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Salmonella enterica bio�lm-mediated 
dispersal by nitric oxide donors in association 
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Abstract 

Protected by extracellular polymers, microbes within biofilms are significantly more resistant to disinfectants. Current 

research has been instrumental in identifying nitric oxide donors and hydrogels as potential disinfectant additives. 

Nitric oxide (NO) donors are considered a very promising molecule as biofilm dispersal agents and hydrogels have 

recently attracted a lot of interest due to their biocompatible properties and ability to form stable thin films. When 

the NO donor MAHMA NONOate was dissolved in phosphate saline buffer, it was able to reduce the biomass of 

well-established biofilms up to 15% for at least 24 h of contact time. Encapsulation of MAHMA NONOate and molsid-

omine within a hydrogel composed of cellulose nanocrystals (CNC) has shown a synergistic effect in dispersing well-

established biofilms: after 2 h of exposure, moderate but significant dispersion was measured. After 6 h of exposure, 

the number of cells transitioning from the biofilm to the planktonic state was up to 0.6 log higher when compared 

with non-treated biofilms. To further explore the transport processes of NO donors within hydrogels, we measured 

the nitric oxide flux from gels, at 25°C for a composite of 0.1 µM MAHMA NONOate–CNC. Nitric oxide diffuses up to 

500 µm from the hydrogel surface, with flux decreasing according to Fick’s law. 60% of NO was released from the 

hydrogel composite during the first 23 min. These data suggest that the combined treatments with nitric oxide donor 

and hydrogels may allow for new sustainable cleaning strategies.
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Introduction

Biofilms formed on washing systems in produce produc-

tion facilities can be recalcitrant reservoirs of human 

pathogens, which are difficult to control and can poten-

tially cause costly outbreaks (Srey et  al. 2013). Patho-

gens in biofilms are resistant to common disinfectants 

and contribute to an increased risk in contamination of 

produce by potentially contaminated water (Zhang and 

Mah 2008; Corcoran et al. 2014). Several disinfectants, 

antibiotics and messenger molecules have been studied 

for their ability to dislodge existing biofilms (Barraud 

et  al. 2006, 2009a, 2012). Of these, nitric oxide (NO) 

appears to be very promising, and currently nitric oxide 

donors are used clinically. Nitric oxide is effective as a 

biofilm dispersant, functioning as a messenger rather 

than a generic poison (Barraud et al. 2006, 2009a, 2012; 

Marvasi et  al. 2014). Nitric oxide can be delivered to 

biofilms by using donor molecules (Wang et  al. 2005), 

and the application of nitric oxide donors has the same 

effect as the direct addition of nitric oxide gas (Barraud 

et  al. 2009b). In bacteria, nitric oxide acts as an active 

signaling molecule at very low concentrations and is 

able to disperse preformed biofilms at nano- or picomo-

lar concentration, indicating that truly minute quanti-

ties of the chemical are sufficient for dislodging much 

of the biofilm (Barraud et al. 2006, 2009a, 2012; Marvasi 

et al. 2014). Nitric oxide could have a universal effect on 

dispersal of bacteria biofilm including both Gram-posi-

tive and Gram-negative bacteria (Xiong and Liu 2010). 
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�e mechanisms of biofilm dispersion are not clear, but 

it appears to function in the transition of sessile bio-

film organisms to free-swimming bacteria. For example, 

microarray studies have revealed that genes involved 

in adherence are downregulated in Pseudomonas aer-

uginosa upon exposure to nitric oxide donors (Firoved 

et al. 2004).

Over 105 nitric oxide donors have been character-

ized, and 6 have been currently tested as biofilm dis-

persal. Among these, the main studied are the sodium 

nitroprusside, (Barraud et  al. 2006; Marvasi et  al. 

2014; Charville et al. 2008; Barraud et al. 2009a), mol-

sidomine, diethylamine NONOate diethylammonium, 

NONOate diethylammonium, MAHMA nonoate 

(Marvasi et al. 2014), NORS (sodium nitrite citric acid) 

(Regev-Shoshani et  al. 2013) and NO-releasing sil-

ica nanoparticles (Hetrick et  al. 2009). Among these, 

MAHMA NONOate is one of the best candidates in 

biofilm dispersion: it spontaneously dissociates in a pH/

temperature dependent manner, in serum it has a half-

life of 1 and 3  min at 37°C and 22–25°C respectively, 

at pH 7.4 to liberate 2  mol of NO per mole of parent 

compound (Wang et  al. 2005; Keefer et  al. 1996; Hra-

bie et al. 1993). Interesting, when MAHMA NONOate 

was used to disperse Salmonella enterica and Escheri-

chia coli biofilms (24-h old), up to 50% of Salmonella 

14028 and a cocktail of six Salmonella outbreak strains 

biofilms were dispersed when incubated for 6 and 24 h 

at 22°C (both p  <  0.0001). About 40% of dispersion 

was measured also for the pathogenic Escherichia coli 

O157:H7 when exposed at room temperature for 6 and 

24 h (Marvasi et al. 2014).

Nitric oxide donors can be associated with other dis-

infectants obtaining a synergistic effect in terms of bio-

film dispersion. For example, a 20-fold increase in the 

efficiency was observed when nitric oxide was applied 

together with chlorine in removing multispecies bio-

films (Barraud et  al. 2009b). In addition, we recently 

showed that the nitric oxide donor MAHMA NONO-

ate and molsidomine were also able to increase up to 

15% Salmonella biofilm dispersion when associated 

with the industrial disinfectant SaniDate 12.0 (Marvasi 

et al. 2014).

We used this foundation to hypothesize that nitric 

oxide donors can also be applied to hydrogels in order 

to obtain a synergistic effect in terms of biofilm dis-

persal. Hydrogels have recently attracted a lot of inter-

est due to high strength/stiffness, optical transparency, 

biocompatibility, biodegradability, and highly porous 

structural network (Klemm et  al. 2011; Siro and Plack-

ett 2011) and the ability to carry bactericidal molecules 

(Azizi et  al. 2013; Drogat et  al. 2011; Feese et  al. 2011). 

Hydrogels are water-swollen, and cross-linked polymeric 

network produced by the simple reaction of one or more 

monomers (Ahmed 2013). �e industrial applications 

of hydrogels are extremely heterogeneous, ranging from 

agriculture, drug delivery systems, food additives, bio-

medical applications such as implants, and separation of 

biomolecules (�akur and �akur 2014).

Among the hydrogels, cellulose nanocrystals (CNC) 

is one of the most promising polymer because it is an 

eco-friendly product, cheap and safe (George et  al. 

2011). CNC has high crystallinity, high water holding 

capacity and excellent mechanical and thermal proper-

ties (George et al. 2011). For our scope, CNC was pro-

cured from a process development center that focuses 

on production of wood-derived renewable nanomate-

rials. CNC was selected as the hydrogel base because 

this material has an ionic charged surface appropriate 

for binding biofilm outer extracellular polymeric sub-

stances (EPS) (Marvasi et  al. 2014; George et  al. 2011; 

Marvasi et al. 2010).

�e main objective of this study was to measure the 

synergistic effect of the nitric oxide donor MAHMA 

NANOate in association with CNC during nitric oxide-

mediated biofilm dispersion of S. enterica sv Typhimu-

rium. We focused our experiments on well-structured 

biofilms and we measured the shortest effective expo-

sure. �e nitric oxide release profile, diffusion and flux 

rate were also measured during MAHMA NONOate–

CNC association.

Materials and methods

Bacterial strains and culture media

Salmonella enterica serovar Typhimurium ATCC14028, 

was used in this study. pGFP-ON, a strongly fluorescent 

construct carrying GFP protein expressed from the Sal-

monella dppA promoter (Noel et  al. 2010), was trans-

formed into the strains of interest by electroporation.

All strains were maintained as frozen glycerol stocks, 

and were sub-cultured into Luria–Bertani medium 

with appropriate antibiotics (50  µg  mL−1 kanamycin, 

100 µg mL−1 ampicillin).

Chemicals and materials for microelectrode preparation

Single layer graphene oxide (SLGO; 0.8  nm thickness, 

1–5  µm diameter, 99% purity) was obtained from ACS 

Materials. Methanol, ascorbic acid and lead acetate were 

purchased from Fisher Scientific (Atlanta, GA, USA). 

Cerium (IV) oxide (nanoparticles dispersion, <25  nm 

particle size, 10  wt% in H2O) and chloroplatinic acid 

(8  wt%) were procured from Sigma-Aldrich (St. Louis, 

MO, USA). Nafion (5% aliphatic alcohol) and o-phenylen-

ediamine were acquired from Acros organics (Newark, 

NJ, USA). Nitric oxide gas (CP grade 99%) was purchased 

from AirGas (Gainesville, FL, USA).
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Nitric oxide donors

MAHMA NONOate and molsidomine were purchased 

from Sigma-Aldrich (St. Luois, MO, USA). For each 

compound, 1  mmol  L−1 stock solutions were prepared 

in phosphate-buffered saline (PBS), pH 7.3 (PBS, Fisher, 

Waltham, MA, USA) and aliquots were stored at −80°C. 

For the assays, serial dilutions were always prepared fresh 

in ice-cold PBS just before the experiments and used 

within 5 min of their preparation. �e biofilm dispersion 

potential was tested on polystyrene 96-well plates (Fisher, 

Waltham, MA, USA).

Bio�lm formation and dispersal on plastics

Overnight Luria–Bertani cultures of Salmonella S. 

typhimurium 14028 or S. typhimurium 14028 pGFP-

ON (with 100  µg  mL−1 ampicillin) were diluted 1:100 

in CFA medium as described previously (Teplitski 

et  al. 2006), and 100  µL of the diluted cultures were 

aliquoted into wells of 96-well polypropylene and poly-

styrene plates (Fisher, Waltham, MA, USA). Plates with 

bacteria were incubated for 24 h or 1 week (well estab-

lished biofilm) at 37°C inside a Ziploc bag to prevent 

dehydration.

Measurement of bio�lms dispersal

Upon completion of the incubation, the medium with 

planktonic bacteria was removed and serial dilutions 

of nitric oxide donors in PBS or CNC (in 200  µL) were 

added to the wells with biofilms. Dispersal experiments 

were conducted at 22°C for a time ranging from 1 to 24 h. 

�e dispersion of biofilms treated with the nitric oxide 

donor dissolved in PBS was measured by staining the 

remaining biofilms with 1% crystal violet in ethanol, as 

described previously (O’Toole and Kolter 1998; Merritt 

et al. 2005).

Biofilms dispersion treated with CNC (or control, 

CNC  +  PBS) was measured by directly monitoring the 

increase of fluorescence of planktonic cells of S. typh-

imurium 14028 pGFP-ON. At the end of the period of 

exposure, 170  µL of CNC-nitric oxide solution were 

transferred into a black 96-wells plate and fluorescence 

was measured by using Victor-2 multimode plate reader 

with a 485  nm/535  nm excitation/emission filter (Per-

kin Elmer, Waltham, MA, USA). Increase of fluorescent 

intensity was used to represent an increase of detached 

cells.

Luminescence tests

Effects of selected nitric oxide donors on light production 

by a constitutively luminescent Salmonella strain were 

characterized as indirect assessments of toxicity of the 

compounds. 1  mL of S. typhimurium 14028 pTIM2442 

(harboring the luxCDABE driven by a strong constitutive 

phage, Alagely et  al. 2011) were washed with BPS and 

mixed with opportune reagents (BPS, molsidomine, 

CNC) and grown in black polystyrene plates (Corn-

ing, New York, USA). Molsidomine was diluted in PBS 

(9.89  g  L−1) or CNC (Fisher Scientific, Waltham, MA, 

USA) to final concentrations of 10 µmol L−1. PBS + CNC 

and PBS alone were used as a control. Luminescence of S. 

typhimurium 14028 pTIM2442 was measured over time 

using Victor-2 multimode plate reader (Perkin Elmer, 

Waltham, MA, USA). Each experiment included 12 

replicas.

CNC-nitric oxide preparation

1  mmol  L−1 stock solutions of MAHMA NONOate or 

molsidomine were prepared in PBS, pH 7.3 (PBS, Fisher, 

Waltham, MA, USA). Final solutions to 1 µM were pre-

pared by dispersing the nitric oxide stock solution in an 

opportune volume of CNC. �e solution was further vor-

texed for 30 s and applied of prewashed biofilm formed 

into polypropylene plates.

Nitric oxide measurement

NO microelectrodes were prepared using the methods 

in Chaturvedi et al. (2014). Pt/Ir microelectrodes (2 µm 

tip diameter, 5.1  cm length, 81  µm shaft diameter; 

MicroProbe, Inc., Gaithersburg, MD, USA) were rinsed 

in methanol prior to use. Nafion, nanoceria, nano-

platinum, and reduced graphene oxide were deposited 

based on the methods in Chaturvedi et  al. (2014) and 

Vanegas et  al. (2014). Briefly, microelectrodes were 

platinized via pulsed-sonoelectrodeposition at 10  mV 

for 60 cycles (each cycle consisted of 1  s electroplat-

ing pulse followed by 1 s sonication pulse) in a plating 

solution of 0.002% lead acetate and 1.44% chloroplat-

inic acid. �ereafter, electrodes were dip coated for 

5  min in a suspension of 10  wt% cerium oxide with 

0.8  wt% ascorbic acid and 0.2  wt% SLGO. Electrodes 

were then dried at 100°C for 20  min. Next, electrodes 

were dip coated in 5% Nafion and dried at 110°C for 

20  min; this step was repeated twice. Finally, an OPD 

membrane was formed on the tip of the probe by polar-

izing the electrodes at 900  mV in a solution of 5  mM 

OPD and 0.1  mM ascorbic acid in PBS (pH 7.4) until 

a stable current was recorded (less than 2% variability) 

(Friedemann et al. 1996; Koehler et al. 2008; Porterfield 

et  al. 2001). �e working principle for the NO micro-

electrode is based on oxidation of NO at the surface of 

the nanocomposite, generating the nitrosonium cation 

(NO+) and one free electron based on Eq. 1 below; free 

electrons are detected as oxidative current versus a ref-

erence electrode

(1)NO → e
−

+ NO
+

+ OH
−

→ HONO → NO
−

2
+ H

+
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NO microelectrode calibration and �ux measurements

All measurements were performed at a working potential 

of +500 mV versus a reference electrode composed of a 

Ag/AgCl wire immersed in 3 M KCl and inserted into a 

half-cell microelectrode holder (World Precision Instru-

ments, Inc., Sarasota, FL, USA). For electrode calibra-

tion, a PBS solution was polarized for 1  h at +900  mV; 

current output was measured at constant potential while 

successively injecting NO stock solution prepared based 

on Porterfield et al. (2001). Calibrated microsensors were 

used to measure NO flux in the self referencing (SR) 

modality as described in detail by McLamore and Porter-

field (2011). �e SR microsensor technique is designed 

to measure flux within the concentration boundary layer, 

and involves computer-controlled translation of a micro-

electrode between two positions separated by a known 

distance (dX). Differential concentration (dC) is recorded 

in real time and flux is then calculated using Fick’s 

first law of diffusion (J = −D × dC dX − 1). �e diffu-

sion coefficient (D) for NO used in all experiments was 

2.21  ×  10−5  cm2 s−1 based on and Zacharia and Deen 

(2005).

Statistical analysis

�e statistical package JMP (SAS) was used to infer the 

ANOVA analysis (p  <  0.05). Tukey means separation 

analysis was inferred in order to group the means.

Results

Synergistic e�ect of the association of nitric oxide donors 

with CNC

�e effect of MAHMA NONOate as biofilm dispersal 

was previously assessed in our recent publication in a 

range of biofilm-forming microorganisms of industrial 

and/or clinical significance including S. enterica (Mar-

vasi et  al. 2014). Our previous efforts were focused on 

studying young biofilms (maximum 24 h old) and expo-

sure time up to 6 h. In order to focus on more applica-

tive approaches of the nitric oxide donor technology, we 

tested the nitric oxide donors on well-structured biofilms 

(1-week old biofilms) and for a shorter contact time (up 

to 1 h of exposure).

As a first approach, we exposed a 24-h old Salmonella 

biofilm for a minimum of 2  h to different concentra-

tions of MAHMA NONOate dissolved in PBS (10 µM, 

10  nM and 10  pM): no significant results were meas-

ured (Figure 1a). �e experiment was repeated with the 

nitric oxide donor, molsidomine, observing a similar 

result (Figure  1b). In further experiments, MAHMA 

NONOate or molsidomine were dissolved into CNC 

hydrogel to 10  µM (CNC–NONOate or CNC–molsi-

domine) to test whether the association of CNC was 

instrumental in increasing the dispersion potential 

of the nitric oxide donors within the 2  h. A fluores-

cent Salmonella 14028 pGFP-ON biofilm preformed 

on polypropylene was treated with 10  µM NONO-

ate–CNC or 10  µM molsidomine–CNC. Fluorescence 

of the planktonic cells was measured after 2 and 1  h 

of exposure to the nitric oxide donors. �e fraction of 

cells switching to the planktonic state was significant 

after 2  h of exposure (Figure  1c), but not significant 

after 1 h of exposure (Figure 1d).

To determine the viability of Salmonella during the 

exposure to CNC, the luminescence of Salmonella 14028 

Figure 1 24-h old Salmonella biofilm dispersal by MAHMA NONOate 

dissolved in BPS and CNC. Biofilms were preformed by S. enterica 

typhimurium 14028 for 24 h on polystyrene prior to the treatment 

with MAHMA NONOate and molsidomine. Contact time at which bio-

films were exposed to the nitric oxide donor is listed on each panel. 

a, b The decreasing of biofilm formation was measured by using the 

technique of crystal violet staining. c, d Fluorescent Salmonella 14028 

pGFP-ON biofilm was treated with MAHMA NONOate and molsid-

omine dissolved in CNC. Increase in fluorescence of the planktonic 

cells was measured at 485 nm/535 nm. The box-plots encompass the 

lower and upper quartiles, thick lines within the box are the median 

values, and the whiskers indicate the degree of dispersion of the data. 

Outliers are shown as dots. Dotted line represents the grand mean. Let-

ters above each box represent the Tukey means separation: different 

letters are significant different means.
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pTIM2442 upon association of CNC and molsidomine 

was measured. �e general metabolic state of the cells 

was assessed by using the pTIM2442 system (Alagely 

et  al. 2011). No variation in terms of viability was 

reported during a period of 8 h when CNC exposure was 

compared with the controls (Additional file 1: Figure S1).

To measure the responsiveness of a well-established 

biofilm such as a 1-week old biofilm, Salmonella 14028 

biofilms were exposed to different concentrations of 

MAHMA NONate dissolved in PBS for 24 and 6 h. 24 h 

of exposure to MAHMA NONOate reduced the biomass 

up to 15% (Figure 2a). However, 6 h of exposure did not 

significantly reduce the biomass (Figure  2b). As before, 

we tested whether the association of CNC was instru-

mental in increasing the dispersal potential of the nitric 

oxide donor. MAHMA NONOate and molsidomine were 

dissolved into CNC at a concentration of 10  µmol  L−1. 

Interestingly, total fluorescence of the planktonic cells 

increased significantly in the wells with biofilms treated 

with both the donors (Figure 2c, d), reflecting an increase 

in cellular detachment at the tested concentrations. �e 

biofilm exposed for 2  h showed an average of 0.3 log 

increase in fluorescence when compared with the con-

trol (PBS) (Figure  2c). When the same treatment was 

extended for 6 h, a difference up to 0.6 log was measured 

(Figure 2d). One-hour exposure was also tested but it was 

not significant (data not shown).

CNC was also tested on 1-week old biofilms at 4 and 

37°C, to determine the effect of temperature on the 

dispersion potential. No significant differences were 

determined on 1-week old biofilm when exposed to mol-

sidomine  +  CNC versus the control CNC  +  PBS. Bio-

films were exposed for 6  h. 22°C seems to be the most 

appropriate temperature for obtaining a significant 

dispersal.

Releasing pro�le of MAHMA NONOate in BPS and CNC

To better understand the synergistic effect of CNC–

MAHMA NONOate composites, the diffusion of NO 

from the hydrogel was studied in the absence of bio-

films. Electrodes were first calibrated in buffer solution 

(Figure 3a, b). �e average sensitivity of the NO micro-

electrodes was 10.5 ±  0.1 pA nM−1 within the range of 

20 pM–100 nM. �e average response time of the elec-

trodes was 0.65 ± 0.24 s.

Microelectrodes were used to directly measure NO 

flux from CNC hydrogels to better understand the mass 

transfer under abiotic conditions. A microelectrode was 

positioned at the surface of a hydrogel immediately after 

mixing the CNC and MAHMA NONOate while con-

tinuously measuring surface concentration and flux. At 

25°C, nitric oxide dissociated from the MAHMA NON-

Oate–CNC hydrogel. �e surface concentration was 

98.8 ± 0.1 µmol L−1 and the boundary layer was approxi-

mately 400 µm from the surface of the gel (Figure 4). �e 

surface flux of nitric oxide was 0.92 ± 0.01 pmol cm2 s−1, 

and the decay profile was modeled using Fick’s first law 

(R = 0.989; Figure 4b) based on the methods in McLam-

ore et  al. (2009). As expected, the nitric oxide sur-

face concentration (10.1  ±  0.6  µmol  L−1), surface flux 

(0.36  ±  0.26  pmol  cm2  s−1), and boundary layer thick-

ness (approximately 150  µm) were significantly lower 

when the MAHMA NONOate was diluted 1:10 in the 

CNC hydrogel (Figure  4b). For the diluted sample, the 

Figure 2 One-week old Salmonella biofilm dispersal by MAHMA 

NONOate dissolved in BPS and CNC. Biofilms were preformed by S. 

enterica typhimurium 14028 for 1-week on polystyrene prior to the 

treatment with MAHMA NONOate and molsidomine. Contact time 

at which biofilms were exposed to the nitric oxide donor is listed on 

each panel. a, b Decreasing of biofilm formation measured by using 

the technique of crystal violet staining. c, d A fluorescent Salmonella 

14028 pGFP-ON biofilm was treated with MAHMA NONOate or mol-

sidomine dissolved in CNC. Increase in fluorescence of the planktonic 

cells was measured at 485 nm/535 nm. The box-plots encompass the 

lower and upper quartiles, thick lines within the box are the median 

values, and the whiskers indicate the degree of dispersion of the data. 

Outliers are shown as dots. Dotted line represents the grand mean. Let-

ters above each box represent the Tukey means separation: different 

letters are significant different means.
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regression coefficient correlating the measured flux 

profile and the predicted behavior using Fick’s first law 

decreased significantly (R = 0.713; Figure 4b).

Although the exact amount of nitric oxide liberated 

within biofilms from nitric oxide donors have not yet 

been established, we measured the release rate of nitric 

oxide from the CNC hydrogel enriched with MAHMA 

NONOate. MAHMA NONOate was initially dissolved 

in PBS to a concentration of 500  mM, and then it was 

dissolved in CNC at a final concentration of 1  µM. A 

nitric oxide microelectrode was used to measure the 

release rate (Figure  5). Our measurements (three repli-

cas) showed that 60% of the nitric oxide is released as gas 

during the first 23 min (~725 s); the decay constant was 

4.1 ± 0.4 h−1. As expected, a 1:10 dilution of MAHMA 

NONOate in CNC significantly decreased the surface 

concentration/flux, and the time required for approxi-

mately 60% of nitric oxide released as gas (~1125 s) was 

significantly longer; the decay constant was 2.3 ± 1.1 h−1.

Discussion

Every wet surface is a substrate for microbial biofilms 

and in food handling facilities biofilms can be particu-

larly problematic. Protected by extracellular polymers, 

microbes within biofilms are significantly more resist-

ant to chlorine and other disinfectants (Corcoran et  al. 

2014). As a result, several disinfectants have been used to 

remove biofilm, however disinfectants fail to completely 

eradicate biofilms from food contact surface materials 

Figure 3 Calibration of NO microelectrodes. a Representative real 

time plot of NO microelectrode. Vertical arrows represent injection of 

NO stock solution. b Average output from three replicate microelec-

trodes (average sensitivity was 10.5 ± 0.1 pA nM−1).

Figure 4 Nitric oxide diffusion in CNC. MAHMA NONOate was mixed with cellulose nanocrystals (whisker type) and a hydrogel was formed with a 

final concentration of 1 mM. A microcapilary was tapered with a tip diameter of ca. 10 µm using a glass puller. Consequently the hydrogel–NONO-

ate was injected into the microcapillary and the microcapillary was placed into a phosphate buffer solution (PBS). A nitric oxide microsensor was 

immediately used to measure release of NO (both concentration and flux). a Nitric oxide concentration profiles from the hydrogel surface. b Nitric 

oxide flux profiles. 10:1 represent a 10 times dilution of the MAHMA NONOate dissolved in CNC. Error bars represent the standard error of three 

replicas.
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(Corcoran et al. 2014). Current research has been instru-

mental in identify nitric oxide as potential additive to dis-

infectant (Barraud et al. 2006; Marvasi et al. 2014).

To focus on applicative approaches of the nitric oxide 

donor technology, we focused on dispersing well-estab-

lished biofilms in the shortest time possible. To meet 

this need, a composite of nitric oxide and a hydrogel 

was used, considering the attractive physicochemical 

properties of hydrgoels as reviewed by Malmsten (2011). 

Nitric oxide donors have been combined with a num-

ber of hydrogels in preliminary studies (Koehler et  al. 

2008), but to date no hydrogels have been developed 

with nitric oxide donors which can potentially be scaled 

up for commercial applications. In this work, CNC was 

selected as a candidate for potential large scale applica-

tion because the material is produced in large batches 

by a commercial forest based nanomaterial processing 

facility. In addition, CNC has an ionic charged surface 

that can facilitate attachment of biofilm EPS (Marvasi 

et al. 2010). For the first time, we show that association 

of MAHMA NONOate and molsidomine with CNC 

improved the biofilm dispersion potential when com-

pared with PBS (Figures 1, 2). CNC–MAHMA NONO-

ate allowed the dispersion of 1-week old biofilm with a 

contact time of at least 2 h; �is can be ascribed to the 

combination of two different factors: (1) the cells do not 

have enough time to switch from the biofilm state to the 

planktonic state in less than 2 h; (2) the nitric oxide dif-

fusion into the biofilm requires a certain amount of time 

(based on concentration of the nitric oxide donor in the 

gel). Temperature seems also to play a role on the disper-

sion potential. In terms of dispersal the exposure to 22°C 

results to be the most appropriate temperature when 

compared with 4 and 37°C. We can hypothesize that 

at 37°C the nitric oxide is completely depleted within a 

short time. On the opposite at lower temperature the 

nitric oxide releasing prolife is reduced in CNC. It is well 

known that properties of CNC change according with 

the temperature (George et al. 2011).

Due to the porous network, diffusion is the predomi-

nant transport process within hydrogels and cell aggre-

gates. We measured the nitric oxide diffusion from CNC, 

observing that nitric oxide can diffuse up to 500 µm from 

the capillary opening, which is an important observation 

since 1-week old biofilms rarely have a thickness greater 

than 0.5 mm (Paramonova et al. 2007). With reference of 

the releasing time, our measurements show that 60% of 

the nitric oxide is released as gas during the first 12 min. 

In the literature, similar release profiles in PBS were 

observed with the nitrosothiols S-nitroso-N-acetylpen-

icillamine (SNAP), S-nitroso--glutathione (GSNO) and 

sodium nitroprusside (Barraud et al. 2009b).

Finally, it is worth mentioning that the improved abil-

ity of MAHMA NONOate-CNC association to disperse 

biofilm may be due to the low-moderate antimicrobial 

activity of CNC (Azizi et  al. 2013), even though in our 

experimental conditions, CNC did not show any signifi-

cant antimicrobial activity. In literature other molecules 

have been associated with CNC to improve its antimi-

crobial effectiveness: for example, CNC stabilized with 

ZnO–Ag exhibited greater bactericidal activity against 

Salmonella choleraesuis and Staphylococcus aureus com-

pared to cellulose-free ZnO–Ag heterostructure nano-

particles of the same particle size (Azizi et  al. 2013). 

Association of porphyrin (Feese et  al. 2011) and silver 

nanoparticles (Drogat et al. 2011).

Further studies should also be addressed in associating 

nitric oxide donors with nanoparticle composites with 

effective antibacterial and biofilm-disrupting properties. 

To that end several polymers can be used, for example 

silk fibroin–silver nanoparticle composite showed both 

an effective antibacterial activity against the methicillin-

resistant S. aureus and as inhibitor of biofilm formation 

(Fei et al. 2013).

�e mechanical and physical properties of the bio-

composites can also be interesting to study in asso-

ciation with nitric oxide donors. It is well known that 

bacterial adhesion was sensitive to surface roughness 

and enhanced as the roughness of composite in catheters 

surfaces (Cheng et al. 2013). For example Staphylococcus 

epidermidis adhesion and growth were markedly higher 

on rough titanium surfaces than on smooth surfaces 

(Cheng et al. 2013). Nitric oxide may help in fostering a 

better dispersion over these surfaces.

To our knowledge, this is the first study that shows 

the association of nitric oxide donors with CNC as a 

biofilm dispersant agent. Further studies can determine 

the association of other additives and further applica-

tions in foaming solution, in addition to testing different 

Figure 5 Nitric oxide release profiles of hydrogel-NONOate. Time 

0 represents injection of the CNC:NONOate hydrogel into a glass 

capillary. 10:1 represent a 10 times dilution of the MAHMA NONOate 

dissolved in CNC. Experiment has been replicated three times. The 

graph represents an average of the three experiments.
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hydrogels. �is, in turn, can implement new sustainable 

cleaning strategies by expanding the tool-kit of pro-active 

practices for “Good Agricultural Practices (GAPs), “Haz-

ard Analysis and Critical Control Point” (HACCP) and 

Cleaning-in-place protocols (CIP).
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