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Abstract: The development of low- or non-invasive screening tests for cancer is crucial for early
detection. Saliva is an ideal biofluid containing informative components for monitoring oral and
systemic diseases. Metabolomics has frequently been used to identify and quantify numerous
metabolites in saliva samples, serving as novel biomarkers associated with various conditions,
including cancers. This review summarizes the recent applications of salivary metabolomics in
biomarker discovery in oral cancers. We discussed the prevalence, epidemiologic characteristics, and
risk factors of oral cancers, as well as the currently available screening programs, in India and Japan.
These data imply that the development of biomarkers by itself is inadequate in cancer detection.
The use of current diagnostic methods and new technologies is necessary for efficient salivary
metabolomics analysis. We also discuss the gap between biomarker discovery and nationwide
screening for the early detection of oral cancer and its prevention.

Keywords: oral cancer; metabolomics; saliva; diagnosis; prognosis; machine learning

1. Introduction

Oral cancer (OC) is a blanket term used to describe any cancer occurring in the oral
cavity. In 2018, more than 350,000 new cases of OC and 170,000 deaths were recorded
worldwide [1]. Tobacco usage, alcohol consumption, and human papillomavirus infection
are the major risk factors for OC [2–4]. A recent study compared the incidence of OC in
the 10 most populous countries over the past 30 years and reported declining trends in
the annual age-standardized incidence rate of OC in Bangladesh, Brazil, Mexico, and the
United States; however, increasing trends were observed in China, Indonesia, Pakistan,
India, and Japan [5]. The 5-year overall survival rate of OC is approximately 50% [6]. To
improve the prognosis and quality of life of patients, early detection of OC is essential [7].

The underlying epigenetic mechanisms and major risk factors of OC vary across
countries. India accounts for one-third of the global OC cases, with 77,000 new OC cases
and 52,000 related deaths annually [8]. Tobacco consumption is the main etiological factor.
Most OC cases are diagnosed at advanced stages owing to delays in reporting to healthcare
professionals [9]. Approximately 60–80% of the patients with OC diagnosed at late-stage
Early detection can improve treatment efficacy and prognosis. Although various methods
are available for screening, visual examination is the most commonly used owing to its low
cost [10]. However, diagnosing lesions in the initial stage and differentiating them from
inflammatory conditions remain challenging.
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Despite the declining trend of tobacco use in Japan, the incidence of OC has in-
creased [11]. Similar to the global trend, many patients are diagnosed with late-stage OC.
In Japan, nationwide screening of five cancers (gastric, colon, and lung cancers for both
sexes and breast and cervical cancers for women) is conducted annually or every other year.
Insufficient screening is among the reasons for the increasing trend of OC. Therefore, the
development of a new cost-effective screening system for OC is necessary.

Saliva is a mixture of biofluids and plays vital roles in oral homeostasis. Other
functions of saliva include lubrication, digestion, buffering, taste, tooth protection, and
immune defense by protecting against bacteria, viruses, and fungi. Saliva consists of various
cellular and molecular components, such as transudate of the oral mucosa, desquamated
oral epithelial cells, blood cells, oral bacteria, proteins, metabolites, and inorganic ions
(Figure 1). Furthermore, it is mainly secreted from three major salivary glands (parotid,
submandibular, and sublingual glands) and other minor glands. It also contains various
components which originate from other sources, such as gingival crevicular fluid. Overall,
these components make saliva an ideal biofluid for detecting various diseases.
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Figure 1. Examples of diseases detected using metabolite biomarkers. The biomarkers of mental
illnesses (yellow), dental diseases (light blue), and various systematic diseases (light pink) related to
metabolic abnormalities have been explored.

There are several advantages of using saliva for cancer detection. First, a positive
correlation has been reported between salivary and plasma metabolite levels, such as those
of glucose, pyruvate, and lactate [12,13], indicating that salivary metabolites provide bio-
logical information. Second, saliva is the most readily available biofluid, and its collection
requires minimal training [14]. Third, analysis of saliva samples is convenient owing to the
noninfectious collection process, easy transportation, and disposable nature [15]. Fourth,
the saliva metabolite profile of each individual is affected by diet compared to that of urine
collected from identical individuals [16]. Therefore, several cancer biomarkers have been
identified using salivary omics technologies.

Owing to the ongoing global COVID-19 pandemic, interest in cancer detection has
decreased [17]. However, saliva-based tests, such as PCR [18] and antigen-based tests [19],
have become popular. Therefore, it is an opportune time for the development and distri-
bution of saliva-based cancer tests. This article reviews the recent applications of salivary
metabolomics in the identification of diagnostic and prognostic biomarkers of OCs. Since
saliva is found in the oral cavity, most applications are in cancers of the oral cavity, such
as oral and salivary gland cancers. Nevetheless, the biomarkers of cancers originating in
organs that are far from the oral cavity are also reviewed. Finally, the current screening
schemes and future perspectives of salivary metabolomics are discussed.
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2. Applications for Cancer Biomarker Discovery
2.1. Diagnostic Markers for OC

Salivary metabolomics has been used to identify new metabolite biomarkers to dif-
ferentiate between OC and healthy control (HC) samples using various detection devices
coupled with metabolite separation technologies. Biomarkers for oral squamous cell carci-
noma (OSCC), which accounts for approximately 90% of all oral malignant neoplasms, have
been frequently reported [6,8]. The development and validation of multiple marker-based
indexes have been conducted by several studies to distinguish OC and HC groups.

Several profiling methods to identify new biomarkers and various data analyses
to utilize multiple biomarkers to discriminate between the diseased group and the HCs
are currently available. The analytical instruments, discrimination methods, comparison
designs, and accuracies are summarized in Table 1. The details of each study, including the
accuracy of individual biomarkers, are summarized in Supplementary Table S1.

Table 1. Summary of salivary metabolomics for OC diagnosis studies.

Analytical
Instrument

Discrimination Method or
Univariant Statistics Discrimination Design Accuracy

(AUC or p-Value) a Ref.

RPLC-MS and HILIC-MS MLR OSCC from HC
0.997 (Stage I–II)

200.971 (Stage III–IV)

CE-TOFMS Wilcoxon rank sum test OSCC vs. HC 0.00006 b 21

GC-MS Mann–Whitney test with
FDR correction OSCC vs. HC 3.1755 × 10−16 c 22

CPSI-MS Lasso regression model
OSCC from HC 0.992

23PML from HC 0.978
OSC from PML 0.917

UPLC-QTOFMS MLR
OSCC from HC 0.89

24OSFF from OLK 0.97

CE-TOFMS MLR OC from OLP 0.865 25

LC-QTOFMS ANOVA OC vs. HC <0.05 d 26
a The smallest p-value at the studies that conducted only univariable statistical analysis. b Choline, c Lactose,
d There were 48 significantly different metabolites without the exact p-value.

Reverse phase liquid chromatography with mass spectrometry (RPLC-MS) and hy-
drophilic interaction chromatography-MS (HILIC-MS) were used to analyze hydrophilic
metabolites in saliva samples [20]. Orthogonal partial least squares discriminant analysis
of five metabolites (propionylcholine, N-acetyl-L-phenylalanine, sphinganine, phytosph-
ingosine, and S-carboxymethyl-L-cysteine) enabled the distinction between early-stage
OSCC and HC samples. Capillary electrophoresis-time-of-flight MS (CE-TOFMS) was
also used to quantify hydrophilic metabolites in saliva samples collected from patients
with OSCC and HCs in a Japanese population [21]. Univariate analyses were used to
quantify 25 hydrophilic metabolites, such as choline and urea, and revealed a substantial
difference between OSCC and HC samples. Gas chromatography-MS (GC-MS) was used
to analyze OSCC and HC saliva samples obtained from a South American population [22].
The results of receiver operating characteristic analysis identified 24 metabolites, such as
malic acid, maltose, methionine, and inosine, for distinguishing between patients with
OSCC and HCs. These studies have aided the identification of potential biomarkers of
OSCC; however, the sample sizes of these studies were small (n < 100). Conductive polymer
spray ionization MS (CPIS-MS) was used to identify biomarkers to discriminate between
OSCC and premalignant lesions from HC samples using a relatively large-scale dataset
(n = 373) [23]. These markers successfully discriminated between OC and HC samples;
however, their specificity against other inflammatory diseases has not been evaluated.
The markers and biomarkers that are used to detect OSCC and premalignant lesions are
also useful for diagnosing subjects who require further examination by clinicians. Addi-
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tionally, the use of different analytical methods with non-standardized sample collection
protocol may cause heterogeneous results despite the similar study design used in these
studies. Thus, the reproducibility of these identified biomarkers should be confirmed before
clinical application.

2.2. Biomarkers That Discriminate between OC and Other Diseases

Visual inspection alone is insufficient to differentiate OC from several inflammatory
diseases of the oral cavity. To address this, salivary metabolomics have been applied.
Salivary metabolites collected from patients with OSCC and oral leukoplakia (OLK) and
HCs were analyzed using ultra-performance liquid chromatography-quadrupole time-of-
flight MS (UPLC-QTOFMS) [24]. Multiple logistic regression (MLR) models using lactic acid
and valine was used to distinguish between OSCC and HC samples, whereas another model
based on these two metabolites and phenylalanine was used to distinguish between OSCC
and OLK samples [24]. The salivary metabolite biomarkers with considerable differences
between OSCC and oral lichen planus (OLP) were reported for samples collected from a
Japanese population [25]. Their results suggest that markers can be used to detect malignant
transformation of OLP. A similar comparison between patients with OSCC or OLK and
HCs was performed using samples collected from an Indian population [26]. However,
different biomarkers were identified in these studies. One possible reason is the different
analytical methods used (CE-MS in the study conducted in Japan and LC-MS in India).
Therefore, identical protocol and analytical methods should be used to evaluate country-
dependent variations. These biomarkers represent OC-specific metabolism and are helpful
in discriminating OC from other diseases, thereby contributing to early OC diagnosis.

2.3. Other Biomarkers Identified Using Salivary Metabolomics

In addition to the discovery of diagnostic biomarkers, other various applications of
salivary metabolomics, such as the prediction of potential treatment plans, have been
explored. 18F-fluorodeoxyglucose positron emission tomography/computed tomography
(18F–FDG PET/CT) is commonly used to diagnose different aspects of cancer, such as
metastasis, recurrence, staging, and screening. Salivary metabolites having correlations
with the PET maximum standardized uptake value of 18F–FDG PET/CT were reported [27].
Medication-related osteonecrosis of the jaw (MRONJ) is a severe adverse effect of bone-
modifying agents used to prevent bone complications in OC with bone metastasis, and
salivary biomarkers for MRONJ prediction have been identified [28]. Biomarkers to esti-
mate radiotherapy response in head and neck cancer (HNC) have also been analyzed. The
time course of the metabolomic profile was studied before and during the therapy [29].

2.4. Biomarkers for Other Cancers

Salivary metabolomic studies have identified diagnostic biomarkers not only for OC
but also for other cancers [30]. Salivary tests for breast cancer diagnosis have been de-
veloped, and various types of molecules have been proposed as biomarkers. Volatile
metabolite compounds found in breath and saliva have shown potential in breast cancer
detection [31]. Non-volatile metabolites, such as amino acids, can also be used to differenti-
ate between breast cancer and HC samples [32,33]. Non-targeted non-volatile metabolite
profiling of saliva revealed the presence of 18 metabolites, such as LysoPC, related to
breast cancer [34]. Seven oligopeptides and six glycerophospholipids showed breast cancer-
specific differences [35]. Metabolomic profiling using total protein and antioxidant enzymes
helped the detection of breast cancer in individuals without breast pathologies [36]. These
studies conducted non-targeted metabolomics, and biomarkers were identified based on
the comparison between saliva samples obtained from patients with breast cancer and HCs.

Targeted metabolomic analysis revealed elevated polyamine levels in saliva sam-
ples [37–39]. Furthermore, activated synthesis and acetylation of polyamines have been
observed in various cancer cells [40,41], along with higher polyamine concentrations in the
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blood and urine samples of patients with cancer [42]. Thus, the elevation in the level of
salivary polyamines is expected to be consistent with these changes in blood samples.

Pancreatic cancer (PC) has a high mortality rate, and the absence of early specific
symptoms delays its diagnosis. Although tumor markers, such as the carbohydrate antigen
19-9 and carcinoembryonic antigen, are available, their sensitivity is limited [43]. Therefore,
the development of a new diagnostic method is needed. We have previously reported the
PC-specific elevation of hydrophilic metabolites in saliva, and their profiles were different
from those of oral and breast cancers [30]. Asai et al. analyzed the salivary polyamine profile
of patients with PC, chronic pancreatitis, and HCs and found a considerable elevation
in the polyamine levels of patients with PC [44]. A positive correlation was reported
between polyamine concentrations in PC tissues and urine [45]. Recently, polyamine-related
aberrance was reported in PC. A transcriptomics study found that the gene expression of
proteins associated with polyamine synthesis pathways is associated with the prognosis of
PC [46]. In addition, polyamine concentration patterns accurately distinguished among PC,
chronic pancreatitis, and HC samples [47]. These data reinforce the biological rationality of
salivary biomarkers, although efforts should be directed to obtain more direct evidence.

2.5. Salivary Metabolomics for Oral Cavity Diseases

The specificity of OC biomarkers should be evaluated in other various inflammatory
diseases in the oral cavity, such as periodontal diseases (PD). A recent meta-analysis of
salivary metabolomics data on PD found increased concentrations of valine, phenylalanine,
isoleucine, tyrosine, and butyrate and decreased concentrations of lactate, pyruvate, and N-
acetyl groups [48]. Increased levels of amino acids and short peptides were observed in the
saliva of patients with PD, suggesting activated protein degradation [49]. The upregulation
of oxidative stress-related pathways, such as purine degradation, was also consistently
noted in PD [50]. The overlap in the metabolitebiomarkers between PD and OC could
cause misdiagnosis. The validation study included not only HC but also patients with PD
to evaluate marker specificity.

3. Technical Challenges in Salivary Metabolomic Studies
3.1. Metabolite Measurement Technologies

The word metabolomics was coined by merging two terms—omics and metabolites.
Therefore, it is expected to refer to an analytical method that measures all metabolites.
However, no single method can be used to analyze all metabolites because of the large
diversity of chemical structures of metabolites in biological samples [51]. Therefore, various
methods have been developed, and each technique has its own advantages and disadvan-
tages. Various metabolite separation and detection systems have also been used to analyze
metabolites in saliva samples.

Nuclear magnetic resonance (NMR) is the most frequently used method [52]. Com-
pared to mass spectrometry (MS), NMR has higher reproducibility and minimal preparation
for any sample type [53]. Pretreatment of the saliva, a viscous liquid, is also a simple pro-
cess [54]. This feature is a definitive advantage as it minimizes the chances of causing unex-
pected errors. NMR has enabled identification of pattern changes in salivary metabolomic
profiles, i.e., metabolic signature, to distinguish between patients with cancer and HCs.
Some applications of salivary metabolomics explored using NMR include the detection
of OSCC [24,55], head and neck squamous cell carcinoma [56], and glioblastoma [57]. In
addition to cancer, hepatitis B infection [58], Parkinson’s disease [59], and Alzheimer’s
disease [60] have been analyzed. The salivary biomarkers, saliva collection methods, and
NMR methods are summarized in Supplementary Table S2.

MS is another a major metabolite detection system with high sensitivity. It consumes
a small volume of samples and enables the identification and quantification of hundreds
of metabolites simultaneously [53]. However, direct injection to MS cannot separate the
metabolites with the same m/z (mass divided by charge number) value, such as leucine and
isoleucine; therefore, a separation system is usually used before MS. GC-MS allows the
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quantification volatile compounds and the profiling of non-volatile metabolites by derivati-
zation, which was used to analyze OSCC samples [22]. Liquid chromatography (LC)-MS
has been used for both non-targeted and targeted analyses of salivary metabolites. For non-
targeted analyses, hydrophilic metabolites, such as γ-aminobutyric acid, phenylalanine,
valine, and lactic acid, of saliva samples of OC patients were analyzed [24]. A wide variety
of metabolites, such as oligopeptides, phosphatidylcholine, and glycerophospholipids,
were analyzed in the saliva samples of patients with breast cancer [34,35]. For targeted anal-
yses, salivary OSCC biomarkers, such as choline, betaine, pipecolinic acid, and carnitine,
were quantified [61]. Salivary polyamines were also analyzed as known biomarkers for
breast cancer [38]. Capillary electrophoresis (CE)-MS was used for hydrophilic metabolite
profiling of saliva samples of OC [21,25,27,62,63], breast cancer [39], and pancreatic cancer
(PC) [44].

Comparisons of NMR and MS for analyzing saliva samples for OC biomarker dis-
coveries have been previously conducted [64,65]. Both reviews claimed the necessity of
standardization of sample collection and the processing of measuring data. The simulta-
neous use of NMR and LC-MS to analyze salivary metabolites succeeded in the coverage
expansion of the observed metabolite [66], enhancing the opportunity to find biomarkers
related to the focused phenotype.

3.2. Discrimination Methods

To identify biomarkers, conventional univariate analyses, such as the Student’s t-test
and the Mann–Whitney test for two-group comparisons, have been used in previous studies.
Additionally, multivariate analyses were frequently used to analyze the similarity and the
difference of overall metabolite profiles. As unsupervised methods, principal component
analysis (PCA) and hierarchical clustering analysis have been performed. For example,
PCA was used to assess the relative strength of the effects of multiple factors, such as inter
and intraday variations, on salivary metabolomics [67]. Clustering was used to find new
subgroups of a disease group based on the observed metabolomic profiles [68]. These
methods help find outliers, assess the quality of samples, and form the groups used in
subsequent analyses.

To discriminate a disease group from other groups, such as OC from HC, a combi-
nation of multiple metabolite concentration patterns was used (Table 1). MLR is one of
the conventional multivariable methods. It uses minimal independent metabolite sets
by eliminating multicollinearity problems [25,30,62]. Lasso regression model solved the
multicollinearity problem [23]. Partial least squares-discriminant analysis (PLS-DA) is
also frequently used to discriminate against multiple groups, enabling the ranking of the
metabolite’s contribution to the discrimination. For example, discrimination among OSCC,
OLK, and HC was conducted using this method [24]. Random forest, a classification
machine learning (ML) model that leverages multiple decision trees [69], and alternative
decision trees [39] have also been used to discriminate a group from the others. The most
important concern is rigorous validation of the generalization ability to eliminate over-
fitting. Cross-validation is commonly used in a single cohort, while accuracy evaluation
using an independent cohort provides a more rigorous validation [23].

3.3. Standard Operating Protocols (SoP)

The discovery and validation of biomarkers are the initial steps to establish new
screening methods. A standard protocol for working with saliva samples should be
determined to enhance reproducibility. The methods for preconditioning, sample collection,
storage, preprocessing, measurement, and data analysis should be standardized [70]. The
effect of inter-day and intra-day variations on salivary metabolomics has been analyzed [67],
and no significant salivary flow was observed in the comparisons. The stimulated saliva
showed larger variations in metabolomic profiles than the unstimulated saliva. The time
period between the last diet and sample collection also affected salivary metabolomic
profiles [63]. As expected, longer fasting conditions before sample collection improved
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the discrimination ability of the OC biomarkers. Normalization of overall concentration
with the total contents of amino acids decreased the variations due to fasting conditions.
Stimulation of the oral cavity, for example, using tobacco and mouthwash, also affected the
final results [71], with stimulated and unstimulated saliva having different metabolomic
profiles [72]. Taken together, the longer the fasting period, the more consistent the use
of stimulated or unstimulated saliva samples. Thus, a restriction affecting the oral cavity
should be defined as part of the SoP.

The effect of storage conditions on the quantified concentration of metabolite biomark-
ers was also analyzed [61]. Variations between short-term storage at room temperature (up
to 24 h) and long-term storage at −35 ◦C (up to 1 month) of four OC biomarkers, such as
choline and betaine, were detected. Storage and preprocessing also affected the polyamine
profiles in saliva [73]. The artificially generated noise according to the maximum variations
observed during storage and preprocessing enabled the estimation of possible deterioration
of discrimination abilities of the biomarkers. Such analyses would assit in the stablishment
of SoP in the clinical settings.

Because it is not necessarily limited to salivary metabolomics, MS-based metabolomics
required better quality control than NMR-based ones [53]. Therefore, quality assessment
for each processing step and a control method were developed to normalize the quantified
data to ultimately eliminate unexpected bias in multiple batch measurements [74]. Along
with these standardizations, the development of an automatic pipeline is also a reasonable
approach [23]. The establishment of a rigorous protocol will likely yield reproducible
results; however, it may hinder the widespread use of salivary tests (Figure 2).
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Figure 2. The factors influencing salivary metabolomics that require the establishment of standard
operating procedures are shown. (1) As preconditions before saliva collection, the diet, smoking
behavior, and intensive exercise of subjects should be restricted, as they potentially affect sali-
vary metabolites. (2) To eliminate diurnal variation, stipulated timing of saliva collection, e.g.,
9:00–11:00 am, should be implemented. The selection of stimulated or unstimulated saliva is vital.
(3) The temperature and duration of storage of the saliva samples should also be standardized.
(4) Chemicals used as solvents and the methodology for deproteinization should be selected accu-
rately. (5) Quality assessment of the measurement device using quality control samples is vital to
eliminate unexpected bias.

4. Discussion
4.1. Current OC Screening Strategies

The diagnosis of OC at an early stage can influence the treatment plan and the patient’s
chances of survival. Therefore, screening programs are conducted to lower the mortality
rate. In India, limited community-based screening programs and sporadic opportunistic
camp-based screenings are performed. Therefore, high levels of awareness about screening
and self-examination are recommended by the National Cancer Control Program of In-
dia [75]. In particular, screening (oral visual inspection) was recommended for individuals
aged >35 years belonging to the high-risk group [76]. Current screening programs are
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conducted every three years [77]. However, the median duration for progression from
early-stage HNC to advanced stage is 11.3 months, and that from advanced stage to un-
treatable conditions is 3.8 months [78]. According to the recommendations of the American
Cancer Society, asymptomatic patients aged 20–40 years are screened every 3 years, patients
aged >40 years are screened annually, and high-risk subjects should be screened every year
irrespective of age [79]. Therefore, OC screening using salivary tests could be performed at
shorter time intervals than the current guidelines.

The screening programs for OC rely on visual examination. However, the procedure
has several limitations, including low specificity and difficulty in identifying tumor le-
sions [80]. Molecular studies, identification of a distinct tumor progression model of OSCC,
and robust data collection methods will enhance the effectiveness of screening programs.
Additionally, unnecessary tests and costs will be reduced [77]. Saliva reflects changes in the
tissue even before any symptoms manifest and has been identified as the ideal diagnostic
fluid to study molecular changes in OSCC [23]. Salivary metabolomics is conducted to
facilitate the use of saliva in OC biomarker identification [14]. Validating the identified
metabolite markers would highlight the advantages of using saliva as a non-invasive tool
for screening patients.

4.2. Futuer Prospects for Salivary Metabolomics

Several problems have to be addressed before the clinical application of salivary
metabolomics. First, a large-scale validation study should be conducted to evaluate the
accuracy of the biomarkers. Published studies on salivary metabolomics included only
case-control studies. The relationship between the study design and cohort is depicted
in Figure 3. Multigene expression test for OSCC was established based on diagnostic
performance in a multi-institute evaluation in three countries [81]. Such large-scale val-
idation is required for salivary metabolomics; however, two obstacles exist. First, the
high reproducibility of metabolomic profiles in human biofluid in multi-centers is still
challenging [82], and the standardization of the various processes for blood and urine sam-
ples was recommended [83]. In addition to measurement, the unified protocol should be
established to deal with saliva samples, such as for sample transfer and storage protocols.
Second, the prevalence rate of cancer subjects was low in the actual cohort, indicating
that validation requires large sample sizes to include a sufficient number of patients with
OC. High-throughput and cost-effective assays to realize targeted quantification of the
identified biomarkers should also be developed and validated. The multilateral merits of
salivary-based screening, including clinical and economic aspects, should be evaluated.

Second, the disease specificity of biomarkers should be validated. Most published
studies included only one type of cancer and thus cannot be used to evaluate the specificity
of the identified biomarkers. Salivary metabolites that distinguished OSCC from OL+ have
been identified [25]. These biomarkers yielded different results between OSCC and HC
samples [62]. Therefore, their combinations should be used to differentiate among these
groups. However, the diagnosis of precancerous lesions is also vital for the early detection
of these diseases.

Third, the biological relationship between salivary biomarkers and cancers should be
elucidated. Various processes, such as carbohydrate metabolism, oxidative stress-related
metabolism, and nucleotide synthesis, and molecules, such as polyamines, amino acids,
and lipids, have been reported as metabolite biomarkers of for [84]. We compared the
metabolomic profiles of OC tumor lesions and saliva samples and identified 17 metabo-
lites, such as amino acids, lactate, and polyamines, which showed consistent evaluation
results [62]. Elevated salivary polyamine levels in patients with OC were consistently
reported by several studies [61]. Ornithine is used as a substrate for the synthesis of
polyamines by ornithine decarboxylase (EC 4.1.1.17). Acetylation of polyamines by the
enzyme spermidine/spermine acetyltransferase (EC 2.3.1.57) resulted in the formation of
N1-acetylspermine or N1-acetylspermidine [85]. These enzymes are activated downstream
of several oncogenes, such as c-MYC and Tp53 [86]. These oncogenes have been associated
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with OC promotion and progression [87,88]. Therefore, elevated levels of metabolites
involved in these pathways are expected, and their use as biomarker should be explored.
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Figure 3. Various study designs used from salivary metabolomics to saliva-based OC test. The top
layer describes the general study designs used to identify and validate diagnostic markers. The
middle layer describes case-control and cohort studies. The top layer controls the number of OC and
non-OC participants, whereas the middle layer includes a low rate of OC owing to the low prevalence
rate in the actual cohort. The bottom layer shows the requirements of the saliva-based OC test. SoP
establishment and multi-center-level validations are necessary to discover and validate biomarkers
using metabolomics. The development and validation of a cost-effective and high-throughput assay
that enables targeted analyses of the biomarker is required for clinical use.

The association between the characteristics of saliva and cancers originating in organs
distant from the oral cavity has also been studied. Saliva collected from patients with breast
cancer with BRCA1 mutation is characterized by an enhanced antioxidant capacity and
oxidative damage to proteins and lipids [89]. Isolated exosome-like microvesicles from
breast cancer cells showed an altered mRNA expression profile of the salivary gland [90],
which is expected to change the concentration of components secreted by the salivary gland
in these patients. Salivary polyamines were altered in patients with invasive carcinoma but
remained unchanged in those with ductal carcinoma in situ (DCIS) [39]. This is a reasonable
finding because only invasive cancer cells secrete molecules into the tumor microenviron-
ment [41]. However, this feature is disadvantageous as salivary polyamines cannot be
used to detect DCIS. Polyamine levels were consistently elevated in both pancreatic tissues
and urine samples Conventionally, only N1, N12-diacetylspermine was evaluated as a
biomarker; however, a combination of various acetylated forms of urinary polyamines
showed potential in screening various cancers [91]. Similar data have been reported in colon
cancer cohorts [92,93]. Therefore, cancer-type specificity should be rigorously evaluated.

4.3. Future Perspectives on Cancer Screening Using Salivary Metabolomics

The identification of cancer biomarkers alone is not adequate. The development of a
high-throughput, cost-effective assay, and combination of biomarkers with other diagnostic
factors are necessary to realize effective screening and treatment. A nomogram utilizes
MLR to combine multiple features linearly, thus predicting the disease status and treatment
outcomes. For example, a combination of clinical characteristics and serum inflammation
markers has been developed to predict overall survival in OSCC patients [94].

In Japan, an OC screening showed that an opportunistic screening system is more
effective in diagnosing precancer and cancer patients than a countermeasure screening
system [95]. A recent systematic review and meta-analysis concluded that the diagnostic
accuracy of commonly used OC screening tests (such as conventional oral examination, vital
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rinsing, light-based detection, mouth self-examination, remote screening, and biomarker-
based screening) was inadequate for detecting OC efficiently [96]. In addition, since
screening by trained dentists and oncology specialists is expensive, the development of new
technologies for the objective assessment of the risk for OC is essential. Recently, several
machine learning-based data processing methods have been developed. OC detection,
automated staging, and distinction between cancerous and precancerous cells by image
processing are typical examples of machine learning applications [97,98]. In India, various
research programs for OC that use artificial intelligence are currently underway (Figure 4).
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5. Conclusions

Studies aiming to identify metabolite biomarkers for OC detection have been extensively
conducted. In addition to conducting rigorous clinical validation studies, establishing standard
operating procedures for the use of saliva samples is mandatory. An effective screening system
should be developed by combining conventional and modern technologies.
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