and

their biosynthetic precursors may offer promising targets for therapeutics.

There is a caveat in this study that merits caution: in an effort to recruit individuals with

subclinical  levels  of  depressive  mood  co-occurring  with  a  range  of  obesity  without

antidepressant intake or heterogeneous clinical depression, the participants exhibited low levels

of BDI scores on average which may limit the applicability of our findings to clinical depression.

At  the  same  time,  it  is  notable  that  host-microbiome-metabolome  signatures  and  their

interactions appear to be salient in pathophysiology of subclinical depression symptomatology.

We also acknowledge a small sample size of the study participants, in spite of the expanded

specimen sample size owing to multiple saliva collections. 

Conclusions 

Despite these limitations, our study significantly expands the evidence for microbial specialized

metabolites  and  peptides  with  neuroactive  potential,  adding  further  research  avenues  into

microbiome-host  physiology  interactions  and  there  is  a  great  deal  of  clinical  potential  in

understanding and modifying these interactions. Furthermore, it provides initial evidence for a
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foundation of the microbial oral-brain axis in addition to the gut-brain axis in the context of

obesity-depression-inflammation interrelationships.
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Figures

Figure 1. Principal coordinates analyses (PCoA) of oral bacterial communities in (A) non-obese

and obese (B) low depressive and higher depressive (C) non-obese low-depressive, non-obese

high-depressive, obese, and co-occurring obesity and depressive symptom groups, and (D) in

inflammation  status.  Unweighted-UniFrac  distances  among  samples  were  visualized  using

EMPeror.  Significance  of  separation  between  the  groups  and  further  post-hoc  pairwise

comparisons  between  groups  was  tested  by  applying  PERMANOVA  test  on  the  principal

coordinates.
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Figure  2. Oral  microbiota  is  distinctly  impacted  by  the  host  status  in  co-occurring obesity-

depressive  status.  (A)  Receiver  operating  characteristic  curves  (AUROC)  illustrating

classification accuracy of the random forest model across all groups (i.e. controls, Ob/lower Dep,

Non-ob/higher-Dep,  Ob/higher-Dep).  (B)  Area  under  precision  recall  curves  (AUPRC)

illustrating  performance  of  the  random  forest  model  across  all  groups.  (C)  Phylogenetic

distribution of the most differentially ranked taxa across the groups. Branches of the  de novo

phylogenetic tree and the innermost ring are colored by phyla. Each barplot layer represents log-

fold change abundances of taxa within the group in comparison to the healthy controls i.e. Non-

ob/lower-Dep. A multinomial regression model was employed for regressing log-fold change

abundances against BARIC values. (D) Log-fold change abundances of Gram-negative microbes

relative to Gram-positive  microbes across host phenotypes.
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Figure 3.  Feature-based molecular  network of the ions  detected  in  salivary metabolomes of

obese-depressive group. The molecular network was generated by 293 nodes with 41 molecular

clusters,  which  are sub-networks  of  a  larger  network generated  via  Global  Natural  Products

Social Molecular Networking (GNPS). Nodes (small circles with m/z values) represent unique

tandem mass spectrometry (MS/MS) consensus spectra  and edges (lines)  drawn between the

nodes  correspond to  similarity  (cosine  score)  between  MS/MS fragmentation.  Annotation  is

performed  by  MS/MS  spectral  library  matching  in  GNPS  platform.  Pie  charts  within  the

individual nodes qualitatively represent specific ion presence across groups: non-obese and non-

depressive, obese, depressive, and both obese and depressive symptom groups, as well as blank

samples.  Molecular  clusters 2,  3, 4,  5, 9,  17, 19,  30 and 34 represent structural  diversity of

dipeptides. Molecular clusters 2, 14 and 26 represent aromatic amino acids tryptophan, tyrosine

and phenylalanine.
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Figure 4.  Differentially abundant molecular clusters and microbe-metabolite co-occurrences in

obesity-inflammation-depressive and inflammation status. (A) Sample plot showing log-ratio of

differential  molecular  features relative  to  cluster  1 (see  left  panel).  The  corresponding right

panels  represent  a  scatterplot  of  samples  showing  log-ratio  of  differential  features  versus

inflammation status. Individual samples are colored by health status. Statistical significance of

the log-ratios was evaluated by pairwise comparisons using Wilcoxon rank sum test. A linear

regression  model  was  employed  for  regressing  log-ratios  against  BARIC  values.  (B)

Visualization  of  microbe-metabolite  co-occurrences.  Arrows  represent  microbes  and  dots

represent  metabolites.  The  x  and  y  axes  represent  principal  components  of  the  microbe-

metabolite  conditional  probabilities  as  determined by the neural  network.  Distances  between

arrow tips quantify co-occurrence strengths between microbes, while directionality of the arrows

indicates which microbes and metabolites have a high probability of co-occurring. Only known

microbiota-derived molecules are labeled. Microbial abundances are estimated using differential

abundance analysis via multinomial regression.
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Tables

Table 1. Demographic and clinical characteristics of participants.

Variable Non-obese low 

depressivea

Obese low 

depressiveb

Non-obese high 

depressivec

Obese high 

depressived

Age

Sex (%female)

Race(%C/AA/Asn/NS)

BARIC

BMI (kg/m2)

BDI-T

39±12.2

44

72/16/12/0

32.1±10.2d

25.1±2.9bd

0.5±0.8cd

38.9±17.2

50

37.5/37.5/12.5/12.5

21.9±6.2c

35.5±4.7ac

0.6±0.7cd

42.7±10.5

61.1

55.6/16.7/27.8/0

31.8±9cd

26.6±2.9bd

7.9±5.4ab

43.5±10.9

73.3

46.7/40/13.3/0

25.3±7.5ac

36±4.7ac

7.9±5ab

Values presented as mean ± SD. Significant differences between groups were evaluated by 

Mann-Whitney test and presented as superscripts. Abbreviations: C = Caucasian; AA = African-

American; Asn = Asian; NS = Mixed or not specified; BARIC =  monocyte beta-adrenergic 

receptor-mediated inflammation control; BMI = body mass index; BDI-T = Beck Depression 

Inventory (BDI-Ia) total score.

Table 2. Beta-diversity analysis of 16S derived ASVs across groups.

Variable

Unweighted-UniFrac

R2

Unweighted-UniFrac

F

Age

Sex

Race

Time of day

BARIC

Obesity

Depressive symptomatology

Obesity-depressive symptomatology co-occurrences

0.01

0.01

0.03

0.01

0.02

0.008

0.01

0.03

3.88***

2.54***

2.92***

0.98

4.71***

0.004**

0.001***

2.48***

Asteriks indicate statistical significance of PERMANOVA test, p<0.05.
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Table 3. Post-hoc pairwise comparisons of beta-diversity between groups.

Pairwise contrasts

Unweighted-

UniFrac

R2

Unweighted-

UniFrac

F

Obese high-depressive x Non-obese low-depressive

Obese low-depressive x Non-obese low-depressive

Non-obese high-depressive x Non-obese low-depressive

Obese low-depressive x Non-obese high-depressive

Obese low-depressive x Obese high-depressive

Obese high-depressive x Non-obese high-depressive

0.02

0.02

0.04

0.02

0.01

0.02

2.57***

1.91**

2.4**

2.05**

2.19***

2.2***

Asteriks indicate statistical significance of PERMANOVA test, p<0.05.
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Supplementary Materials and Methods

Blood collection and cellular inflammation assay

Blood samples were obtained for all participants after 12h of fasting except for plain water and

collected in heparin anti-coagulant vacutainers (BD, Franklin Lakes, NJ). Cellular inflammation

regulation assays were performed on heparinized whole blood within 1h of collection. Briefly,

200 pg/mL of lipopolysaccharide (LPS) (E.coli  0111:B4, catalog #L4391, Sigma-Aldrich, St.

Louis, MO) was added to 300 μL of blood in sterile 96-well polypropylene cell culture plates andL of blood in sterile 96-well polypropylene cell culture plates and

incubated for 30 min at 37°C with 5% CO2.  Media-treated samples served as controls.  This

exogenous LPS dose was previously determined to elicit  significant activation of monocytes,

with 30-90% producing TNF-α  [1]. Monocyte beta-adrenergic receptor-mediated inflammation

control (i.e., “BARIC”) was determined based on the inhibitory effect of isoproterenol (Iso), a

non-specific β1/2AR agonist,  on monocytic intracellular TNF-α production in LPS-stimulated

blood as aforementioned. Briefly, LPS-stimulated blood was incubated with isoproterenol in 10-8

M final concentration and evaluated for intracellular monocyte TNF-α production using flow

cytometry,  as  previously  described  [1].  The  proportion  of  CD14+/dimHLA-DR+ (CD14:  cat.

#301808;  HLA-DR: cat.  #307606,  BioLegend,  San Diego,  CA) cells  that  were TNF-α+ was

determined using FlowJo software (v10, TreeStar, Ashland, OR), and gates adjusted for TNF-α-

stained sample via fluorescence-minus-one controls [2,3]. Ultimately, BARIC was calculated as

the arithmetic difference in %TNF-α+ monocytes between LPS-treated and LPS+isoproterenol-

treated  samples.  Greater  BARIC values  indicate  greater  β-AR responsivity,  and  thus,  better

Iso/β-AR-mediated inflammation regulation. Smaller BARIC values may indicate impairment in
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cellular  pathways that  regulate  inflammatory  responses  mediated  by β-ARs (e.g.,  diminished

receptor sensitivity to agonists).  BARIC measures monocytes responsivity to a β-AR agonist

during  an  inflammatory  response  to  LPS.  Reduced  BARIC  has  been  associated  with

hypertension, cardiovascular disease risk factors, obesity, and higher serum cytokine levels [2,3].

Saliva collection, DNA extraction and 16S sequencing

Saliva collection procedure and 16S sequencing data was published previously  [2]. However,

obesity-depressive  symptom  relationships  were  not  previously  investigated,  and  instead  had

focused on temporal variation of the oral microbiota. Briefly, participants were provided with

Salivette (Sarstedt, #51.1534, Nümbrecht, Germany) to roll the cotton Salivette inside the mouth

to stimulate salivation without chewing. Saturated Salivette was placed back into the tube by

mouth. Salivettes from each participant were collected at five time points across a single day:

waking, mid-morning (10:00 hrs), midday (12:00 hrs), afternoon (14:00 hrs), and evening (17:00

hr). All waking samples were collected prior to oral hygiene activity, and ingestion of food or

drink. In addition, participants were instructed to abstain from consuming food or drinks other

than plain water for 30 min and to rinse their mouth with water prior to collection at all other

time points. Next, saliva was recovered from Salivette tubes by centrifuging at 1,000 x g for 2

minutes  at  4°C and stored at -80°C. DNA from saliva samples  was extracted  by employing

Qiagen PowerSoil DNA kit as previously described [4]. V4 region of the 16S gene was amplified

according to the Earth Microbiome Project protocol [5,6] and sequenced on the Illumina MiSeq

sequencing platform with a MiSeq Reagent Kit v2 and paired-end 150 bp cycles. 
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16S sequencing data processing

Sequences were demultiplexed based on the barcode associated with each sample and sequence

quality  control  and  ASV  (Amplicon  Sequence  Variants)  feature  table  construction  was

conducted using the Deblur algorithm in QIIME2 (v.2018.4) [7]. Next,  223 potential sequencing

contaminants that appeared in both true and blank samples were removed from the ASV table

using decontam in R [8]. Low abundance features with fewer than 10 reads across samples and

singleton  features  present  only  in  one  sample  were  excluded.  Taxonomy  assignment  was

performed by employing QIIME2 feature-classifier  plugin with a pre-fit classifier  [9] for the

99% reference tree of Greengenes 13_8 database. The output feature table contained an average

of 19,412 ± 9,187 sequences per sample after removal of mitochondrial and chloroplast-derived

sequences. Multiple rarefactions were computed to a minimum depth of 1,122 reads to mitigate

uneven  sequencing  depth  across  samples.  This  resulted  in  257  samples  with  1,516  unique

features/ASVs and 455 unique taxa. Next, alpha-diversity indices Shannon diversity index and

Faith’s Phylogenetic Diversity were calculated. Beta-diversity, was calculated using unweighted

UniFrac distance, which reflects presence-absence of taxa. We performed ordination on output

distance matrices using principal coordinates analysis (PCoA) and following visualization using

EMPeror plugin in QIIME2 [10]. 

Small molecule metabolites detection through mass spectrometry

Saliva was  dried and resuspended in 80% MeOH−20% water (Optima LC-MS grade; Fisher

Scientific, Fair Lawn, NJ, USA). Untargeted metabolomics was conducted with an ultrahigh-

performance liquid chromatography (Vanquish; Thermo Fisher Scientific, Waltham, MA, USA)
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system coupled to an orbitrap mass spectrometer (QExactive, Thermo Fisher Scientific). A C18

reversed-phase UHPLC column (Kinetex,  1.7-µm particles size, 50 x 2.1 mm) (Phenomenex,

Torrance, CA, USA) was used for chromatographic separation. A linear gradient was applied as

follows: 0 to 0.5 min, isocratic at 5% mobile phase (MP) B; 0.5 to 8.5 min, 100% MP B; 8.5 to

11 min, isocratic at 100% MP B; 11 to 11.5 min, 5% MP B; 11.5 to 12 min, 5% MP B, where

mobile  phase  A  is  water  with  0.1%  formic  acid  (vol/vol)  and  mobile  phase  B  is

acetonitrile−0.1% formic acid (vol/vol) (LC-MS grade solvents; Fisher Chemical). Electrospray

ionization in the positive mode was used. MS spectra were acquired in the mass range of m/z 100

to 2,000.

MS1 feature finding and data processing

Raw QExactive files were converted to .mzXML format using  ProteoWizard tool MSConvert

[11] software. Data quality was assessed by evaluating the  m/z  error and retention time of the

LC-MS standard solution (i.e., mixture of six compounds). MS1 feature finding was performed

in MZmine2 preprocessing workflow (MZmine-2.37.corr17.7_kai_merge2 version) available at

(https://github.com/robinschmid/mzmine2/releases)  [12].  The  mzMINE  parameters  used  for

feature  finding  are  as  follows:  mass  detection  (centroid;  MS1,  1.5E3;  MS2,  90);  ADAP

Chromatogram builder (minimum group size in number of scans, 4; group intensity threshold,

5E3;  minimum highest  intensity,  2E3;  m/z  tolerance,  0.001  m/z  to  20 ppm);  chromatogram

deconvolution (local minimum search, chromatographic threshold of 96%, search minimum in

retention time [RT] range [minutes] of 0.03, minimum relative height of 5%, minimum absolute

height of 2E3, minimum ratio of peak top/edge of 1 and peak duration range [minutes] of 0 to
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2;m/z  center calculation set to auto;  m/z  range for MS2 scan pairing (daltons) of 0.02 and RT

range for  MS2 scan pairing  (minutes)  of  0.15);  isotope peaks  grouper  (m/z  tolerance  set  to

0.0015  m/z  or  10 ppm;  retention  time  tolerance  of  0.05,  maximum  charge  of  3;  and

representative isotope set to most intense); order peak lists; join aligner (m/z  tolerance set at

0.0015 m/z or 15 ppm; weight for m/z of 2; retention time tolerance of 0.2 min; weight for RT of

1. A filter was used such that only features present in at least two samples were included. 

Feature based mass spectral molecular networking (FBMN)

The output of aforementioned workflow, a data matrix of MS1 features that triggered MS2 scans

by sample (.mgf and .csv quant table), were uploaded along with the metadata file to Global

Natural Product Social Molecular Networking (GNPS) (https://gnps.ucsd.edu) [13,14]. Feature-

based molecular  networking  (version  release_20)  [15] was  performed,  and library  IDs  were

generated. Molecular networking parameters were set as follows: precursor ion mass tolerance

and fragment ion tolerance of 0.02 Da to cluster consensus spectra; the minimum score between

a pair of MS2 consensus spectra was set at 0.7 and 6 as the minimum number of ions matched as

described  at  https://gnps.ucsd.edu/ProteoSAFe/status.jsp?

task=f192a0030f694224a0ba8f08223a1323. The molecular network output from GNPS was then

uploaded  to  Cytoscape  (version  3.5.1  http://www.cytoscape.org/)  [16],  for  advanced

visualization. Nodes were labelled with spectral matches to GNPS with m/z values, and edge

thickness is proportional to the cosine score.
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Supplementary figures

Figure  S1.  Matrix  of  plots  illustrating  Pearson  correlations  among  obesity,  depressive

symptoms,  inflammation  and sex,  across  participants.  Histograms of  the  variables  displayed

along the matrix diagonal represent distribution of samples and scatter plots of variable pairs are

displayed in the off diagonal. Correlation coefficients displayed represent the slopes of the least-

squares reference lines in the scatter plots.
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Figure  S2.  Per  sample  based  RF  analysis.  (A),  Receiver  operating  characteristic  curves

(AUROC) illustrating classification accuracy of the random forest model across all groups (i.e.

controls,  Ob/lower  Dep,  Non-ob/higher-Dep,  Ob/higher-Dep)  and  (B),  Area  under  precision

recall curves (AUPRC) illustrating performance of the random forest model across all groups.
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Figure  S3. Chemical  diversity  captured  in  salivary  metabolomes.  Branches  in  the  circular

chemical  tree  are  colored  according  to  the class  type and branch labels  represent  putatively

annotated chemical features at subclass level based on chemical taxonomy. Bar graphs at the leaf

tips illustrate relative abundance of molecules across groups.
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