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We introduce Salmon, a new method for quantifying transcript abundance from

RNA-seq reads that is highly-accurate and very fast. Salmon is the first transcriptome-wide

quantifier to model and correct for fragment GC content bias, which we demonstrate

substantially improves the accuracy of abundance estimates and the reliability of

subsequent differential expression analysis compared to existing methods that do not

account for these biases. Salmon achieves its speed and accuracy by combining a new
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dual-phase parallel inference algorithm and feature-rich bias models with an ultra-fast read

mapping procedure. These innovations yield both exceptional accuracy and

order-of-magnitude speed benefits over alignment-based methods.

Estimating transcript abundance across cell types, species, and conditions is a fundamental

task in genomics. For example, these estimates are used for the classification of diseases and their

subtypes [1], for understanding expression changes during development [2], and tracking the

progression of cancer [3]. Accurate and efficient quantification of transcript abundance from

RNA-seq data is an especially pressing problem due to both the wide range of technical biases

that affect the RNA-seq fragmentation, amplification and sequencing process [4, 5] and the

exponentially increasing number of experiments and the growing adoption of expression data for

medical diagnosis [6]. Traditional quantification algorithms — those that make use of full

alignments of the sequencing reads to the genome or transcriptome to compute abundances —

require significant computational resources [7] and do not scale well with the rate at which data is

produced [8]. Addressing the efficiency problem has been the focus of much recent work in the

area of transcript-level quantification. For example, the quantification tool Sailfish [9] achieved an

order of magnitude speed improvement over previous approaches by replacing traditional read

alignment with the allocation of exact k-mers to transcripts but can sometimes produce less

accurate estimates for paired-end data or for stranded protocols. The recently-introduced

quantification tool, kallisto [10], achieves similar speed improvements and further reduces the gap

in accuracy with traditional alignment-based methods by replacing the k-mer counting approach

used in Sailfish with a procedure called pseudoalignment. Unlike pseudoalignment, Salmon’s

lightweight mapping procedure tracks the position and orientation of all mapped fragments, and

in conjunction with the abundances learned in the online phase of the inference algorithm, makes

use of per-fragment conditional probabilities to estimate auxiliary models, bias terms, and

aggregate weights for its rich equivalence classes.

However, existing methods for transcriptome-wide abundance estimation, including both

traditional, alignment-based approaches and the recently-introduced ultra-fast methods, lack
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sample-specific bias models rich enough to capture many of the important effects, like fragment

GC content bias, that are observed in experimental data and that can lead to, for example,

unacceptable false positive rates in differential expression studies [5].

Our novel quantification procedure called Salmon (Supplementary Fig. 1) achieves

best-in-class accuracy, employs high-fidelity, sample-specific bias models, and simultaneously

achieves the same order-of-magnitude speed benefits as kallisto and Sailfish. Using experimental

data from the GEUVADIS [11] and SEQC [28] studies as well as synthetic data from both the

Polyester [13] and RSEM-sim [14] simulators, we benchmark Salmon against both kallisto [10]

(as representative of a state-of-the-art alignment-free method) and eXpress [15] + Bowtie2 [16]

(as representative of a state-of-the art alignment-based method); both of these methods also

implement their own bias models. We show that Salmon typically outperforms both kallisto and

eXpress in terms of accuracy (Fig. 1a-d, Supplementary Fig. 4), often by a substantial margin.

Further, Salmon’s dual-phase inference algorithm and rich bias models yield considerably

improved inter-replicate concordance (Supplementary Fig. 2) compared to both kallisto and

eXpress. For example, when used for differential expression (DE) testing, the quantification

estimates produced by Salmon exhibit markedly higher sensitivity at the same false discovery rate

than those produced by kallisto or eXpress (Table 1C) — achieving a sensitivity 53% to 250%

higher, at the same FDRs, compared with existing methods. Likewise, Salmon produces fewer

false-positive differential expression calls in comparisons that are expected to contain few true

differences in transcript expression (Table 1D). These benefits of Salmon over other methods

persist in gene-level analysis as well, where the use of Salmon’s estimates for gene-level DE

analysis leads to a decrease by a factor of ∼ 2.6 in the number of genes that are called as DE

(Supplementary Table 1). Supplementary Fig. 5 shows specific examples from the GEUVADIS

experiments where dominant isoform switching is observed (p < 1× 10−6) between samples

under the quantification estimates produced by kallisto or eXpress, but this isoform switching is

eliminated under the abundance estimates of Salmon that account for fragment GC bias. In

idealized simulations, like those generated by RSEM-sim, where realistic biases are not simulated,
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the accuracy estimates of different methods tend to be more similar to one another

(Fig. 1b,Supplementary Fig. 6). These idealized RSEM-sim simulation results, where the

fragments are generated without bias and in perfect accordance with the generative model

adopted by the quantifiers, serve as a useful measure of the internal consistency of the algorithms

and have been used in other validation contexts [14, 10]. However, we expect our results on the

SEQC [28], GEUVADIS [11], and Polyester [13] (simulated with bias) data sets to be more

representative of typical real-world performance.

Salmon incorporates a rich model of experimental biases, which allows it to account for the

effects of sample-specific parameters and biases that are typical of RNA-seq data, including

positional biases in coverage, sequence-specific biases at both the 5′ and 3′ end of sequenced

fragments, fragment-level GC bias, strand-specific protocols, and the fragment length

distribution. These biases are automatically learned in the online phase of the algorithm, and are

encoded in a fragment-transcript agreement model (Online methods, Fragment-transcript

agreement model). In this model, fragment-transcript assignment scores are defined as

proportional to (1) the chance of observing a fragment length given a particular transcript/isoform

of a gene, (2) the chance that a fragment starts at a particular position on the transcript, (3) the

concordance of the fragment aligning with a user-defined sequencing library format (e.g. a paired

ended, stranded protocol), and (4) the chance that the fragment came from the transcript based on

a score obtained from the the alignment procedure (if alignments are being used). Additionally,

based on the computed mappings, Salmon gathers information about the positional,

sequence-specific and fragment GC content of the observed fragments. Salmon incorporates these

biases and experimental parameters by learning auxiliary models that describe the relevant

distributions and maintaining ‘rich equivalence classes’ of fragments (Online methods,

Equivalence classes) that act as an efficient representation of the sequenced fragments during the

offline inference phase and speed up the process of estimating transcript abundances.

Salmon’s two-phase, parallel inference procedure consists of both a streaming, online

inference phase, where estimates of transcript abundance are continuously updated after
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considering each small batch of reads, and an offline inference phase that operates over a

highly-reduced representation of the sequencing experiment (Online methods, Online phase and

Offline phase; Illustration of method in Supplementary Fig. 1). This two-phase inference

procedure allows Salmon to build a probabilsitic model of the sequencing experiment that

incorporates information not considered by Sailfish [9] and kallisto [10]. During the online

inference phase, Salmon learns and continuously updates transcript-level abundance estimates. In

turn, this allows the evaluation of per-fragment probabilities that are not directly represented in

the factorized likelihood function (Offline phase). These probabilities enable accounting,

proportionally, for all of the potential mapping locations of a fragment when estimating

experiment and bias model parameters.

Salmon is designed take advantage of multiple CPU cores, and the mapping and inference

procedures scale well with the number of reads in an experiment. Salmon can quantify abundance

either via a builtin, ultra-fast read-mapping procedure [17], or using pre-computed alignments

provided in SAM or BAM format. This approach allows Salmon to acheive high accuracy while

maintaining a speed similar to that of kallisto [10]. For example, Salmon can quantify a data set

of approximately 600 million reads (75bp, paired-end) in 23 minutes using 30 threads — this

roughly matches the speed of the recently-introduced kallisto, which took 20 minutes to complete

the same task (wall clock time on a 24 core (with hyperthreading) machine with 256Gb of RAM.

Each core is Intel R© Xeon R© CPU (E5-4607 v2 2.60GHz).

The simultaneous speed and accuracy of Salmon is achieved using the dual-phase approach

described above together with quasi-mapping [17]. Therefore, Salmon encompasses both the

“alignment” and “quantification” phases that are required by more traditional quantification

pipelines in a single tool. A quasi-mapping represents a match between a sequenced fragment and

a transcript and consists of a tuple mi = (t, pℓ, pr, oℓ, or) containing the transcript t to which the

fragment maps, the positions pℓ, pr where the left and right ends of the fragment map, and the

orientations oℓ, or with which the fragment ends map, but not the nucleotide-to-nucleotide

correspondence between the fragment and transcript. When run in quasi-mapping mode, Salmon
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takes as input an index of the transcriptome and a set of raw sequencing reads (i.e. unaligned

reads in FASTA/Q format) and performs quantification directly without generating any

intermediate alignment files. This saves considerable time and space, since quasi-mapping is

considerably faster than traditional alignment. Thus, while Salmon is also capable of performing

quantification using existing alignments of a sequencing experiment to the transcriptome, if a

users prefers to provide these, we anticipate that Salmon will be primarily used in quasi-mapping

mode.

Salmon’s approach is unique in the way that it combines useful models of experimental data

with an efficient parallel inference procedure. This combination has produced some of the most

accurate expression estimates to date without sacrificing the order of magnitude speed

improvements enjoyed by recent approaches (e.g. [9], [10]). Salmon’s ability to compute

high-quality estimates of transcript abundances at the scale of thousands of samples, while also

accounting for the prevalent technical biases affecting transcript quantification [18], will enable

individual expression experiments to be interpreted in the context of many rapidly growing

sequence expression databases. This will allow for a more comprehensive comparison of the

similarity of experiments across large populations of individuals and across different

environmental conditions and cell types. Salmon is open-source and freely-licensed (GPLv3). It

is written in C++11, and is available at https://github.com/COMBINE-lab/salmon.
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Monlong, Manuel A Rivas, Mar Gonzàlez-Porta, Natalja Kurbatova, Thasso Griebel,

Pedro G Ferreira, et al. Transcriptome and genome sequencing uncovers functional variation

in humans. Nature, 501(7468):506–511, 2013.

[12] SEQC/MAQC-III Consortium et al. A comprehensive assessment of RNA-seq accuracy,

reproducibility and information content by the Sequencing Quality Control Consortium.

Nature Biotechnology, 32(9):903–914, 2014.

[13] Alyssa C Frazee, Andrew E Jaffe, Ben Langmead, and Jeffrey T Leek. Polyester: simulating

RNA-seq datasets with differential transcript expression. Bioinformatics,

31(17):2778–2784, 2015.

8

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 30, 2016. ; https://doi.org/10.1101/021592doi: bioRxiv preprint 

https://doi.org/10.1101/021592
http://creativecommons.org/licenses/by-nc-nd/4.0/


[14] Bo Li, Victor Ruotti, Ron M Stewart, James A Thomson, and Colin N Dewey. RNA-Seq

gene expression estimation with read mapping uncertainty. Bioinformatics, 26(4):493–500,

2010.

[15] Adam Roberts and Lior Pachter. Streaming fragment assignment for real-time analysis of

sequencing experiments. Nature Methods, 10(1):71–73, 2013.

[16] Ben Langmead and Steven L Salzberg. Fast gapped-read alignment with Bowtie 2. Nature

Methods, 9(4):357–359, 2012.

[17] Avi Srivastava, Hirak Sarkar, Nitish Gupta, and Rob Patro. RapMap: a rapid, sensitive and

accurate tool for mapping RNA-seq reads to transcriptomes. Bioinformatics,

32(12):i192–i200, 2016.

[18] Peter A. C. ’t Hoen, Marc R Friedländer, Jonas Almlöf, Michael Sammeth, Irina Pulyakhina,
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Figure 1
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Figure 1: (A) The median of absolute log fold changes (lfc) between the estimated and true abun-

dances under all 16 replicates of the Polyester simulated data. The closer the lfc to zero, the more

similar the true and estimated abundances. The left and right panels show the distribution of the

log fold changes under samples simulated with different GC-bias curves learned from experimen-

tal data (details in Online methods, Ground truth simulated data). (B) The distribution of mean

absolute relative differences (MARDs), as described in Online methods, Metrics for accuracy, of

Salmon, kallisto and eXpress under 20 simulated replicates generated by RSEM-sim. Salmon and

kallisto yeild similar MARDs, though Salmon’s distribution of MARDs is significantly smaller

(Mann-Whitney U test, p = 0.00017) than those of kallisto. Both methods outperform eXpress

(Mann-Whitney U test, p = 3.39781× 10−8). (C) At typical FDR values, the sensitivity of finding

truly DE transcripts using Salmon’s estimates is 53% − 450% greater than that using kallisto’s

estimates and 210%− 250% greater than that using eXpress’ estimates for the Polyester simulated

data. (D) For 30 GEUVADIS samples, the number of transcripts called as DE at an expected FDR

of 1% when the contrast between groups is simply a technical confound (i.e. the center at which

they were sequenced). Salmon produces fewer than half as many DE calls as the other methods.
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Online methods

Objectives and models for abundance estimation

Our main goal is to quantify, given a known transcriptome T and a set of sequenced fragments F ,

the relative abundance of each transcript in our input sample. This problem is challenging both

statistically and computationally. The main statistical challenges derive from need to resolve a

complex and often very high-dimensional mixture model (i.e. estimating the relative abundances

of the transcripts given the collection of ambiguously mapping sequenced fragments). The main

computational challenges derive from the need to process datasets that commonly consist of tens

of millions of fragments, in conditions where each fragment might reasonably map to many

different transcripts. We lay out below how we tackle these challenges, beginning with a

description of our assumed generative model of the sequencing experiment, upon which we will

perform inference to estimate transcript abundances.

We also make note of the notation we use in the methods described below. Here, we use the

vertical bar | to indicate that the fixed quantities following are parameters used to calculate the

probability. For the Bayesian objective, the notation implies conditioning on these random

variables.

Generative process Assume that, for a particular sequencing experiment, the underlying true

transcriptome is given as T = {(t1, . . . , tM) , (c1, . . . , cM)}, where each ti is the nucleotide

sequence of some transcript (an isoform of some gene) and each ci is the corresponding number

of copies of ti in the sample. Further, we denote by ℓi the length of transcript ti and by ℓ̃i the

effective length of transcript ti, as defined in Equation (1). We adopt a generative model of the

sequencing experiment that dictates that, in the absence of experimental bias, library fragments

are sampled proportional to ci · ℓ̃i. That is, the probability of drawing a sequencing fragment from

some position on a particular transcript ti is proportional the total fraction of all nucleotides in the
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sample that originate from a copy of ti. This quantity is called the nucleotide fraction [14]:

ηi =
ci · ℓ̃i

∑M

j=1 cj · ℓ̃j
.

The true nucleotide fractions, η, though not directly observable, would provide us with a

way to measure the true relative abundance of each transcript in our sample. Specifically, if we

normalize the ηi by the effective transcript length ℓ̃i, we obtain a quantity

τi =

ηi

ℓ̃i
∑M

j=1
ηj

ℓ̃j

,

called the transcript fraction [14]. These τ can be used to immediately compute common

measures of relative transcript abundance like transcripts per million (TPM). The TPM measure

for a particular transcript is the number of copies of this transcript that we would expect to exist in

a collection of one million transcripts, assuming this collection had exactly same distribution of

abundances as our sample. The TPM for transcript ti, is given by TPMi = τi10
6. Of course, in a

real sequencing experiment, there are numerous biases and sampling effects that may alter the

above assumptions, and accounting for them is essential for accurate inference. Below we

describe how Salmon accounts for 5’ and 3’ sequence-specific biases (which are not considered

separately by kallisto) and fragment GC bias which is modeled by neither kallisto nor eXpress.

Effective length A transcript’s effective length depends on the empirical fragment length

distribution of the underlying sample and the length of the transcript. It accounts for the fact that

the range of fragment sizes that can be sampled is limited near the ends of a transcript. Here,

fragments refer to the (potentially size-selected) cDNA fragments of the underlying library, from

the ends of which sequencing reads are generated. In paired-end data, the mapping positions of

the reads can be used to infer the empirical distribution of fragment lengths in the underlying

library, while the expected mean and standard deviation of this distribution must be provided for

single-end libraries. We compute the effective transcript lengths using the approach of [10],
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which defines the effective length of a transcript ti as

ℓ̃i = ℓi − µℓi
d , (1)

where µℓi
d is the mean of the truncated empirical fragment length distribution. Specifically, let d

be the empirical fragment length distribution, and Pr {X = x} be the probability of drawing a

fragment of length x under d, then µℓi
d =

∑ℓi
j=1 j · Pr {X = j} /

∑ℓi
k=1 Pr {X = k}.

Given a collection of observations (raw sequenced fragments or alignments thereof), and a

model similar to the one described above, there are numerous approaches to inferring the relative

abundance of the transcripts in the target transcriptome, T . Here we describe two basic inference

schemes, both available in Salmon, which are commonly used to perform inference in such a

model. All of the results reported in the manuscript were computed using the maximum

likelihood objective (i.e. the EM algorithm) in the offline phase, which is the default in Salmon.

Maximum likelihood objective

The first scheme takes a maximum likelihood approach to solving for the quantities of interest.

Specifically, if we assume that all fragments are generated independently, and we are given a

vector of known nucleotide fractions η, a binary matrix of transcript-fragment assignment Z

where zji = 1 if fragment j is derived from transcript i, and the set of transcripts T , we can write

the probability of observing a set of sequenced fragments F as:

Pr {F | η,Z, T } =
N
∏

j=1

Pr {fj | η,Z, T } =
N
∏

j=1

M
∑

i=1

Pr {ti | η} · Pr {fj | ti, zji = 1} . (2)

Where |F| = N is the number of sequenced fragments, Pr {ti | η} is the probability of selecting

transcript ti to generate some fragment given the nucleotide fraction η, and we have that

Pr {ti | η} = ηi. Pr {fj | ti, zji = 1} is the probability of generating fragment j given that it

came from transcript i. We will use Pr {fj | ti} as shorthand for Pr {fj | ti, zji = 1} since

Pr {fj | ti, zji = 0} is uniformly 0. The determination of Pr {fj | ti} is defined in further detail
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in Fragment-transcript agreement model. The likelihood associated with this objective can be

optimized using the EM algorithm as in [14].

Bayesian objective

One can also take a Bayesian approach to transcript abundance inference as done in [19, 20]. In

this approach, rather than directly seeking maximum likelihood estimates of the parameters of

interest, we want to infer the posterior distribution of η. In the notation of [19], we wish to infer

Pr {η | F , T ,Z}— the posterior distribution of nucleotide fractions given the transcriptome T

and the observed fragments F . This distribution can be written as:

Pr {η | F , T ,Z} ∝
∑

Z∈Z

Pr {F | T ,Z} · Pr {Z | η} · Pr {η} , (3)

where

Pr {Z | η} =
M
∏

i=1

N
∏

j=1

η
zji
j , (4)

and

Pr {F | T ,Z} =
M
∏

i=1

N
∏

j=1

Pr {fj | ti}
zji . (5)

Unfortunately, direct inference on the distribution Pr {η | F , T ,Z} is intractable because its

evaluation requires the summation over the exponentially large latent variable configuration space

Z . Since the posterior distribution cannot be directly estimated, we must rely on some form of

approximate inference. One particularly attractive approach is to apply variational Bayesian (VB)

inference in which some tractable approximation to the posterior distribution is assumed.

Subsequently, one seeks the parameters for the approximate posterior under which it best

matches the true posterior. Essentially, this turns the inference problem into an optimization

problem — finding the optimal set of parameters — which can be efficiently solved by a number

of different algorithms. In particular, variational inference seeks to find the parameters for the

approximate posterior that minimizes the Kullback-Leibler (KL) divergence between the
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approximate and true posterior distribution. Though the true posterior may be intractable, this

minimization can be achieved by maximizing a lower-bound on the marginal likelihood of the

posterior distribution [21], written in terms of the approximate posterior. Salmon optimizes the

collapsed variational Bayesian objective [19] in its online phase and the full variational Bayesian

objective [20] in the variational Bayesian mode of its offline phase (see Offline phase).

Fragment-transcript agreement model

We model the conditional probability Pr {fj | ti} for generating fj given ti using a number of

auxiliary terms. These terms come from auxiliary models whose parameters do not explicitly

depend upon the current estimates of transcript abundances. Thus, once the parameters of these

these models have been learned and are fixed, these terms do not change even when the estimate

for Pr {ti | η} = ηi needs to be updated. Salmon uses the following auxiliary terms:

Pr {fj | ti} = Pr {ℓ | ti} · Pr {p | ti, ℓ} · Pr {o | ti} · Pr {a | fj, ti, p, o, ℓ} (6)

Where Pr {ℓ | ti} is the probability of drawing a fragment of the inferred length, ℓ, given ti, and is

evaluated based on an observed empirical fragment length distribution. Pr {p | ti, ℓ} is the

probability of the fragment starting at position p on ti, computed using an empirical fragment start

position distribution as defined in [14]. Pr {o | ti} is the probability of obtaining a fragment

aligning with the given orientation to ti. This is determined by the concordance of the fragment

with the user-specified library format. It is 1 if the alignment agrees with the library format and a

user-defined prior value pō otherwise. Finally, Pr {a | fj, ti, p, o, ℓ} is the probability of

generating alignment a of fragment fj , given that it is drawn from ti, with orientation o, and

starting at position p and is of length ℓ; this term is set to 1 when using quasi-mapping, and is

given by equation (7) for traditional alignments. The parameters for all auxiliary models are

learned during the streaming phase of the inference algorithm from the first N ′ observations

(5, 000, 000 by default). These auxiliary terms can then be applied to all subsequent observations.
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Sequence-specific bias It has been previously observed that the sequence surrounding the 5′

and 3′ ends of RNA-seq fragments has an effect on the likelihood that these fragments are

selected for sequencing. If not accounted for, these biases can have a substantial effect on

abundance estimates and can confound downstream analyses. To learn and correct for such

biases, Salmon adopts a modification of the model introduced by Roberts et al. [4]. A

(foreground) variable-length Markov model (VLMM) is trained on sequence windows

surrounding the 5′ (b5
′

s+
) and 3′ (b3

′

s+
) read start positions. Then, a different (background) VLMM

is trained on sequence windows drawn uniformly across known transcripts, each weighted by that

transcript’s abundance; the 5′ and 3′ background models are denoted as b5
′

s− and b3
′

s− respectively.

Fragment GC-bias In addition to the sequence surrounding the 5′ and 3′ ends of a fragment, it

has also been observed that the GC-content of the entire fragment can play a substantial role in

the likelihood that it will be selected for sequencing [5]. These biases are largely different than

sequence-specific biases, and thus, accounting for both the context surrounding the fragments and

the GC-content of the fragments themselves is important when one wishes to learn and correct for

some of the most prevalent types of bias in silico. To account for fragment GC-bias, Salmon

learns a foreground and background model of this fragment GC-bias (and defines the bias as the

ratio of the score of a particular fragment under each). Our fragment GC-bias model consists of

the observed distribution of sequenced fragments for every possible GC-content value (in

practice, we discretize GC-content and maintain a distribution over 101 bins, for fragments with

GC content ranging from 0 to 1 in increments of 0.01). The background model is trained on all

possible fragments (drawn uniformly and according to the empirical fragment length distribution)

across known transcripts, with each fragment weighted by that transcript’s abundance. The

foreground and background fragment GC-bias models are denoted as bgc+ and bgc− respectively.

Additionally, we note that sequence-specific and fragment GC biases do seem to display a

conditional dependence. To account for this, Salmon learns 3 different bias models, each

conditioned on the average GC content of the 5′ and 3′ sequence context of the fragment. A
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separate model is trained and applied for fragments with average GC content between

[0, 0.33) , [0.33, 0.66) , and [0.66, 1].

Incorporating the bias models These bias models are used to re-estimate the effective length

of each transcript, such that a transcript’s effective length now also takes into account the

likelihood of sampling each possible fragment that transcript can produce — an approach to

account for bias first introduced by Roberts et al. [4]. Before learning the bias-corrected effective

lengths, the offline optimization algorithm is run for a small number of rounds (10 by default) to

produce estimated abundances that are used when learning the background distributions for the

various bias models. For a particular transcript ti, the effective length becomes:

ℓ̃′i =

j≤ℓi
∑

j=1

k≤fi(j,L)
∑

k=1

bgc+ (ti, j, j + k)

bgc− (ti, j, j + k)
·
b5

′

s+ (ti, j)

b5
′

s−
(ti, j)

·
b3

′

s+ (ti, j + k)

b3
′

s−
(ti, j + k)

· Pr {X = j}

where Pr {X = j} is the probability, under the empirical fragment length distribution, of

observing a fragment of length j, L is the maximum observed fragment length,

fi (j, L) = min (ℓi − j + 1, L), b5
′

s+ (ti, j) is the score given to transcript ti’s j
th position under the

foreground, 5′ sequence-specific bias model (b5
′

s− (ti, j), b
3′

s+ (ti, j), b
3′

s− (ti, j) are defined

similarly) and bgc+ (ti, j, j + k) is the score given by the foreground fragment GC-content model

for the subsequence of transcript ti from position j to j + k (and similarly for bgc− (ti, j, j + k)).

Once these bias-corrected lengths have been computed, they are used in all subsequent

rounds of the offline inference phase (i.e. until the estimates of α — as defined in Algorithms —

converge). Typically, the extra computational cost required to apply bias correction is rather

small, and the learning and application of these bias weights is parallelized in Salmon. However,

both the memory and time requirements of bias correction can be adjusted by the user to trade-off

time and space with model fidelity. To make the computation of GC-fractions efficient for

arbitrary fragments from the transcriptome, Salmon computes and stores the cumulative GC count

for each transcript. To reduce memory consumption, this cumulative count can be sampled using

the --gcSizeSamp. This will increase the time required to compute the GC-fraction for each
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fragment by a constant factor. Similarly, when attempting to determine the effective length of a

transcript, Salmon will evaluate the contribution of all fragments longer than the shortest 0.5%

and shorter than the longest 0.5% of the full empirical fragment length distribution, that could

derive from this transcript. The program option --biasSpeedSamp will instead sample

fragment lengths at a user-defined factor, speeding up the computation of bias-corrected effective

lengths by this factor, but coarsening the model in the process. All results reported in this

manuscript where bias correction was included were run without either of these sampling options

(i.e. using the full-fidelity model).

Alignment model

When Salmon is given read alignments as input, it can learn and apply a model of read alignments

to help assess the probability that a fragment originated from a particular locus. Specifically,

Salmon’s alignment model is a spatially varying first-order Markov model over the set of CIGAR

symbols and nucleotides. To account for the fact that substitution and indel rates can vary

spatially over the length of a read, we partition each read into a fixed number of bins (4 by

default) and learn a separate model for each of these bins. This allows us to learn spatially

varying effects without making the model itself too large (as if, for example, we had attempted to

learn a separate model for each position in the read). Given the CIGAR string s = s0, . . . , s|s| for

an alignment a, we compute the probability of a as:

Pr {a | fj, ti, p, o, ℓ} = Pr {s0}

|s|
∏

k=1

Pr
(Mk)
{sk−1 → sk | fj, ti, p, o, ℓ} (7)

where Pr {s0} is the start probability and Pr(Mk) {·} is the transition probability under the model

at the kth position of the read (i.e., in the bin corresponding to position k). To compute these

probabilities, Salmon parses the CIGAR string s and moves appropriately along both the fragment

fj and the reference transcript ti, and computes the probability of transitioning to the next

observed state in the alignment (a tuple consisting of the CIGAR operation, and the nucleotides in
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the fragment and reference) given the current state of the model. The parameters of this Markov

model are learned from sampled alignments in the online phase of the algorithm (see

Algorithm 1). When quasi-mapping is used instead of user-provided alignments, the probability

of the “alignment” is not taken into account (i.e. Pr {a | fj, ti, p, o, ℓ} is set to 1 for each

mapping).

Algorithms

Salmon consists of three components: a lightweight-mapping model, an online phase that

estimates initial expression levels and model parameters and constructs equivalence classes over

the input fragments, and an offline phase that refines these expression estimates. The online and

offline phases together optimize the estimates of α which is a vector of weighted estimates of

read counts. Each method can compute η directly from these parameters.

The online phase uses a variant of stochastic, collapsed variational Bayesian inference [22].

The offline phase applies either a standard EM algorithm, or a variational Bayesian EM

algorithm [21] over a reduced representation of the data represented by the equivalence classes

until a data-dependent convergence criterion is satisfied. An overview of our method is given in

Supplementary Fig. 1, and we describe each component in more detail below.

Online phase

The online phase of Salmon attempts to solve the variational Bayesian inference problem

described in Objectives and models for abundance estimation, and optimizes a collapsed

variational objective function [19] using a variant of stochastic collapsed Variational Bayesian

inference [22]. The inference procedure is a streaming algorithm, similar to [15], but it updates

estimated read counts α after every small group Bτ (called a mini-batch) of observations, and

processing of mini-batches is done asynchronously and in parallel. The pseudo-code for the

algorithm is given in Algorithm 1.
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Algorithm 1 Laissez-faire SCVB0

1: while Bτ ← pop(work-queue) do

2: x̂← 0

3: for read r ∈ Bτ do

4: x← 0

5: for alignment a of r do

6: y ← the transcript involved in alignment a
7: xy ← xy + αy · Pr {a | y} ⊲ Add a’s contribution to the local weight for transcript

y
8: end for ⊲ Normalize the contributions for all alignments of r
9: for alignment a of r do

10: y ← the transcript involved in alignment a
11: x̂y ← x̂y +

xy∑
y′∈r xy′

12: end for

13: Sample a ∈ r and update auxiliary models using a
14: end for

15: α← α+ vτ · x̂ ⊲ Update the global weights with local observations from Bτ

16: end while

The observation weight for mini-batch Bτ , vτ , in line 15 of Algorithm 1 is an increasing

sequence sequence in τ , and is set, as in [15], to adhere to the Robbins-Monroe conditions. Here,

the α represent the (weighted) estimated counts of fragments originating from each transcript.

Using this method, the expected value of η can be computed directly from α using equation (16).

We employ a weak Dirichlet conjugate-prior with α0
i = 0.001 · ℓ̃i for all ti ∈ T . As outlined

in [22], the SCVB0 inference algorithm is similar to variants of the online-EM [23] algorithm

with a modified prior. The procedure in Algorithm 1 is run independently by as many worker

threads as the user has specified. The threads share a single work-queue upon which a parsing

thread places mini-batches of alignment groups. An alignment group is simply the collection of

all alignments (i.e. all multi-mapping locations) for a particular read. The mini-batch itself

consists of a collection of some small, fixed number of alignment groups (1, 000 by default). Each

worker thread processes one alignment group at a time, using the current weights of each

transcript and the current auxiliary parameters to estimate the probability that a read came from

each potential transcript of origin. The processing of mini-batches occurs in parallel, so that very

little synchronization is required, only an atomic compare-and-swap loop to update the global
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transcript weights at the end of processing of each mini-batch — hence the moniker laissez-faire

in the label of Algorithm 1. This lack of synchronization means that when estimating xy, we

cannot be certain that the most up-to-date values of α are being used. However, due to the

stochastic and additive nature of the updates, this has little-to-no detrimental effect [24]. The

inference procedure itself is generic over the type of alignments being processed; they may be

either regular alignments (e.g. coming from a bam file), or quasi-mappings computed from the

raw reads (e.g. coming from FASTA/Q files). After the entire mini-batch has been processed, the

global weights for each transcript α are updated. These updates are sparse; i.e. only transcripts

that appeared in some alignment in mini-batch Bτ will have their global weight updated after Bτ

has been processed. This ensures, as in [15], that updates to the parameters α can be performed

efficiently.

Equivalence classes

During its online phase, in addition to performing streaming inference of transcript abundances,

Salmon also constructs a highly-reduced representation of the sequencing experiment.

Specifically, Salmon constructs “rich” equivalence classes over all of the sequenced fragments.

Collapsing fragments into equivalence classes is a well-established idea in the transcript

quantification literature, and numerous different notions of equivalence classes have been

previously introduced, and shown to greatly reduce the time required to perform iterative

optimization such as that described in Offline phase. For example, Salzman et al. [25] first

introduced the notion of factorizing the likelihood function to speed up inference by collapsing

fragments that align to the same exons or exon junctions (as determined by a provided annotation)

into equivalence classes. Simlarly, Nicolae et al.[26] used equivalence classes over fragments to

reduce memory usage and speed up inference — they define as equivalent any pair of fragments

that align to the same set of transcripts and whose compatibility weights (i.e. conditional

probabilities) with respect to those transcripts are proportional. Patro et al. [9] define equivalence

classes over k-mers, treating as equivalent any k-mers that appear in the same set of transcripts at
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the same frequency, and use this factorization of the likelihood function to speed up optimization.

Bray et al. [10] define equivalence classes over fragments, and define as equivalent any fragments

that pseuoalign to the same set of transcripts — this is similar to the notion adopted by Nicolae et

al., except that no restriction is placed on the proportionality of compatibility weights (since these

are not computed).

To compute equivalence classes, we define an equivalence relation ∼ over fragments. Let

A (T , fx) denote the set of quasi-mappings (or alignments) of fx to the transcriptome T , and let

M (fx) = {ti | (ti, pi, oi) ∈ A (T , fx)} be the set of transcripts to which fx maps according to

A (T , fx). We say fx ∼ fy if and only if M (fx) = M (fy). Fragments which are equivalent are

grouped together for the purpose of inference. Salmon builds up a set of fragment-level

equivalence classes by maintaining an efficient concurrent cuckoo hash map [27]. To construct

this map, we associate each fragment fx with tx = M (fx), which we will call the label of the

fragment. Then, we query the hash map for tx. If this key is not in the map, we create a new

equivalence class with this label, and set its count to 1. Otherwise, we increment the count of the

equivalence class that we find in the map with this label. The efficient, concurrent nature of the

data structure means that many threads can simultaneously query and write to the map while

encountering very little contention. Each key in the hash map is associated with a value that we

call a “rich” equivalence class. For each equivalence class Cj , we retain a count dj = |Cj|, which

is the total number of fragments contained within this class. We also maintain, for each class, a

weight vector wj . The entries of this vector are in one-to-one correspondence with transcripts i in

the label of this equivalence class such that

wj
i =

∑

f∈Cj Pr {f | ti}
∑

tk∈tj

∑

f∈Cj Pr {f | tk}
. (8)

That is, wj
i is the average conditional probability of observing a fragment from Cj given ti over all

fragments in this equivalence class. Though the likelihood function over equivalence classes that

considers these weights (Equation (10)) is no longer exactly equivalent to the likelihood defined
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over all fragments (Equation (9)), these weights nonetheless allow us to take into consideration

the conditional probabilities specified in the full model, without having to continuously

reconsider each of the fragments in F . There is a spectrum of possible representations of “rich”

equivalence classes. This spectrum spans from notion adopted here, which collapses all

conditional probabilities into a single aggregate scalar, to an approach that clusters together

fragments based not only on the transcripts to which they match, but on the vector of normalized

conditional probabilities for each of these transcripts. The former approach represents a more

coarse-grained approximate factorization of the likelihoodod function while the latter represents a

more fine-grained approximation. We believe that studying how these different notions of

equivalence classes affect the factorization of the likelihood function, and hence its optimization,

is an interesting direction for future work.

Offline phase

In its offline phase, which follows the online phase, Salmon uses the “rich” equivalence classes

learned during the online phase to refine the inference. Given the set C of rich equivalence classes

of fragments, we can use an expectation maximization (EM) algorithm to optimize the likelihood

of the parameters given the data. The abundances η can be computed directly from α, and we

compute maximum likelihood estimates of these parameters which represent the estimated counts

(i.e. number of fragments) deriving from each transcript, where:

L{α | F ,Z, T } =
N
∏

j=1

M
∑

i=1

η̂i Pr {fj | ti} (9)

and η̂i =
αi∑
j αj

. If we write this same likelihood in terms of the equivalence classes C, we have:

L{α | F ,Z, T } ≈
∏

Cj∈C





∑

ti∈tj

η̂iw
j
i





dj

. (10)
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EM update rule This likelihood, and hence that represented in equation (9), can then be

optimized by applying the following update equation iteratively

αu+1
i =

∑

Cj∈C

dj

(

αu
i w

j
i

∑

tk∈tj
αu
kw

j
k

)

. (11)

We apply this update equation until the maximum relative difference in the α parameters satisfies:

∆
(

αu,αu+1
)

= max

∣

∣αu
i − αu+1

i

∣

∣

αu+1
i

< 1× 10−2 (12)

for all αu+1
i > 1× 10−8. Let α′ be the estimates after having achieved convergence. We can then

estimate ηi by η̂i, where:

η̂i =
α′
i

∑

j α
′
j

. (13)

Variational Bayes optimization Instead of the standard EM updates of equation (11), we can,

optionally, perform Variational Bayesian optimization by applying VBEM updates as in [20], but

adapted to be with respect to the equivalence classes:

αu+1
i =

∑

Cj∈C

dj

(

eγ
u
i wj

i
∑

tk∈tj
eγ

u
kwj

k

)

, (14)

where:

γu
i = Ψ

(

α0
i + αu

i

)

−Ψ

(

∑

k

α0
k + αu

k

)

. (15)

Here, Ψ(·) is the digamma function, and, upon convergence of the parameters, we can obtain an

estimate of the expected value of the posterior nucleotide fractions as:

E {ηi} =
α0
i + α′

i
∑

j α
0
j + α′

j

=
α0
i + α′

i

α̂0 +N
, (16)

where α̂0 =
∑M

i=1 α
0
i . Variational Bayesian optimization in the offline-phase of Salmon is

selected by passing the --useVBOpt flag to the Salmon quant command.
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Sampling from the posterior

After the convergence of the parameter estimates has been achieved in the offline phase, it is

possible to draw samples from the posterior distribution using collapsed, blockwise Gibbs

sampling over the equivalence classes. Samples can be drawn by iterating over the equivalence

classes, and re-sampling assignments for some fraction of fragments in each class according to

the multinomial distribution defined by holding the assignments for all other fragments fixed.

Many samples can be drawn quickly, since many Gibbs chains can be run in parallel. Further, due

to the accuracy of the preceding inference, the chains begin sampling from a relatively high

probability position in the latent variable space almost immediately. These posterior samples can

be used to obtain estimates for quantities of interest about the posterior distribution, such as its

variance, or to produce credible intervals. When Salmon is passed the --numGibbsSamples

option, it will draw a number of posterior samples that is provided to this option.

Additionally, inspired by kallisto [10], Salmon also provides the ability to draw bootstrap

samples, which is an alternative way to assign confidence to the estimates returned by the main

inference algorithm. Bootstrap samples can be drawn by passing the --numBootstraps

option to Salmon with the argument determining the number of bootstraps to perform. The

bootstrap sampling process works by sampling (with replacement) counts for each equivlalence

class, and then re-running the offline inference procedure (either the EM or VBEM algorithm) for

each bootstrap sample.

Validation

Metrics for accuracy

Throughout this paper, we use several different different metrics to summarize the agreement of

the estimated TPM for each transcript with the TPM computed from simulated counts. While

most of these metrics are commonly used and self-explanatory, we here describe the computation

of the mean absolute relative difference (MARD), which is, less common than some of the other
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metrics.

The MARD is computed using the absolute relative difference ARDi for each transcript i:

ARDi =















0 if xi = yi = 0

|xi−yi|
xi+yi

otherwise

, (17)

where xi is the true value of the TPM, and yi is the estimated TPM. The relative difference is

bounded above by 1, and takes on a value of 0 whenever the prediction perfectly matches the truth.

To compute the mean absolute relative difference, we simply take MARD = 1
M

∑M

i=1 ARDi. We

note that Salmon and kallisto, by default, truncate very tiny expression values to 0. For example,

any transcript estimated to produce < 1× 10−8 reads is assigned an estimated read count of 0

(which, likewise, affects the TPM estimates). However, eXpress does not perform such a

truncation, and very small, non-zero values may have a negative effect on the MARD metric. To

mitigate such effects, we first truncate to 0 all TPMs less than 0.01 before computing the MARDs.

Ground truth simulated data

To assess accuracy in a situation where the true expression levels are known, we generate

synthetic data sets using both Polyester [13] and RSEM-sim [14].

RSEM-sim simulations To generate data with RSEM-sim, we follow the procedure used

in [10]. RSEM was run on sample NA12716 7 from the GEUVADIS RNA-seq data to learn

model parameters and estimate true expression, and the learned model was then used to generate

20 different simulated datasets, each consisting of 30 million 75 bp paired-end reads.

Polyester simulations In addition to the ability to generate reads, Polyester allows simulating

experiments with differential transcript expression and biological variability. Thus, we can assess

not only the accuracy of the resulting estimates, but also how these estimates would perform in a

typical downstream analysis task like differential expression testing.
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The Polyester simulation of an RNA-seq experiment with empirically-derived fragment GC

bias was created as follows: The transcript abundance quantifications from RSEM run on

NA12716 7 of the GEUVADIS RNA-seq data [11] were summed to the gene-level using version

75 of the Ensembl gene annotation for GRCh37. Subsequently, whole-transcriptome simulation

was carried out using Polyester. Abundance (TPMs) was allocated to isoforms within a gene

randomly using the following rule: for genes with two isoforms, TPMs were either (i) split

according to a flat Dirichlet distribution (α = (1, 1)) or (ii) attributed to a single isoform. The

choice of (i) vs (ii) was decided by a Bernoulli trial with probability 0.5. For genes with three or

more isoforms, TPMs were either (i) split among three randomly chosen isoforms according to a

flat Dirichlet distribution (α = (1, 1, 1)) or (ii) attributed to a single isoform. Again, (i) vs (ii) was

decided by a Bernoulli trial with probability 0.5. The choice of distributing expression among

three isoforms was motivated by exploratory data analysis of estimated transcript abundance

revealing that for most genes nearly all of expression was concentrated in the first three isoforms

for genes with four or more isoforms.

Expected counts for each transcript were then generated according to the transcript-level

TPMs, multiplied by the transcript lengths. 40 million 100bp paired-end reads were simulated

using the Polyester software for each of 16 samples, and 10% of transcripts were chosen to be

differentially expressed across an 8 vs 8 sample split. The fold change was chosen to be either 1
2

or 2 with probability of 0.5. Fragments were down-sampled with Bernoulli trials according to an

empirically-derived fragment GC content dependence estimated with alpine [5] on RNA-seq

samples from the GEUVADIS project. The first 8 GEUVADIS samples exhibited weak GC

content dependence while the last 8 samples exhibited more severe fragment-level GC bias.

Paired-end fragments were then shuffled before being supplied to transcript abundance

quantifiers. Estimated expression was compared to true expression calculated on transcript counts

(before these counts were down-sampled according to the empirically-derived fragment GC bias

curve), divided by effective transcript length and scaled to TPM. Global differences across

condition for all methods were removed using a scaling factor per condition. Differences across
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condition for the different methods’ quantifications were tested using a t-test of log2(TPM + 1).

Software versions and options

All tests were performed with eXpress v1.5.1, kallisto v0.43.0, Salmon v0.7.1 and Bowtie2

v2.2.4. Reads were aligned with Bowtie2 using the parameters --no-discordant -k 200,

and -p to set the number of threads. On the RSEM-sim data, all methods were run without bias

correction. On all other datasests, methods were run with bias correction unless otherwise noted.

Additionally, on the Polyester simulated data, Salmon was run with the option

--noBiasLengthThreshold, which allows bias correction, even for very short transcripts,

since we were most interested in assessing the maximum sensitivity of the model.

GEUVADIS data

The analyses presented in Fig. 1d, Supplementary Table 1 and Supplementary Fig. 5 were

carried out on a subset of 30 samples from the publicly-available GEUVADIS [11] data. The

accesssions used and the information about the center at which the libraries were prepared and

sequenced is recorded in Supplementary Table 2. All methods were run with bias correction

enabled, using a transcriptome built with the RefSeq gene annotation file and the genome FASTA

contained within the hg19 Illumina iGenome, in order to allow for comparison with the results in

[5]. For each transcript, a t-test was performed, comparing log2(TPM+1) from 15 samples from

one sequencing center against 15 samples from another sequencing center. Because the samples

are from the same human population, it is expected that there would be few to no true differences

in transcript abundance produced by this comparison. P values were then adjusted using the

method of Benjamini-Hochberg, over the transcripts with mean TPM > 0.1. The number of

positives for given false discovery rates was then reported for each method, by taking the number

of transcripts with adjusted p value less than a given threshold.
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SEQC data

The consistency analysis presented in Supplementary Fig. 2 was carried out on a subset of the

publicly-available SEQC [28] data. Specifically, the accessions used, along with the

corresponding information about the center at which they were sequences is recorded

in Supplementary Table 3. For each sample, “same center” comparisons were made between all

unique pairs of replicates labeled as coming from the same sequencing center, while “different

center” comparisons were made between all unique pairs of replicates labeled as coming from

different centers (“Center” column of Supplementary Table 3).
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Supplementary Figure 1: Overview of Salmon’s method and components.

aligned reads (e.g. bam file) & 
reference transcripts 

reference transcripts

Salmon index

raw reads
(e.g. fastq files)

quasi-mapping

online inference
[SCVB0]

initial abundances &
fragment equiv. classes

offline inference
[EM or VBEM]

Supplementary Figure 1: Overview of Salmon’s method and components. Salmon accepts either

raw (green arrows) or aligned reads (blue arrow) as input, performs an online inference when pro-

cessing fragments or alignments, builds equivalence classes over these fragments and subsequently

refines abundance estimates using an offline inference algorithm on a reduced representation of the

data.
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Supplementary Figure 2: Consistency of estimates on SEQC data within and

between centers

Supplementary Figure 2: The distribution of the mean absolute error of (inverse hyperbolic sine-

transformed) TPMs between different replicates of data from the SEQC [28] study. The A sample

corresponds to universal human reference tissue (UHRR) and the B sample corresponds to human

brain tissue (HBRR). When comparing the replicates that were sequenced at different centers, the

inter-replicate distances are larger. However, we observe that Salmon’s bias correction method-

ology results in improved consistency (i.e. reduced distance) compared to the estimates produced

by other methods, especially when comparing replicates sequenced at different centers, where we

expect the effects of bias to be more pronounced.
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Supplementary Figure 3: FDR vs. sensitivity on Polyester simulated data.

Supplementary Figure 3: The false discovery rate (FDR) vs. the sensitivity of Salmon, kallisto

and eXpress on Polyester simulated RNA-seq data using empirically-derived fragment GC bias

profiles. All methods were run with bias-correction enabled, but only Salmon’s model incorporates

corrections for fragment GC bias. This leads to a large improvement in sensitivity at almost every

FDR value.
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Supplementary Figure 4: Abundance vs. fold change accuracy on Polyester

simulated data.

Supplementary Figure 4: The log2 fold change between the estimated and true abundances as a

function of the true abundance (measured in TPM), for all 3 methods and for all replicates of both

simulated “conditions” (each row displays points from all samples within a given condition). The

top row corresponds to the 8 samples simulated from the data showing the weak fragment GC

content bias, while the bottom row corresponds to the 8 samples simulated from the data showing

the stronger fragment GC content bias. Points with an estimated log2 fold change of > 0.5 or

< −0.5 are colored red. The fraction of red points appears in the upper right-hand corner of each

plot. Salmon consistently demonstrates log fold changes closer to 0 than either kallisto or eXpress,

across most of the range of expression.
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Supplementary Table 1: Gene Level GEUVADIS DE

Supplementary Table 1: The number of genes identified as differentially expressed at a target

FDR of 1% for two groups of GEUVADIS samples. The contrast between samples is a technical

confound, and we expect little-to-no true DE. Gene-level TPM was computed by summing the

TPM of the isoforms, and differential testing was performed as described in Methods.

Salmon kallisto eXpress

455 1200 1582
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Supplementary Figure 5: Salmon reduces false isoform switching
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Supplementary Figure 5: Transcripts demonstrating dominant isoform switching that results from

technical bias. In the quantification estimates computed using kallisto and eXpress, these two-

isoform genes show a change in the dominant isoform between conditions (an asterisk denotes a

t-test on log2(TPM+1) with p < 1×10−6). However, Salmon directly corrects for technical biases

that appear to underlay differences across sequencing center, revealing that the dominant isoform

has not, in fact, switched across center.

7

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 30, 2016. ; https://doi.org/10.1101/021592doi: bioRxiv preprint 

https://doi.org/10.1101/021592
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplementary Figure 6: Quantification accuracy for Salmon, kallisto and

eXpress using RSEM-sim data.

0.880 0.885 0.890 0.895 0.900 0.905 0.910 0.915 0.920
Spearman correlation

0

1

2

3

4

5

6

fre
qu

en
cy

Salmon
kallisto
eXpress

Supplementary Figure 6: This plot shows the distribution of Spearman correlations over all 20

replicates of the RSEM-sim data for Salmon, kallisto and eXpress. Salmon and kallisto yield very

similar distributions of correlations (no statistically significant difference), while both methods

yeild correlations greater than that of eXpress (Mann-Whitney U test, p = 3.39780× 10−8).
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Supplementary Table 2: GEUVADIS samples used for specificity assessment.

Population Center Assay Sample Experiment Run accession

TSI UNIGE NA20503.1.M 111124 5 ERS185497 ERX163094 ERR188297

TSI UNIGE NA20504.1.M 111124 7 ERS185242 ERX162972 ERR188088

TSI UNIGE NA20505.1.M 111124 6 ERS185048 ERX163009 ERR188329

TSI UNIGE NA20507.1.M 111124 7 ERS185412 ERX163158 ERR188288

TSI UNIGE NA20508.1.M 111124 2 ERS185362 ERX163159 ERR188021

TSI UNIGE NA20514.1.M 111124 4 ERS185217 ERX163062 ERR188356

TSI UNIGE NA20519.1.M 111124 5 ERS185167 ERX162948 ERR188145

TSI UNIGE NA20525.1.M 111124 1 ERS185212 ERX163022 ERR188347

TSI UNIGE NA20536.1.M 111124 1 ERS185156 ERX163042 ERR188382

TSI UNIGE NA20540.1.M 111124 2 ERS185349 ERX162940 ERR188436

TSI UNIGE NA20541.1.M 111124 4 ERS185125 ERX163043 ERR188052

TSI UNIGE NA20581.1.M 111124 4 ERS185181 ERX162937 ERR188402

TSI UNIGE NA20589.1.M 111124 3 ERS185057 ERX162793 ERR188343

TSI UNIGE NA20757.1.M 111124 1 ERS185169 ERX162732 ERR188295

TSI UNIGE NA20761.1.M 111124 7 ERS185420 ERX163049 ERR188479

TSI CNAG CRG NA20524.2.M 111215 8 ERS185498 ERX162769 ERR188204

TSI CNAG CRG NA20527.2.M 111215 7 ERS185082 ERX163033 ERR188317

TSI CNAG CRG NA20529.2.M 111215 6 ERS185422 ERX162984 ERR188453

TSI CNAG CRG NA20530.2.M 111215 6 ERS185442 ERX163025 ERR188258

TSI CNAG CRG NA20534.2.M 111215 8 ERS185144 ERX162843 ERR188114

TSI CNAG CRG NA20543.2.M 111215 5 ERS185134 ERX163170 ERR188334

TSI CNAG CRG NA20586.2.M 111215 7 ERS185426 ERX162880 ERR188353

TSI CNAG CRG NA20758.2.M 111215 8 ERS185342 ERX162819 ERR188276

TSI CNAG CRG NA20765.2.M 111215 5 ERS185306 ERX162794 ERR188153

TSI CNAG CRG NA20771.2.M 111215 7 ERS185108 ERX163165 ERR188345

TSI CNAG CRG NA20786.2.M 111215 8 ERS185069 ERX162761 ERR188192

TSI CNAG CRG NA20790.2.M 111215 6 ERS185378 ERX163152 ERR188155

TSI CNAG CRG NA20797.2.M 111215 6 ERS185263 ERX162729 ERR188132

TSI CNAG CRG NA20810.2.M 111215 7 ERS185427 ERX162968 ERR188408

TSI CNAG CRG NA20814.2.M 111215 6 ERS185127 ERX163109 ERR188265

Supplementary Table 2: Accession information for GEUVADIS samples.
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Supplementary Table 3: SEQC samples used for consistency assessment.

Run accession Replicate Sample Center

SRR896664 1 A BGI

SRR896663 1 A BGI

SRR896665 1 A BGI

SRR896666 1 A BGI

SRR896667 1 A BGI

SRR896668 1 A BGI

SRR896679 2 A BGI

SRR896680 2 A BGI

SRR896681 2 A BGI

SRR896682 2 A BGI

SRR896683 2 A BGI

SRR896684 2 A BGI

SRR896695 3 A BGI

SRR896696 3 A BGI

SRR896697 3 A BGI

SRR896698 3 A BGI

SRR896699 3 A BGI

SRR896700 3 A BGI

SRR896711 4 A BGI

SRR896712 4 A BGI

SRR896713 4 A BGI

SRR896714 4 A BGI

SRR896715 4 A BGI

SRR896716 4 A BGI

SRR897047 1 A CNL

SRR897048 1 A CNL

SRR897049 1 A CNL

SRR897050 1 A CNL

SRR897051 1 A CNL

SRR897052 1 A CNL

SRR897062 2 A CNL

SRR897063 2 A CNL

SRR897064 2 A CNL

SRR897065 2 A CNL

SRR897066 2 A CNL

SRR897067 2 A CNL

Run accession Replicate Sample Center

SRR897077 3 A CNL

SRR897078 3 A CNL

SRR897079 3 A CNL

SRR897080 3 A CNL

SRR897081 3 A CNL

SRR897082 3 A CNL

SRR897092 4 A CNL

SRR897093 4 A CNL

SRR897094 4 A CNL

SRR897095 4 A CNL

SRR897096 4 A CNL

SRR897097 4 A CNL

SRR897407 1 A MAY

SRR897408 1 A MAY

SRR897409 1 A MAY

SRR897410 1 A MAY

SRR897411 1 A MAY

SRR897412 1 A MAY

SRR897423 2 A MAY

SRR897424 2 A MAY

SRR897425 2 A MAY

SRR897426 2 A MAY

SRR897427 2 A MAY

SRR897428 2 A MAY

SRR897439 3 A MAY

SRR897440 3 A MAY

SRR897441 3 A MAY

SRR897442 3 A MAY

SRR897443 3 A MAY

SRR897444 3 A MAY

SRR897455 4 A MAY

SRR897456 4 A MAY

SRR897457 4 A MAY

SRR897458 4 A MAY

SRR897459 4 A MAY

SRR897460 4 A MAY
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Supplementary Table 3: (continued)

Run accession Replicate Sample Center

SRR896743 1 B BGI

SRR896744 1 B BGI

SRR896745 1 B BGI

SRR896746 1 B BGI

SRR896747 1 B BGI

SRR896748 1 B BGI

SRR896759 2 B BGI

SRR896760 2 B BGI

SRR896761 2 B BGI

SRR896762 2 B BGI

SRR896763 2 B BGI

SRR896764 2 B BGI

SRR896775 3 B BGI

SRR896776 3 B BGI

SRR896777 3 B BGI

SRR896778 3 B BGI

SRR896779 3 B BGI

SRR896780 3 B BGI

SRR896791 4 B BGI

SRR896792 4 B BGI

SRR896793 4 B BGI

SRR896794 4 B BGI

SRR896795 4 B BGI

SRR896796 4 B BGI

SRR897122 1 B CNL

SRR897123 1 B CNL

SRR897124 1 B CNL

SRR897125 1 B CNL

SRR897126 1 B CNL

SRR897127 1 B CNL

SRR897137 2 B CNL

SRR897138 2 B CNL

SRR897139 2 B CNL

SRR897140 2 B CNL

SRR897141 2 B CNL

SRR897142 2 B CNL

Run accession Replicate Sample Center

SRR897152 3 B CNL

SRR897153 3 B CNL

SRR897154 3 B CNL

SRR897155 3 B CNL

SRR897156 3 B CNL

SRR897157 3 B CNL

SRR897167 4 B CNL

SRR897168 4 B CNL

SRR897169 4 B CNL

SRR897170 4 B CNL

SRR897171 4 B CNL

SRR897172 4 B CNL

SRR897487 1 B MAY

SRR897488 1 B MAY

SRR897489 1 B MAY

SRR897490 1 B MAY

SRR897491 1 B MAY

SRR897492 1 B MAY

SRR897503 2 B MAY

SRR897504 2 B MAY

SRR897505 2 B MAY

SRR897506 2 B MAY

SRR897507 2 B MAY

SRR897508 2 B MAY

SRR897519 3 B MAY

SRR897520 3 B MAY

SRR897521 3 B MAY

SRR897522 3 B MAY

SRR897523 3 B MAY

SRR897524 3 B MAY

SRR897535 4 B MAY

SRR897536 4 B MAY

SRR897537 4 B MAY

SRR897538 4 B MAY

SRR897539 4 B MAY

SRR897540 4 B MAY

Supplementary Table 3: Accession information for SEQC samples.
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