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Introduction

Infection with nontyphoidal Salmonella strains, such as Salmonella enterica serovar

Typhimurium (S. Typhimurium) commonly causes foodborne bacterial gastroenteritis.

Studies on the pathogenesis of S. Typhimurium infection often focus on bona fide virulence

factors. S. Typhimurium produces two distinct type III secretion systems that allow for the

delivery of a sophisticated repertoire of effector proteins into host cells. These type III secretion

systems are required for invasion of intestinal epithelial cells and subsequent replication inside

professional phagocytes in the lamina propria and in deeper tissues. In immunocompetent

individuals, detection of S. Typhimurium by the innate immune system results in a subacute,

neutrophilic inflammatory response that confines the infection to the intestinal tract. In

immunocompromised individuals, such as those with neutropenia, systemic dissemination

and replication can occur. While we understand key strategies of how S. Typhimurium causes

disease, we are only beginning to recognize the complex interplay of host and bacterial metab-

olism. Recent findings have revealed how S. Typhimurium adapts its diverse energy metabo-

lism to mirror host metabolism and limit nutrient competition in various host niches.

Intracellular Salmonella adapts its metabolism to M1- and

M2-polarized macrophages

In contrast to the self-limiting gastroenteritis observed in humans, S. Typhimurium establishes

a systemic chronic infection in most mouse strains. S. Typhimurium survives and replicates in

macrophages for weeks after infection, and the host immune system forms granulomas to con-

tain pathogen spread. Most S. Typhimurium–infected macrophages belong to the M2 subtype

[1,2] (Fig 1). M2 macrophages, commonly referred to as “anti-inflammatory” macrophages,

promote wound healing and inhibit inflammation by producing IL-10 (interleukin 10) and

TGF-β (transforming growth factor β) (reviewed in [3]). S. Typhimurium can also be found in

other M2-like macrophage subtypes, such as granuloma macrophages, which share many char-

acteristics with M2 macrophages but have distinct cell markers and functions [4]. Additionally,

S. Typhimurium infects hemophagocytic macrophages, macrophages that have ingested nona-

poptotic cells [5, 6]. Hemophagocytic macrophages express M2 markers and produce lower

levels of inducible nitric oxide synthase (iNOS) [7].

S. Typhimurium induces polarization of infected macrophages [8] (Fig 1). Delivery of the

bacterial effector SteE promotes a phenotypic switch to M2 polarization by driving noncanoni-

cal activation of STAT3 (Signal Transducer And Activator Of Transcription 3) signaling [8, 9].

SteE also induces a M2-like phenotype in infected granuloma macrophages [4]. This process is
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inhibited by TNFα (tumor necrosis factor α), which drives macrophage polarization toward

an antimicrobial phenotype with higher iNOS activity [4]. In a process dependent on Toll-like

receptor 4 (TLR4) signaling [6], S. Typhimurium also drives macrophages to increase hemo-

phagocytosis or consumption of erythrocytes (red blood cells) and leukocytes (white blood

cells) [5], creating a population of hemophagocytic macrophages with M2-like properties.

M2-type macrophages produce less antibacterial effector molecules, such as nitric oxide

(NO) and reactive oxygen species, making them more permissive for S. Typhimurium replica-

tion. However, macrophage differentiation not only changes the cell’s role in the immune

response, it also changes the cell’s metabolic program [3]. In persistently infected M2 macro-

phages, the transcription factor PPARδ (peroxisome proliferator-activated receptor δ) is acti-

vated [2]. PPARδ drives a lipid oxidation metabolism in the M2 macrophages, which results in

more glucose available in the cell [2]. S. Typhimurium in infected M2 macrophages uses this

glucose and other simple sugars to replicate [2, 10], presumably in a fermentative type of

metabolism (Fig 1). In each of these M2-like macrophages, intracellular S. Typhimurium engi-

neers a more permissive environment within its host macrophages with less exposure to anti-

microbials. At the same time, S. Typhimurium responds to the metabolic reprogramming that

accompanies polarization by relying on a glycolytic metabolism, while the macrophage uses

mostly β-oxidation [2, 10, 11].

Despite their antibacterial function, M1 macrophages can also provide a site for S. Typhi-

murium replication [12] (Fig 1). M1 macrophages, also known as “pro-inflammatory” macro-

phages, produce large quantities of antimicrobials, such as reactive nitrogen species [3]. In

contrast to M2 macrophages, M1 macrophages mainly carry out an anaerobic glycolytic

metabolism [3]. Instead of competing with the host for nutrients, S. Typhimurium responds to

Fig 1. Intracellular Salmonella adapts its metabolism to M1- and M2-polarized macrophages. M1-type macrophages perform anaerobic glycolysis to avoid diverting

oxygen from NADPH oxidase activity. Salmonella takes up fatty acids from the Salmonella-containing vacuole through the FadL transporter and degrades them

through β-oxidation. The type III secretion system effector SteE drives M2 polarization. M2-type macrophages perform an oxidative metabolism. Inside M2-type

macrophages, Salmonella utilizes sugars. Uptake of sugars is mediated by phosphotransferase systems (PtsG, ManXYZ) and possibly other transport systems.

https://doi.org/10.1371/journal.ppat.1008540.g001
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the host’s glycolytic metabolic program by oxidizing lipids [12]. Lipid transport, β-oxidation,

and glyoxylate shunt genes are required for S. Typhimurium to effectively replicate in M1 mac-

rophages and spread to systemic sites [12]. Though S. Typhimurium counteracts many of the

host’s defenses, exposure to NO in infected M1 macrophages still alters S. Typhimurium

metabolism. The tricarboxylic acid cycle (TCA) cycle relies on iron–sulfur cluster-containing

enzymes, which are very sensitive to damage by NO [13]. Diminished activity of these enzymes

results in a transient methionine and lysine auxotrophy due to decreased production of succi-

nyl-CoA, a metabolic intermediate in both the TCA cycle and amino acid biosynthesis [13].

Even within antimicrobial M1 macrophages, S. Typhimurium survives using its metabolic ver-

satility to mirror the host’s metabolic program.

S. Typhimurium utilizes inflammation-derived electron acceptors

and exploits host energy metabolism

The gut microbiota protects the intestinal lumen from invasion by enteric pathogens, a phenome-

non termed colonization resistance. To overcome colonization resistance, S. Typhimurium

induces mucosal inflammation. Inflammation changes nutrient availability in the large intestine,

thus allowing S. Typhimurium to outgrow the resident commensal microbiota and enhancing

host transmission by the fecal–oral route [14, 15]. Salmonella populations in the intestinal lumen

are heterogeneous [16]; a subpopulation invades the host mucosa and incites inflammation, while

a second population replicates in the lumen away from the frontlines of the immune system.

The intestinal epithelium constantly interacts with gut bacteria, both in homeostasis and

during enteric infection. These interactions include reciprocal metabolic pathways, where the

epithelium consumes metabolites produced by the microbes and vice versa (Fig 2). During

homeostasis, the microbiota consists mostly of obligate anaerobic bacteria from the orders Clos-

tridiales and Bacteroidales. Members of Clostridiales, particularly Clostridium groups IV and

XIVa, produce the short chain fatty acid butyrate [17] (Fig 2). Butyrate is the preferred carbon

source for colon epithelium, used as a substrate for β-oxidation [18]. β-oxidation consumes

most of the oxygen coming from the blood stream, maintaining physiological hypoxia in the gut

lumen, which is ideal for the obligate anaerobic microbiota [19, 20]. Salmonella-induced inflam-

mation depletes the butyrate-producing members of the microbiota [21] (Fig 2). In the absence

of butyrate, the host epithelium switches its metabolism to anaerobic lactate fermentation [18].

Since lactate fermentation does not consume oxygen, oxygen from the blood stream diffuses

into the gut lumen [19, 21]. S. Typhimurium, a facultative anaerobic bacterium, uses oxygen in

the inflamed gut to outgrow the commensal microbiota through respiration [21]. In addition to

more oxygen, the epithelial switch to lactate fermentation releases more lactate into gut lumen

[22]. S. Typhimurium uses this lactate as a carbon source with its L-lactate dehydrogenase

enzyme encoded by the gene lldD [22]. S. Typhimurium lactate utilization is coupled with oxy-

gen respiration [22]. In the example of lactate, S. Typhimurium exploits lactate and oxygen, the

products of an epithelial switch from respiration to fermentation, to feed its own respiratory

metabolism and consequently outgrow the commensal anaerobic microbiota.

Early during infection, Salmonella requires fumarate reductase activity, suggesting that S.

Typhimurium relies on a branched TCA cycle, in which the reductive branch assists with

maintaining redox homeostasis [23]. At later time points, S. Typhimurium capitalizes on prod-

ucts of the innate immune response during infection. The inflammatory response induced by

Salmonella involves transmigration of neutrophils into the gut lumen, where these immune

cells release reactive oxygen species and reactive nitrogen species (Fig 2). These species indis-

criminately react with host tissues, the resident microbiota, and metabolites available in the

gut lumen. These metabolites include thiosulfate (S2O3
2-), which is produced by the host
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epithelium to defuse the toxic microbiota byproduct hydrogen sulfide (H2S) [24, 25]. During

an oxidative burst, thiosulfate reacts with reactive oxygen species to produce tetrathionate

(S4O6
2-) [26]. Furthermore, reactive nitrogen species decay into nitrate. Both tetrathionate and

nitrate can be used by S. Typhimurium as an electron acceptor for anaerobic respiration [26,

27]. Respiration supports a full, oxidative TCA cycle [28] and the utilization of poorly ferment-

able carbon sources, such as succinate, lactate, 1,2 propanediol, and ethanolamine [22, 28–30].

In this example, S. Typhimurium uses its diverse respiratory metabolism to utilize inflamma-

tion-derived electron acceptors and to outcompete obligate anaerobic commensals.

Conclusions

During infection, S. Typhimurium faces obstacles ranging from the gut microbiota to the

immune system. Many aspects of Salmonella metabolism in the context of infection remain to

be elucidated. However, the current literature reveals a pattern of reciprocal metabolism

between S. Typhimurium and the host. S. Typhimurium uses its diverse metabolism to exploit

local nutrient niches, outgrow resident microbiota, and persist within professional phagocytes.
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