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Abstract

Antimicrobials used in salmon aquaculture pass into the marine environment. This could have negative impacts on marine
environmental biodiversity, and on terrestrial animal and human health as a result of selection for bacteria containing
antimicrobial resistance genes. We therefore measured the numbers of culturable bacteria and antimicrobial-resistant
bacteria in marine sediments in the Calbuco Archipelago, Chile, over 12-month period at a salmon aquaculture site
approximately 20 m from a salmon farm and at a control site 8 km distant without observable aquaculture activities. Three
antimicrobials extensively used in Chilean salmon aquaculture (oxytetracycline, oxolinic acid, and florfenicol) were studied.
Although none of these antimicrobials was detected in sediments from either site, traces of flumequine, a fluoroquinolone
antimicrobial also widely used in Chile, were present in sediments from both sites during this period. There were significant
increases in bacterial numbers and antimicrobial-resistant fractions to oxytetracycline, oxolinic acid, and florfenicol in
sediments from the aquaculture site compared to those from the control site. Interestingly, there were similar numbers of
presumably plasmid-mediated resistance genes for oxytetracycline, oxolinic acid and florfenicol in unselected marine
bacteria isolated from both aquaculture and control sites. These preliminary findings in one location may suggest that the
current use of large amounts of antimicrobials in Chilean aquaculture has the potential to select for antimicrobial-resistant
bacteria in marine sediments.
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Introduction

It is believed that aquaculture will constitute the source of over

more than half of the seafood consumed in the world in coming

years because of the collapse of natural fisheries [1]. However, this

optimistic view needs to be tempered by increasing information

suggesting such expansion may be unsustainable as aquaculture

generates untoward effects such as habitat destruction, eutrophi-

cation and environmental contamination with chemicals and

antimicrobials [2]. The therapeutic, growth-promoting and

prophylactic use of antimicrobials was introduced into agricultural

practice in the 1940s and became widespread in Europe and the

United States [3–6]. Antimicrobial resistance in antimicrobial-fed

animals was soon noted [7], concerns about the possibilities of

transmission of this resistance to human pathogens followed

shortly thereafter [6,8,9], and indeed, has been demonstrated to

occur [10,11]. Voluntary and legislated bans on the use of

antimicrobials as growth promoters in the member states of the

European Union since the 1990s have been associated with a

marked decrease in antimicrobial usage without negative impacts

on productivity in fowl and swine [8,12,13].

Salmon aquaculture is an exponentially growing industry

worldwide, particularly in two countries – Norway and Chile

[14,15]. In Chile, this growth has been accompanied by major

mortalities of salmon reared in net pens. These can reach 50% of

production under some conditions with ensuing large economic

losses [16,17]. This growth has triggered concerns regarding many

environmental issues, particularly because large amounts of

chemotherapeutics and antimicrobials in the feed readily pass

into the marine environment and potentially alter bacterial

biodiversity [2,18–22]. Because the use of vaccines to prevent

bacterial diseases in fish is limited [16], this in turn has led to

increased use of therapeutic and prophylactic antimicrobials [23–

25]. Conservative estimates suggest that approximately 950 metric

tons of quinolones were used in salmon aquaculture in Chile

between 2000 and 2008, and approximately 1500 metric tons of

tetracycline and 478 metric tons of florfenicol were used for this

purpose between 2000 and 2007 [23–25].

Antimicrobial agents are usually administered to salmon mixed

with food [19,22]. Uningested food and fish feces containing

unabsorbed antimicrobials and secreted antimicrobial metabolites

in the water and sediment in the environment of salmon farming

sites often retain their antimicrobial activity and can remain in the

aquatic environment for variable periods of time depending on

their initial concentrations, biodegradability, and physical and

chemical characteristics [19,26–28]. Such materials can select for

antimicrobial resistant bacteria in the sediment and water column

and can often influence microbial diversity not only by eliminating
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susceptible bacteria but also by acting on other susceptible

microorganisms such as microalgae [22,26,29,30].

Selection of antimicrobial-resistant bacteria in the marine

environment could have detrimental impacts on piscine and

human health by facilitating transfer of antimicrobial resistance

genetic determinants from environmental marine microbes to fish

pathogens and terrestrial bacteria including human and animal

pathogens [19,22,23,31]. It is clearly evident that bacteria from

marine and terrestrial ecosystems can share antimicrobial resis-

tance genes and that some emerging antimicrobial resistance genes

in human pathogens may have an aquatic bacterial origin [32–35].

For example, the fish pathogen Yersinia ruckerii, the cause of enteric

redmouth disease, shares an antimicrobial resistance plasmid and

antimicrobial resistance genes with the plague bacillus, Yersinia

pestis [36]. This sharing of movable genetic elements and

antimicrobial resistance genes between bacteria of different

ecological niches potentially endangers treatment of human

patients [22,32–34,36]. Such genetic and epidemiological findings

strongly suggest that the aquatic and terrestrial ecosystems are not

isolated regarding the dissemination of antimicrobial resistance

genes among their bacterial populations, probably as the result of

horizontal gene transfer [22,37].

The high level of antimicrobial use in salmon aquaculture in

Chile could have negative impacts on environmental biodiversity

and terrestrial animal and human health by selecting for bacteria

in the marine environment containing antimicrobial resistance

genes. We therefore compared numbers of culturable bacteria and

antimicrobial resistant bacteria for three antimicrobials used

extensively in Chilean salmon aquaculture (oxytetracycline,

oxolinic acid, and florfenicol) in the marine sediment adjacent to

salmon aquaculture pens and at a control site 8 km distant with no

observed aquaculture or other human activities.

Results

Antimicrobials in sediment samples from aquaculture
and control sites

Traces of flumequine, a fluoroquinolone antimicrobial, were

present in four sediment samples at the aquaculture site (Fig. 1):

two in December, 2008, and two in January, 2009. Flumequine

was also present in four sediment samples from the control site,

8 km from the aquaculture site (Fig. 1): one in December, 2008,

two in January, 2009 and one in April, 2009. Oxytetracycline,

oxolinic acid, and florfenicol were not detected in any of the 36

total samples examined (data not shown).

Culturable bacteria in sediment samples from
aquaculture and control sites

The total numbers of culturable bacteria in sediments from

aquaculture and control sites varied significantly over the course of

a year (P,0.001, two-way ANOVA, rank transformed data),

fluctuating between approximately 16103 and 16105 colony

forming units (cfu) g21 (Fig. 2A). There were highly significant

differences in culturable bacterial numbers between aquaculture

and control sites over the entire study period (P,0.001, rank

transformation test), with bacterial numbers significantly higher in

late spring (November, 2008) and high summer through winter

(January through July, 2009) than at other times (P,0.05,

Student-Newman-Keuls post-test). Sensitivity analyses using only

data consistent with a dilution series or using all 258 data points

produced similar results. Results obtained using a standard two-

way ANOVA of log-transformed data were also consistent with

this non-parametric analysis.

Sampling of sediments at intermediate distances between

aquaculture (0.0 km) and control (8.0 km) sites in November,

2008 (Fig. 2B), revealed significant differences in numbers of

culturable bacteria (P,0.001, two-way ANOVA, rank trans-

formed data) which did not decrease until 1 km from the

aquaculture site (P,0.05, Student-Newman-Keuls post-test).

Sensitivity analyses using only data consistent with a dilution

series or using all 258 data points produced similar results. Results

obtained using ANOVA of log-transformed data were also

consistent with non-parametric analysis.

Antimicrobial-resistant bacteria in sediment samples
from aquaculture and control sites

Measurements of the antimicrobial resistant fraction (ARF) of

bacteria cultured from aquatic sediments are useful for comparing

changes in antimicrobial resistance in this environment [38]. ARF

to oxytetracycline (Fig. 3A) and oxolinic acid (Fig. 3B) were

significantly different between aquaculture and control sites over

the entire period of study (P,0.001, two-way ANOVA, rank

transformed data). For both these antimicrobials, there was no

significant interaction between time of year and nature of the study

site (aquaculture or control). ARF to oxytetracycline was

significantly lower during spring, 2008 (September-November,

2008) than during the following summer (December, 2008–

January, 2009), before rising significantly the following spring

(September, 2009) (P,0.05, Student-Newman-Keuls post-test).

ARF to oxolinic acid (Fig. 3B) also was significantly higher in early

spring both years (September, 2008; September, 2009) than in late

spring, fall and winter (November, 2008; April, 2009: July, 2009),

before rising to intermediate levels in high summer (December,

2008; January, 2009) (P,0.05, Student-Newman-Keuls post-test).

Although ARF to florfenicol also varied significantly throughout

the year (Fig. 3C), the interaction of time and study site was

significant (P,0.002, two-way ANOVA, rank transformed data),

and significant differences between aquaculture and control sites

were only seen in late spring and high summer (November, 2008,

through January, 2009) (P,0.05, Student-Newman-Keuls post-

test). Sensitivity analyses using only data consistent with a dilution

series or using all 258 data points produced similar results. Results

obtained with parametric analysis of log-transformed data were

again consistent with this non-parametric analysis.

Sampling in November, 2008, at intermediate distances

between aquaculture and control sites revealed that ARF to

oxytetracycline (Fig. 4A), oxolinic acid (Fig. 4B), and florfenicol

(Fig. 4C) showed significant decreases from aquaculture to control

sites for all three antimicrobials (oxytetracycline, P = 0.008;

oxolinic acid, P = 0.002; florfenicol, P = 0.015, two-way ANOVA,

rank transformed data). In the case of oxytetracycline and oxolinic

acid (Figs. 4A, 4B), ARF was only significantly lower 8 km from

the aquaculture site (P,0.05, Student-Newman-Keuls post-test).

Significant elevations of ARF to florfenicol were maintained

0.5 km from the aquaculture site, but were significantly lower by

1 km (Fig. 4C). Sensitivity analyses using only data consistent with

a dilution series or using all 258 data points yielded similar results.

Results from parametric analysis of log-transformed data were

again consistent with this non-parametric analysis.

Detection of antimicrobial resistance genes in bacteria
from aquaculture and control sites

The presence of culturable antimicrobial-resistant bacteria in

sediments from aquaculture and control sites suggested the

presence of antimicrobial resistance determinants in these

bacteria. PCR confirmed the presence of genes mediating

Aquaculture and Antimicrobial Resistance
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resistance to oxytetracycline, oxolinic acid, and florfenicol in

bacteria from sediment samples that had not been selected for

antimicrobials. Plasmid-mediated quinolone resistance (PMQR)

genes were studied because these plasmid-mediated resistances are

potentially transmissible and some of them appear to originate

from aquatic bacteria [32,33,39,40]. Moreover, they have recently

begun to disseminate among terrestrial animal and human

pathogens and are readily detected by PCR [40]. Unselected

isolates of bacteria from aquaculture and control sites (24 from

each site) contained plasmid-encoded genes for resistance to

quinolones, including qnrA, qnrB, qnrS, oqxA and aac(69)-Ib-cr (Fig. 5,

Table 1). Several of these bacteria also harbored tetA, tetB, tetK,

tetM, and floR genes (Fig. 5, Table 1). Some bacteria harbored

multiple antimicrobial resistant determinants (Table 2). The

combination of PMQR and tetracycline resistance genes was the

most frequent (8), followed by PMQR and florfenicol resistance

genes (3) and finally PMQR, tetracycline and florfenicol resistance

genes (3). Several isolates also generated a positive signal

(confirmed by DNA sequencing) for the int1 gene encoding

integrase 1 (Table 1), suggesting the presence of type 1 integrons in

these bacteria [41–45].

Species identification of bacteria harboring antimicrobial
resistance genes from aquaculture and control sites

PCR amplification of 16S rRNA genes in eight bacterial isolates

from the aquaculture site identified two isolates of Sporosarcina sp.,

two isolates of Arthrobacter sp. and one isolate Vibrio sp. Bacterial

isolates from the control site included one Pseudoalteromonas sp.

isolate and two isolates of Vibrio sp. (Table 2). The 16S rDNA

sequences of these amplicons were .99% identical to those in

GenBank (E value of 0.0) (Table 2). These observations are not

consistent with the possibility that the bacteria in which

antimicrobial resistance genes were present were human and

terrestrial animal pathogens contaminating Chilean coastal waters

[46,47].

Discussion

We studied marine sediments from two sites in the Calbuco

Archipelago in southern Chile to determine numbers of culturable

and antimicrobial-resistant bacteria they contained. One was a site

20 m from a salmon aquaculture facility (Fig. 1), the other, off the

coast of an island 8 km distant from the aquaculture site, the only

local island with no aquaculture activities, few human dwellings,

and no water sources or discharges of solids into the sea (Fig. 1).

This latter site was thus expected to be pristine and a suitable

control site. Surprisingly, residues of flumequine, a quinolone with

potential cross resistance with oxolinic acid, were present in

sediments at both sites, most likely carried there by marine

currents from the many other aquaculture sites in the area that use

this antimicrobial and that have been in operation over the past 10

years (Fig. 1) [23–25]. Flumequine has been used as widely as

oxolinic acid in aquaculture in Chile; approximately 548 metric

tons were used between 2000 and 2007 [23–25]. Although the

control site was not as pristine as it was originally thought to be,

sediments from the aquaculture site still contained significantly

larger numbers of culturable bacteria than sediments from the

control site (Fig. 2A), with increased bacterial numbers being

present up to 1 km from the aquaculture site (Fig. 2B). These

findings essentially confirm previous reports on the ability of

aquaculture activities to increase culturable bacterial numbers

[48,49]. Sediments from the aquaculture site also contained

increased numbers of culturable bacteria resistant to tetracycline,

oxolinic acid and florfenicol; this effect persisted for distances up to

1 km from the aquaculture site (Fig. 4). The presence of

flumequine residues in the sediment from the apparently pristine

control site (Fig. 1) and significant antimicrobial resistance at

distances up to 1 km from the aquaculture site (Fig. 4) suggest that

Figure 1. Locations of aquaculture and sites of sampling in the Calbuco archipelago, Chile. Salmon farming sites are indicated by stars.
The ‘‘aquaculture site’’ sampled in the present study (arrowhead, inset) was 20 m from the salmon farm indicated by arrow. Other sites sampled in
the present study were located 0.5 km (solid triangle), 1 km (solid diamond) and 8 km (solid circle) from the aquaculture site. The latter site was off
the coast of Tabón Island, an island with no aquacultural activities or other human activity, and is referred to as the ‘‘control site’’ in the text.
doi:10.1371/journal.pone.0042724.g001

Aquaculture and Antimicrobial Resistance
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excessive use of antimicrobials in salmon aquaculture sites may not

only have an effect on marine sediments directly under and close

to aquaculture pens but also at some distance from where these

activities take place as a result of transport by water currents of

both unchanged antimicrobials and their antimicrobially active

metabolites. Previous work has not detected antimicrobials beyond

30 to 50 m from the aquaculture site but the amounts of

antimicrobials used in those situations were a fraction of those used

in Chile [26,29,50–52]. This suggests that the size of the area

impacted by aquacultural activities with regard to antimicrobial

resistance is related to the amounts of antimicrobials used in these

activities.

Obtaining accurate counts of culturable bacteria in marine

sediments is complicated by incomplete dispersal of particulates

and their attached bacteria. This incomplete dispersal leads to

erratic values in dilution series. Although clinical studies frequently

employ various criteria to ensure the quality of data to be analyzed

[53,54], our study is one of the first if not the first in this area to use

explicit criteria to assure the quality of the data to be analyzed.

The fact that similar conclusions were obtained in multiple

sensitivity analyses confirms the validity of this approach.

It has been suggested that the significantly larger numbers of

culturable antimicrobial-resistant bacteria demonstrable in sedi-

ment of aquaculture sites relative to control sites may be the result

of changes produced by excess organic matter passing into the

environment from uningested fish food and feces rather than from

antimicrobial use per se [55–57]. Unfortunately, there is no

experimental evidence to support this hypothesis. It is difficult to

develop a scenario based on current concepts of microbial genetics

and physiology that could explain preferential stimulation of

growth of antimicrobial-resistant bacteria by organic matter alone

unless this matter also contained other chemical entities such as

Figure 2. Culturable bacteria in sediment samples at aquacul-
ture and control sites taken at various time points. A. Colony
forming units (cfu) g21 sediment (mean 6 SE) in samples taken from
September, 2008, to September, 2009, were significantly higher at the
aquaculture site (closed circles) than at the control site (open circles) at
all time points (P,0.001); different lower case letters indicate significant
differences (P,0.05). A total of 66 samples were taken, 33 from the
aquaculture site and 33 from the control site. B. Cfu g21 sediment
(mean 6 SE) taken in November, 2008, at the aquaculture site (0.0 km)
and at sites 0.5, 1.0 and 8.0 km (control site) distant from it. Aquaculture
and control sites correspond to sites shown in Fig. 2A for this date; five
samples were taken from each additional site studied. Different lower
case letters indicate significant differences (P,0.05, see text for details
of statistical analysis).
doi:10.1371/journal.pone.0042724.g002

Figure 3. Antimicrobial resistant bacteria in sediment samples
from aquaculture and control sites. Antimicrobial resistance
fraction (ARF) (mean 6 SE) of culturable bacteria to (A) oxytetracycline
and (B) oxolinic acid in sediments from aquaculture (solid bars) and
control (open bars) sites from September, 2008, to September, 2009,
were significantly different between aquaculture and control sites over
the entire study period (P,0.001). ARF to (C) florfenicol in sediments
from aquaculture and control sites were significantly different only in
November, 2008, December, 2008, and January, 2009. *, P,0.05, see
text for details of statistical analysis. A total of 66 samples were taken,
33 from the aquaculture site and 33 from the control site.
doi:10.1371/journal.pone.0042724.g003
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metal ions, disinfectants or metabolites that could co-select for

metabolite utilization and ubiquitous antimicrobial resistance

genes linearly integrated in mobile genetic units such as plasmids,

transposons and integrons throughout Bacteria and Archea

[58,59].

An important limitation of this research is the lack of

information concerning the use and frequency of application of

antimicrobials during aquaculture activities before and during this

study. This stems from the proprietary nature of this information

and from the general lack of publicly available and well-organized

data on antimicrobial use in the Chilean aquaculture industry.

This dual lack critically limits our ability to relate antimicrobial use

to the observed relative increase in antimicrobial-resistant bacteria

and might also be responsible for our failure to detect antimicro-

bials other than flumequine in the sediments. The marked increase

in antimicrobial-resistant bacteria in the spring and summer when

activity at aquaculture sites customarily increases, the presence of

flumequine residues and the increased ARF to antimicrobials

known to be heavily used in this industry [23] does however

suggest a possible relationship between them. It has been

postulated that antimicrobials administered to fish by food do

not remain in the sediment, thus decreasing their ability to exert

selective pressure upon antimicrobial-resistant bacteria [51],

However, the present and previous work indicate that antimicro-

bials remain in the sediment at concentrations able to exert

selective pressure there [52,60,61].

Approximately half of unselected culturable marine bacterial

species from both aquaculture and control sites harbored

antimicrobial resistance genes (Table 1); the antimicrobial

resistances detected in these bacteria are probably mediated by

these genes. Because tetM tetracycline resistance gene and other

antimicrobial resistance genes have been demonstrated in ancient

(30,000 years before the present) bacterial DNA extracted from

terrestrial permafrost in Alaska [62], the effect of antimicrobial use

in salmon aquaculture on marine sediments is most likely

restricted to selecting those bacteria able to survive in their

presence. However, the numerically similar frequencies of

antimicrobial resistance genes at both sites is certainly consistent

with the presence of antimicrobial residues at both sites, and again

suggests that the control site was not as pristine as it was originally

thought to be.

There are several caveats regarding the observed bacterial

resistance phenotypes and genotypes. Because we only sequenced

three amplicons for the aac(69)-Ib-cr gene, we cannot be certain

that the five amplicons detected have the mutation which mediates

quinolone acetylation [63]. Furthermore, oxytetracycline, oxolinic

acid, and florfenicol resistance phenotypes can be encoded by a

multiplicity of chromosomal and plasmid genes and not only by

the ones studied in the present work [40,64–66]. Because we did

not perform an exhaustive investigation of alternative antimicro-

bial resistance genes for quinolone, tetracyclines and chloram-

phenicol, did not search for the presence of genes mediating

resistance to other antimicrobials, and studied only culturable

bacteria, we are probably underestimating the resistome present in

marine bacteria at the aquaculture and control sites. This

underestimation could lower the chance of detecting any

differences regarding these genes between these sites. Interestingly,

a few of the strains studied also harbored an integron type 1, a

genetic element usually associated with multiple antimicrobial

resistance cassettes and known to be present in bacteria from

aquatic sediments impacted by human activity [41–44].

Bacteria from the marine environment where salmon aquacul-

ture takes place contain antimicrobial resistance genes towards

antimicrobials used extensively in this activity. This confirms

previous work indicating that plasmid-mediated quinolone resis-

tance genes are present in aquatic bacteria [32,33,39] and that

these aquatic bacteria could well be the original source for

Figure 4. Variation in ARF to selected antimicrobials with
distance from aquaculture site. ARF (mean 6 SE) in November,
2008, to (A) oxytetracycline, (B) oxolinic acid, and (C) florfenicol in
sediments at aquaculture site (0.0 km) and at sites 0.5, 1.0 and 8.0 km
(control site) distant from it. ARF for aquaculture and control sites
correspond to ARF shown in Fig. 3 for this date. Five samples were
taken from each additional site studied. ARF to each antimicrobial were
significantly greater at the aquaculture than at the control site
(probabilities indicated for each antimicrobial). Different lower case
letters within each panel indicate significant differences between ARF
(P,0.05, see text for details of statistical analysis).
doi:10.1371/journal.pone.0042724.g004
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dissemination of these determinants in human pathogens

[22,32,33,39]. Such bacteria will have a selective advantage after

introduction of antimicrobials into their environment

[22,31,37,41]. The relevance of increased antimicrobial-resistant

bacteria in sediments of salmon aquaculture sites for the

emergence of antimicrobial resistance in fish and human

pathogens is unknown [22,23,56,57]. The significant increase in

antimicrobial-resistant bacterial populations to oxytetracycline,

oxolinic acid, and florfenicol in aquaculture sediments suggests

they could be a potential source for antimicrobial resistance genes

in fish and human pathogens as a result of horizontal gene transfer

[18,22,23,36,67,68]. This problem could be exacerbated in Chile

because of major contamination of seawater with antimicrobial-

resistant animal and human pathogens [46,47]. Horizontal gene

transfer of antimicrobial resistance genetic elements and muta-

genesis may also be stimulated by microbial stress triggered by the

presence of sub-inhibitory concentrations of antimicrobials such as

flumequine in the sediment [68–70].

The present preliminary study in a single salmon aquaculture

and a single control site suggests, as has been previously

demonstrated, that salmon aquaculture activities in Chile have

the potential to alter concentrations of culturable bacteria in

marine sediments and increase the proportion of antimicrobial-

resistant bacteria to three major classes of antimicrobials used in

clinical medicine [29,49,61]. The spatial limitation of the present

study hampers an immediate generalization of its conclusions to

other aquacultural and control sites in Chilean coastal waters.

Additional studies are thus necessary to confirm these results and

to identify the dynamics of these processes more carefully. The

presence of resistance genes to these antimicrobials in marine

bacteria and residual antimicrobials in the sediment suggests that

the increase in antimicrobial resistance results from selection of

bacteria in this environment. The cautionary principle also

suggests that use of antimicrobials in salmon aquaculture in Chile

needs to be controlled and reduced because this increase has the

potential to generate other problems of food safety and industrial

health [20,22,23,71,72]. We expect that the new sanitary scenario

instituted in response to the epidemic of infectious salmon anemia

will result in a significant reduction in antimicrobial use and

particularly in avoidance of quinolone antimicrobials because of

their relevance to human health [18,23,73].

Materials and Methods

Location of aquaculture and control sampling sites
The two sites studied were located in the Calbuco archipelago

in southern Chile, Region X, near the town of Calbuco (41u489S,

73u119W) (Fig. 1). At least 11 salmon farming sites have been in

operation in this area over the past 10 years with an estimated

annual production of approximately 15,000 metric tons. One of

these farms consists of two salmon culture units with 22 and 24

pens located approximately 300 m from the coastline at a water

depth of 45 m (arrow, Fig. 1). It can produce approximately 1,200

metric tons of salmon annually. Because of a confidentiality

agreement, neither the exact identity of the farm, the biomass of

fish cultured, nor the identity and amounts of antimicrobials used

before and during the period of study can be revealed. Areas

directly under the salmon pens are protected by anti-predator nets

and are inaccessible to divers. For this reason, sediment samples

from this site (‘‘aquaculture site’’) were obtained from an area

approximately 20 m from the outer southeastern corner of the

pens next to a buoy (arrowhead, lower inset of Fig. 1). This

Figure 5. Antimicrobial resistance genes in unselected marine bacterial isolates and controls. Detection of antimicrobial resistance genes
in bacteria cultured from marine sediments obtained from December, 2008, to January, 2009. qnr, tet and floR genes were detected by PCR as
described in Material and Methods with primers in Table 3. D15, J12, DC5, J19, DC12, D14 and D17 are bacterial isolates from sediment. 2, negative
control (E. coli DH5a). +, positive controls (Table 3). M, molecular weight markers.
doi:10.1371/journal.pone.0042724.g005

Table 1. Antimicrobial resistance genes present in marine sediment bacteria from aquaculture and control sites in Chile.

Antimicrobial resistance genes to

Tetracycline Quinolones Florfenicol

Site
No. of
Strains tetA tetB tetK tetM qnrA qnrB qnrC qnrD qnrS qepA oqxA aac(69)-Ib-cr floR int1

Aquaculture 24 4 5 5 2 2 1 0 0 3 0 4 4 4 3

Control 24 3 7 4 0 2 1 0 0 5 0 3 1 2 1

doi:10.1371/journal.pone.0042724.t001
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distance (,50 m) and the amount of organic matter at this site

(.3.5%, unpublished data), indicates that its sediments were

influenced by aquacultural activity [74,75]. The other site

(‘‘control site’’) was located 250 m off the northern coast of

Tabón Island at a water depth of 30 m (Fig. 1). Tabón Island is

6 km long and close to 200 m wide and is situated 8 km south of

the aquaculture site. It is the only local island without aquacultural

activities, has few human dwellings, no sources of water and lacks

solid discharges into the sea. Water currents at both sites vary

between 15 and 18 cm s21 during tidal flood and ebb, respec-

tively, suggesting a high dispersal of materials in the water column

and from sediments at both sites. Water surface temperature and

salinity in this area vary from 9uC and 28% (parts per thousand) in

the winter to 18uC and 32% in the summer. Both sampling sites

are located in open access areas for which entrance and sampling

permits are not required by Chilean regulations.

Sediment samples were taken from a circumscribed area of

superficial sediment at the aquaculture and control sites by scuba

divers using 15 cm diameter PVC plastic core samplers. After the

sediment had been obtained, the sampler was closed by the diver

with a plastic cap to avoid contamination. No endangered or

protected organisms were captured in course of obtaining these

sediment samples. The dates for sampling were arbitrarily chosen

to encompass a full year with an emphasis on sampling during the

austral spring/summer when aquacultural activities are concen-

trated. Sampling was performed seven times over a 12 month

period: September, November and December, 2008; and January,

April, July and September, 2009. Three samples were taken in

September, 2008; five samples were taken at each of the other

times resulting in 33 samples from the aquaculture site and 33

samples from the control site for a total of 66 samples from both

sites. In November 2008, five samples were also taken at sites

0.5 km and 1 km from the aquaculture site for a total of 10

samples from these additional sites (Fig. 1).

Measurement of antimicrobials in sediment samples
The presence in sediment samples of oxytetracycline, oxolinic

acid, flumequine, and florfenicol was determined at the Instituto

de Farmacia, Universidad Austral, Valdivia, Chile, by HPLC

using standard protocols at fixed UV/Vis wave lengths [60,76,77].

These assays were done on four sediment samples taken from the

aquaculture site and four sediment samples taken from the control

site on each of four dates: December, 2008, January, 2009, April,

2009, and July, 2009. Two sediment samples each taken 0.5 and

1 km from the aquaculture site in November, 2008, were also

tested for these antimicrobials. A total of 36 samples were tested

for antimicrobials.

Bacterial cultures
Culturable antimicrobial-susceptible and -resistant bacteria

were determined by suspending 0.1 g of the top 2-cm of each

sediment sample in 0.9 ml phosphate buffered saline, pH 7.4,

within 2–3 hours after collection; this suspension was then

sonicated (Elma Transsonic 310, Singen, Germany) for 5 minutes

to ensure detachment of bacteria from sediment particles. A 10-

fold dilution series (undiluted to 1025) of this suspension was plated

on Marine agar plates (Difco) containing no antimicrobials or

oxytetracycline, 150 mg ml21 (AppliChem GmbH, Darmstadt,

Germany), or oxolinic acid, 10 mg ml21 (Sigma-Aldrich GmbH,

Steinheim, Germany), or florfenicol, 30 mg ml21 (Sigma-Aldrich

GmbH). Stock solutions of antimicrobials were kept frozen at

220uC and thawed immediately before use. Plates were incubated

for 7 days at 20uC and the number of visible colonies were

counted. These data were used to calculate cfu g21 sediment = (-

total plate counts6dilution factor), and ARF (in percent) for each

antimicrobial = (total plate counts with antimicrobial6dilution

factor/total plate counts without antimicrobial6dilution fac-

tor)6100 [38]. Isolated colonies of bacteria growing on Marine

agar plates with and without antimicrobials were selected and

stored frozen at 280uC in 96-well microtiter plates in 36%

glycerol for later study of antimicrobial resistance genes.

Detection of plasmid-mediated antimicrobial resistance
genes

Cultures of marine sediment samples obtained from December,

2008, and January, 2009, were transported in Marine soft agar in

1.5 ml Eppendorf microtubes and restreaked on Marine agar

(9.0 cm diameter Petri dishes) containing antimicrobials to

ascertain clonality. One isolated colony of each was grown for

further studies and stored in 30% glycerol at 280uC. Bacterial

cultures were kept at 4uC on marine agar plates with antimicro-

bials for daily manipulations while experiments were in progress.

The following antimicrobial resistance genes were studied by PCR

using primers shown in Table 3. Quinolone resistance genes:

topoisomerase protection qnrA, qnrB, qnrC, qnrD and qnrS genes

[40,78–80]; the putative enzymatic inactivation gene aac(69)-Ib-cr

[40,63]; and efflux pump genes qepA and oqxA [81,82]. Tetracy-

cline resistance genes: efflux pump genes tetA, tetB and tetK

[64,65,83]; and the ribosome protection gene, tetM [64,65].

Florfenicol resistance gene, floR, encoding an efflux pump [66,84].

The int1 gene encoding integrase 1 [41,45] was also examined.

Table 3 also contains information regarding strains used as

positive and negative controls in these PCR reactions. Single

colonies of oxytetracycline, oxolinic acid, and florfenicol resistant

strains were picked from plates kept at 4uC and inoculated into

Table 2. Bacterial isolates identified by 16S rRNA gene sequence analysis.

Species Genes Compared to GenBank No. % of identity Site of isolation

Sporosarcina sp. tetK, floR, qnrA, qnrS FJ425906.1 .99 Aquaculture

Arthrobacter sp. qnrA, tetB EF550164.1 .99 Aquaculture

Sporosarcina sp. oqxA, aac(69)-1b-cr EU204977.1 .99 Aquaculture

Arthrobacter sp. qnrS, tetA JF799958.1 .99 Aquaculture

Vibrio sp. qnrB, tetK DQ146994.1 .99 Aquaculture

Pseudoalteromonas sp. qnrA, tetB FJ497709.1 .99 Control

Vibrio sp. qnrS EU195936.1 .99 Control

Vibrio sp. - JN128258.1 .99 Control

doi:10.1371/journal.pone.0042724.t002
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10 ml Marine Broth (Difco, BD, Franklin Lakes, NJ, USA) with

ciprofloxacin HCl (ICN, Aurora, Ohio, USA), 0.05 mg ml21,

oxytetracycline hydrochloride (Sigma-Aldrich, St. Louis, MO,

USA), 150 mg ml21, or florfenicol (Sigma-Aldrich, St. Louis, MO,

USA), 30 mg ml21, and cultured at 20uC until late log phase.

Cultures were centrifuged at 2006 g for 15 min to remove

suspended matter. The supernatant was centrifuged at 7,0006 g

for 10 min to pellet the bacteria, pellets were washed once with

phosphate buffered saline, pH 7.4, and resuspended in 400 ml

10 mM TrisCl-10 mM EDTA for storage at 280uC until DNA

was extracted [85]. Total DNA was extracted from 200 ml of

bacteria by adding 10% SDS in sodium phosphate buffer, pH 8.0,

to 1.25% SDS (wt/vol), incubating at 70uC for 30 min, and then

disrupting bacteria with three freeze-thaw cycles: two minutes

liquid N2-10 min 70uC (once), two minutes liquid nitrogen-10 min

100uC (twice). After centrifugation of the viscous solutions at

4,0006 g for 10 min, the supernatant was transferred to a clean

tube used for PCR screening of antimicrobial resistance genes

[86]. All PCR assays were done using MasterCycler Gradient,

Eppendorf, Germany. Multiplex PCR for qnrA/B/S was conduct-

ed in 25 ml reaction volumes with GoTaq Flexi DNA polymerase,

0.8 units (Promega, Madison, WI, USA); 16Green GoTaq Flexi

Buffer; MgCl2, 2 mM; dNTP, 0.15 mM each; primers, 0.5 mM

each. Initial denaturation at 95uC for 3 min was followed by 35

cycles of 95uC, 20 sec-54uC, 30 sec-72uC, 40 sec; final extension

of 72uC-7 min. For detection of the other PMQR, tet and floR

genes, reaction volumes were 12.5 ml, and PCR was performed

with Choice TaqBlue DNA polymerase 0.5 units (Denville

Scientific Inc., Metuchen, NJ); 16 reaction buffer with MgSO4,

15 mM; dNTP, 0.25 mM each; primers 0.5 mM each. Initial

denaturation at 3 min at 95uC was followed by 35 cycles of

denaturation at 95uC-20 sec; annealing for 30 sec at various

temperatures for each group of primers; extension time at 72uC
was dependent on fragment length, being 30 sec for a 500 bp

fragment (see Table 3); final extension, 7 min-72uC. Amplicons

were detected in 1% agarose gel with ethidium bromide, viewed

and recorded in an Alpha Imager AIC, Alpha Innotech, Japan.

Identity of amplicons was ascertained by comparison with positive

controls and by DNA sequencing (GENEWIZ, Inc, South

Plainfield, NJ, USA) of at least one amplicon of each gene (data

not shown). DNA sequences were identified by BLAST analysis

Table 3. Primers used in this study.

Gene Primer Sequence (59R39) Amplicon (bp) Positive control References

qnrA qnrA1ROB ATTTCTCACGCCAGGATTTG 516 pMG252 [79]

qnrA2ROB GATCGGCAAAGGTTAGGTCA

qnrB qnrB1ROB GATCGTGAAAGCCAGAAAGG 469 pMG298 [79]

qnrB2ROB ACGATGCCTGGTAGTTGTCC

qnrC qnrC-F GGGTTGTACATTTATTGA 447 pDNA qnrC [80]

qnrC-R TCCACTTTACGAGGTTCT

qnrD qnrD fw CGAGATCAATTTACGGGGAATA 592 pDNA qnrD [78]

qnrD rv AACAAGCTGAAGCGCCTG

qnrS qnrS1ROB ACGACATTCGTCAACTGCAA 417 pMG306 [79]

qnrS2ROB TAAATTGGCACCCTGTAGGC

qepA qepA-F CGTGTTGCTGGAGTTCTTC 403 pAT851 [82]

qepA-R CTGCAGGTACTGCGTCATG

oqxA oqxAF CTCGGCGCGATGATGCT 392 DNA [81]

oqxAR CCACTCTTCACGGGAGACGA

aac(69)-Ib-cr Aac(69)-1bXbaI CAGCTCTAGAATTTTTAAGCGTGCAT 620 pMG298 [63]

Aac(69)-1b2R ATATGCGAATTCTTAGGCATCACTGC

tetA tetAf_A3 GCCTCCTGCGCGATCTGG 848 pEDtetA2 [65]

tetAr_A2 CGAAGCAAGCAGGACCATG

tetB tetB_BF CAGTGCTGTTGTTGTCATTAA 571 pEDtetB1 [65]

tetB_BR GCTTGGAATACTGAGTGTAA

tetK tetKf TCGATAGGAACAGCAGTA 169 pT181 [83]

tetKr CAGCAGATCCTACTCCTT

tetM tetM_M6 GTTTATCACGGAAGYGC 687 pJFP76 [65]

tetM_M4 GAAGCCCAGAAAGGATTYGGT

floR flo_f AATCACGGGCCACGCTGTATC 215 pAB5S9 [66]

flo_r CGCCGTCATTCTTCACCTTC

int1 intI1F GTTCGGTCAAGGTTCTGG 890 [45]

intI1R CGTAGAGACGTCGGAATG

16S rDNA 16sRNAf AGAGTTTGATCCTGGCTCAG variable [88]

16sRNAr1 ACGGCTACCTTGTTACGACTT

doi:10.1371/journal.pone.0042724.t003
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against the non-redundant nucleotide sequence database at

GenBank.

Species identification of marine bacteria containing
antimicrobial resistance genes

Identification of marine bacteria containing antimicrobial

resistance genes was done by PCR amplification of 16S ribosomal

genes [87,88] using primers 16S rRNAf and 16S rRNAr1

(Table 3). The amplicons obtained were approximately 1500 bp

and spanned 99% of 16S rRNA genes. Amplicons were sequenced

and were identified by BLAST analysis against the non-redundant

nucleotide sequence database at GenBank.

Statistical analysis
To insure data quality and to exclude erratic values in

quantitation of colonies the following three criteria were used. 1.

If colony counts were consistent with a dilution series (roughly

monotonic and decreasing with increasing dilutions), cfu g21 were

calculated using the plate with the lowest dilution with ,160

colonies. 2. If colony counts were consistent with a dilution series

but no plate had ,160 colonies, cfu g21 were calculated using the

plate with the lowest dilution with .160 colonies. 3. If colony

counts were not consistent with a dilution series (suggesting

incomplete dispersal in the undiluted material), cfu g21 were

calculated using the plate with the lowest dilution consistent with a

dilution series with ,160 colonies. Data not meeting these criteria

(5 of 258 points) were excluded from analysis. For computational

purposes, plates with no colonies were imputed a value of 1, a

value at the non-detect level. Data were analyzed by two-way

ANOVA using rank transformed data [89] and a Student-

Newman-Keuls post-hoc test as appropriate. Values of P#0.05

were considered significant. A sensitivity analysis was done.
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