Hindawi

Journal of Computer Networks and Communications
Volume 2019, Article ID 1028723, 12 pages
https://doi.org/10.1155/2019/1028723

Research Article

Hindawi

Salp Swarm Algorithm for Node Localization in Wireless

Sensor Networks

Huthaifa M. Kanoosh,' Essam Halim Houssein (,2 and Mazen M. Selim’

Faculty of Computers and Informatics, Benha University, Banha, Egypt
2Faculty of Computers and Information, Minia University, Minya, Egypt

Correspondence should be addressed to Essam Halim Houssein; essam.halim@mu.edu.eg

Received 27 July 2018; Revised 6 January 2019; Accepted 21 January 2019; Published 19 February 2019

Guest Editor: Noradin Ghadimi

Copyright © 2019 Huthaifa M. Kanoosh et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Nodes localization in a wireless sensor network (WSN) aims for calculating the coordinates of unknown nodes with the assist of
known nodes. The performance of a WSN can be greatly affected by the localization accuracy. In this paper, a node localization
scheme is proposed based on a recent bioinspired algorithm called Salp Swarm Algorithm (SSA). The proposed algorithm is
compared to well-known optimization algorithms, namely, particle swarm optimization (PSO), Butterfly optimization algorithm
(BOA), firefly algorithm (FA), and grey wolf optimizer (GWO) under different WSN deployments. The simulation results show
that the proposed localization algorithm is better than the other algorithms in terms of mean localization error, computing time,

and the number of localized nodes.

1. Introduction

Wireless sensor networks (WSNs) are networks that consist
of a few autonomous sensor nodes that are distributed in a
specific area for cooperatively sensing their environment. In
the last decade, WSN's have been employed in many real-life
applications such as healthcare, home automation, traffic
surveillance, and environmental monitoring [1].

Accurate node localization is a critical issue in WSNs.
Localization problem in WSNs means calculating the po-
sitions of unknown sensor nodes. In many environments
where the sensor nodes of a WSN are deployed, people may
not be able to go and fix these nodes. In these environments,
the sensor nodes are usually randomly scattered in random
locations; therefore, the sensor nodes usually take random
positions. On the other hand, in many applications, the
information collected by the sensor nodes of a WSN may be
useless if the positions of the sensor nodes that gathered the
information are unknown. This emphasizes the need for an
accurate node localization scheme [2].

In order to localize the sensor nodes of a WSN, a GPS can
be attached to each sensor during the network deployment.

Then, the GPS can be used to find the coordinates of the
sensor nodes. However, using GPS for localizing sensor
nodes is undesirable and impractical solution because of
many reasons such as cost, inaccessibility, sensor nodes may
be deployed indoors, and climatic conditions may disturb
the GPS reception ability [2]. An alternative approach is to
attach GPS to some nodes which are called anchor nodes or
beacon nodes. Thus, the positions of these nodes with at-
tached GPS are known after deploying the nodes of the
wireless sensor network. Using the known locations of
anchor nodes, localization algorithms can be employed to
estimate the positions of the unknown nodes [2]. There are
two classes of non-GPS based localization algorithms,
namely, rang-free and range-based algorithms [3]. Angle-
based or point-to-point distance estimation among the
sensor nodes is used with rang-based localization algo-
rithms. In these algorithms, the positions of sensor nodes are
calculated by the assist of anchor’s trilateration [3]. Unlike
range-based localization algorithms, range-free localization
algorithms do not need range information to estimate the
positions of the unknown nodes. It only depends on the
topological information. Compared to range-free localization
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algorithms, range-based localization algorithms can achieve
higher localization accuracy but at the expense of cost [4].

Recently, node localization in WSNs is handled as a
multimodal and multidimensional optimization problem
that can be solved using population-based stochastic ap-
proaches. In the literature, many metaheuristic algorithms
have been employed to solve the localization problem in
WSNs. These algorithms have succeeded in reducing the
localization error dramatically. These algorithms attempt to
solve an optimization problem by trial and error in which
the feasible solutions are processed, and the nearest optimal
solution is identified. Currently, various optimization al-
gorithms such as genetic algorithm (GA), cuckoo search
(CS), gravitational search algorithm (GSA), butterfly opti-
mization algorithm (BOA), particle swarm optimization
(PSO), artificial bee colony (ABC), etc. have been employed
effectively in specifying the positions of the unknown nodes
in WSNs [5].

The main contribution of this paper is using the Salp
Swarm Algorithm (SSA) for the first time ever to localize the
nodes of WSNs. The performance of the proposed SSA-based
localization algorithm is analyzed and compared with particle
swarm optimization (PSO), butterfly optimization algorithm
(BOA), firefly algorithm (FA), and grey wolf optimizer
(GWO) algorithms. The results have shown that the SSA-
based localization algorithm is better than the previously
mentioned localization algorithms in terms of computing
time, number of localized nodes, and localization accuracy.

The remaining sections of the paper are organized as
follows: Section 2 covers some of the research efforts which
have been done in the field. Section 3 presents a brief de-
scription for the different swam algorithms employed in this
work. Section 4 introduces the proposed SSA-based local-
ization algorithm. Section 5 includes the conducted ex-
periments and results analysis. Finally, the paper is
concluded in Section 6.

2. Literature Review

In the last years, many optimization algorithms have been
employed for addressing the problem of node localization in
WSNs [6]. In this section, some of the recent relevant works
are covered and briefly described.

Low et al. have introduced a low-cost localization system
that depends on the measurements obtained from a pe-
dometer and communication ranging among adjacent
nodes. The proposed system does not require good network
connectivity and presents good performance in sparse
networks. A probability-based algorithm that needs a
nonlinear optimization problem solving is employed to
provide the localization information. Moreover, the particle
swarm optimization (PSO) has been employed to determine
the optimum location of the sensor nodes. Experimental
results have proved that the proposed system has a good
performance [7].

Manjarres et al. have presented a hybrid node locali-
zation algorithm based on Harmony Search (HS) algorithm
with a local search procedure. The main objective of the
proposed algorithm is to address the localization problem
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and to distribute its burdens over an iterative process.
Additionally, the proposed algorithm employs certain
connectivity-based geometrical constraints to decrease the
area in which each node can be located. The simulation
results have verified that the proposed algorithm is better
than another simulated annealing- (SA-) based localization
algorithm in terms of both localization error and compu-
tational cost [8].

Li et al. have suggested a self-adaptive artificial bee
colony (SAABC) node localization algorithm that considers
the whole effects resulting from employing dynamic to-
pology. The proposed algorithm provides good performance
in WSN’s with both random distributing nodes and dynamic
topology. Additionally, the obtained simulation results have
shown that the proposed localization algorithm provides
better node localization precision and precision stability
compared to the DV-Hop algorithm without the need for
extra devices or overhead in communication [9].

Tamizharasi et al. have proposed a novel hybrid node
localization algorithm based on bacterial foraging algo-
rithm (BFA) and particle swarm optimization (PSO). The
main design objectives of the proposed algorithm are to
enhance the efficiency and accuracy of BFA and to avoid
getting stuck in a local extreme. In the proposed algorithm,
PSO is merged into the chemotaxis of BFA to speed up the
convergence rate. Moreover, the global search ability is
improved by proposing the elimination probability in
elimination-dispersion based on the energy of bacteria. The
obtained simulation results have verified that the proposed
hybrid algorithm outperforms the BFA [10].

Tang et al. have proposed a sensor nodes localization
algorithm, which depends on a new intelligent optimiza-
tion algorithm called plant growth simulation algorithm
(PGSA) that simulates the growth of plants. In their work,
they proposed inserting the plant root of adaptive backlight
function into the original PGSA for improving conver-
gence time and localization precision. The obtained sim-
ulation results have verified that the proposed algorithm is
better than the simulated annealing algorithm (SAA) in
terms of localization accuracy and computing time [11].

Jegede and Ferens have employed the genetic algo-
rithm (GA) for learning the environmental issues within a
WSN for effectively localizing its sensor nodes. For every
coordinate in the grid network area, given random per-
turbations of received signal strength (RSS), GA would be
able to learn the environment and to decrease the possible
errors associated with the RSSI measurement taken for
each coordinate. The conducted simulation shows that GA
can reasonably localize sensor nodes using the co-
ordinates of three anchors [12].

Goyal and Patterh have proposed a cuckoo search-
(CS-) based node localization algorithm for estimating the
coordinates of sensor nodes in WSNs. In the proposed
algorithm, no weight coeflicient is employed for con-
trolling the global search ability. The conducted simula-
tion has shown that the proposed localization algorithm is
better than the particle swarm optimization (PSO) and
various variants of biogeography-based optimization
(BBO) in terms of localization accuracy [13].
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Dan and Xian-bin have presented a distributed two-
phase PSO algorithm for efficiently and precisely localizing
the sensor nodes in addition to solving the flip ambiguity
problem. In the first phase, the initial search space is defined
using the bounding box method. In the second phase, a
refinement process is performed for correcting the error
resulting from the flip ambiguity. Additionally, the proposed
algorithm attempted localizing sensor nodes that have only
two references or three near-collinear references. The
conducted simulation has proved the effectiveness of the
proposed algorithm [14].

Krishnaprabha and Gopakumar have proposed a node
localization algorithm based on gravitational search algo-
rithm (GSA). In the proposed work, node localization in
WSNs is formulated as a nonlinear optimization problem.
Also, the proposed algorithm tried to handle the flip am-
biguity problem and to localize the sensor nodes that col-
linear anchor nodes through the refinement phase. The
obtained simulation results have shown that the proposed
localization algorithm has good performance [15].

Peng and Li have focused on range-free localization as a
cost-effective alternative compared to range-based ap-
proaches. However, they noticed that range-free localization
suffers from higher localization error compared to the range-
based algorithms. In order to deal with this problem, they
presented an improved version for DV-Hop, which is a
popular rang-free approach that depends on hop-distance
estimation. The improvement in the DV-Hop algorithm is
performed based on a genetic algorithm. Simulation results
have shown that the proposed localization algorithm has
better localization accuracy compared to other localization
algorithms [16].

Sai et al. have presented a hybrid node localization
algorithm in WSNs, which depends on the measurements
of the received signal strength (RSS) and parallel firefly
algorithm (PFA). Taking into consideration the distance
factor, the proposed algorithm transforms the node lo-
calization problem in WSN into a nonlinear un-
constrained optimization problem that is defined by an
enhanced objective function. In the proposed algorithm,
PFA estimates the coordinates of sensor nodes using the
distances between a sensor and a few numbers of its 1-hop
neighbors. Simulation results have shown that the pro-
posed approach is better than PSO, GA, PFA, and RSS in
terms of localization accuracy [17].

Sivakumar and Venkatesan have provided two-phase
node localization algorithm in WSNs. In the first phase, the
positions of sensor nodes are roughly estimated using a
range-free localization method called mobile anchor po-
sitioning (MAP). In the second phase, the proposed al-
gorithm attempts to reduce the localization error by
employing a certain metaheuristic approach. In their work,
to perform the second phase, they employed bat optimi-
zation algorithm (BOA), modified cuckoo search (MCS),
and firefly optimization algorithm (FOA) resulting in three
localization algorithms namely, BOA-MAP, MCS-MAP,
and FOA-MAP. The experimental results have shown
that FOA-MAP is better than both BOA-MAP and MCS-
MAP in terms of root mean square error (RMSE) [18].

Sun et al. have proposed a multiobjective node locali-
zation algorithm based on multiobjective particle swarm
optimization, called multiobjective particle swarm optimi-
zation localization algorithm (MOPSOLA). The multi-
objective functions include the space distance and the
geometric topology constraints. In the proposed algorithm,
the size of the archive remains limited using a dynamic
method. Simulation results have shown that the proposed
algorithm has achieved significant enhancements in terms of
localization accuracy and convergence rate [19].

Arsic et al. have proposed a node localization algorithm
based on fireworks algorithm (FWA). The proposed al-
gorithm provides optimal results in case of no ranging
errors and provides good results in case of ranging errors.
Moreover, they proposed an enhanced fireworks algorithm
(EFWA), which achieved better results compared to FWA.
Also, the proposed localization algorithm outperforms the
existing PSO-based localization algorithm [20].

Shieh et al. have compared several well-known heuristics
such as genetic algorithm (GA) and particle swarm opti-
mization (PSO) to more recent methods such as grey wolf
optimizer (GWO), firefly algorithm (FA), and brain storm
optimization (BSO) algorithms in terms of sensor nodes
localization accuracy. Also, they proposed an enhancement
in the localization algorithms to increase the number of
localized nodes. The improved algorithms have been com-
pared to the original ones in terms of the number of localized
nodes and execution time in different network deployments
[21].

Cheng and Xia have proposed a cuckoo search (CS)
algorithm-based node localization algorithm. In the
proposed method, the step size has been modified to
obtain a global optimal solution in a short time. Also, the
candidate solutions’ fitness is used for constructing mu-
tation probability to avoid local convergence. The per-
formance of the proposed algorithm has been evaluated
using different anchor density, node density, and com-
munication range in terms of average localization error
and localization success ratio. The simulation results have
proved that the proposed algorithm is better than the
standard CS and PSO in terms of average localization
error and convergence time [22].

Daely and Shin have proposed a node localization
algorithm based on dragonfly algorithm (DA) optimiza-
tion algorithm. The proposed localization algorithm was
designed to determine the positions of the nodes which
are randomly distributed in a specific area. The simulation
results proved that the proposed DA based algorithm is
better than PSO in terms of localization accuracy [23].

Nguyen et al. have employed the multiobjective firefly
algorithm to estimate the coordinates of sensor nodes in
WSNs. The used objective functions depend on two criteria,
namely, the nodes’ distance constraint and geometric to-
pology constraint. The simulation results have shown the
superiority of the proposed algorithm compared to well-
known localization methods in terms of localization accu-
racy and convergence rate [24].

Arora and Singh have used the butterfly optimization
algorithm to localize the sensor nodes in WSNs. The



proposed localization algorithm has been validated using
different numbers of nodes with distance measurements
corrupted through the Gaussian noise. The simulation re-
sults have shown that the proposed localization algorithm is
better than several well-known localization algorithms in-
cluding particle swarm optimization (PSO) and firefly al-
gorithm (FA) in terms of localization accuracy [25].

Ahmed et al. have presented a node localization algo-
rithm based on whale optimization algorithm (WOA) whose
main objective is to localize sensor nodes in WSNs accu-
rately [6]. Also, Sujatha and Siddappa have proposed a
hybrid localization algorithm based on dynamic weight
particle swarm (DWPSO) and differential evolution (DE)
algorithms. The authors observed that decreasing the square
error of estimated and measured distance can improve the
localization accuracy. The obtained simulation results
proved that the proposed localization algorithm is better
than the linearization method (LM) in terms of localization
accuracy and performance stability [26].

Kaur and Arora have compared the performance of
several bioinspired algorithms including flower pollination
algorithm (FPA), firefly algorithm (FA), grey wolf optimi-
zation (GWO) and particle swarm optimization (PSO) in
localizing the sensor nodes of WSNs. The performance of the
different algorithms has been evaluated in terms of several
performance metrics including localization accuracy,
computing time, and several localized nodes. The simulation
results have shown the superiority of FPA compared to the
other algorithms in terms of localization accuracy [27].

To the best of our knowledge, the Salp Swarm Algorithm
(SSA) algorithm was never used for the localization problem
in WSNss so far. Therefore, the main objective of this paper is
to employ the SSA algorithm for handling the localization
problem in WSNss and is to evaluate its performance against
several well-known swarm intelligence algorithms. The basic
ideas behind the SSA and other swarm algorithms are given
in the next section.

3. Swarm Intelligence Algorithms

Swarm intelligence (SI) is a relatively new interdisciplinary
field of research, which has gained huge popularity in these
days. Algorithms belonging to this domain draw inspiration
from the collective intelligence emerging from the behavior
of a group of social insects (like bees, termites, and wasps). It
has successfully been applied to several real-world optimi-
zation problems [28-30]. In this section, we review some of
these algorithms that are employed in this paper in order to
localize the nodes of WSNs.

3.1. Particle Swarm Optimization. Particle swarm optimi-
zation (PSO) is a swarm optimization algorithm proposed by
Eberhart and Kennedy in 1995. It is inspired by the collective
behavior of bird flocking and fish schooling. It employs
several particles that simulate a swarm population moving
around in the search space to find the best solution. Each
particle provides a candidate solution for the problem and is
usually represented as a point in D-dimensional space. The
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position of each particle is represented as a vector
x; = (X, - Xip ...+ X; p). Particles move in the search space
to find optimal solutions, and each particle has a velocity
represented as a vector v; = (v;; -V -...- V;p). During
movement, the position of each particle is updated based on
the best position that has been achieved by the particle itself
(pbest) and the best position that has been achieved by all the
particles so far (gbest). The velocity and the position of each
particle are updated as shown below [31]:

A= i m

t+1 t t t
Vig =WHVigtep*r* (Pid _xid) TOy xRy * (Pgd _xid)’

(2)

where t refers to the iteration number, w is inertia weight
that aims at determining the effect of previous velocities on
current velocity, ¢; and c, are acceleration constants, r;, and
r, are random variables whose values are normally dis-
tributed in [0, 1], and p;q and p,y indicate the elements of
pbest and gbest in the d® dimension, respectively. The ve-
locity is limited by a predefined maximum velocity v

max*

3.2. Butterfly Optimization Algorithm. Butterfly optimiza-
tion algorithm (BOA) is a swarm intelligence algorithm that
is recently proposed by Arora and Singh [32]. It is inspired
from the food-foraging behavior of butterflies. Biologically,
butterflies find the source of food using sense receptors. The
role of these sense receptors, also called chemoreceptors, is
to sense fragrance/smell [33].

In BOA, butterflies are the search agents that perform
optimization. Each butterfly emits fragrance with some in-
tensity. This fragrance is propagated and sensed by other
butterflies in the region. The fragrance emitted by butterfly is
correlated with the butterfly’s fitness. This means that the
fragrance of a butterfly changes according to its current lo-
cation [32]. When a butterfly is able to sense fragrance from
any other butterfly that is larger than its fragrance, it will move
toward the latter, and this phase is called global search. On the
other side, when a butterfly cannot sense fragrance from other
butterflies that is larger than its local fragrance, it will move
randomly, and this phase is called local search [34]. In BOA,
the fragrance is defined as a function of the physical intensity
of stimulus [34] as shown below:

fi=cl%, (3)

where f; is the perceived magnitude of fragrance, c is the
sensory modality, I is the stimulus intensity, and a is the
power exponent dependent on modality, which accounts
varying degree of absorption. As mentioned before, there are
two phases in the BOA algorithm, namely, local search phase
and global search phase. In global search phase, the butterfly
moves one step toward the best butterfly/solution g* which
can be formulated as

X =xi+(rf x gt - xi) % £, (4)

where x! is the solution vector x; of i butterfly in iteration
number ¢, g* is the best solution found in the current stage,
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£ is the fragrance of i butterfly, and  is a random number
in [0, 1]. Local search phase is formulated as

t+1 t 2 t t
X; :xi+(r xxk—xj)xfi, (5)

where x* and x} are j™ and k' butterflies chosen randomly
from the solution space. Equation (5) is considered a local
random walk if and only if x’ and x] belongs to the same
subswarm, and r is a random number in [0, 1]. Search for
food and mating partner by butterflies can occur at both
local and global scale; therefore, a switch probability p is
employed in BOA to switch between common global search
and intensive local search.

3.3. Firefly Algorithm. Firefly algorithm (FA) is a nature-
inspired algorithm proposed by Yang and He [35]. It mimics
the social behaviors and flashing patterns of fireflies. FA
depends on the next three idealized rules [36]:

(i) Fireflies are unisex which means that a firefly can get
attracted to any other firefly regardless their sex.

(ii) The attractiveness of fireflies is directly proportional
to their brightness. Thus, for any two flashing
fireflies, the firefly with less brightness moves to-
ward the one with higher brightness. If there is no a
brighter firefly than a particular firefly, the latter
moves randomly.

(iii) The brightness of a firefly is calculated using an
objective function.

A firefly’s attractiveness is proportional to the light in-
tensity visualized by other fireflies in the region; therefore,
the relationship between the attractiveness  and the dis-
tance r can be formulated as

B=Pe, (6)

where f3, is the brightness at distance r = 0 and y is the light
absorption coefficient. The movement of a firefly i toward a
more attractive (brighter) firefly j is represented as

t+1 £

ot —yri;
x; = x; + e J(x-—

; i xf) + a6, (7)

where 7;; is the distance between the fireflies i and j that is
calculated using the Euclidean norm, the second term is due
to the attraction, the third term is a randomization with «,
being the randomization parameter, and €/ is a vector that
includes random numbers.

3.4. Grey Wolf Optimizer. Grey wolf optimizer (GWO) is a
recent swarm intelligence algorithm inspired by the grey
wolf community. It is developed by Mirjalili et al. in 2014.
Grey wolf is a very dangerous creature which belongs to the
Canidae family. Grey wolves usually live in packs that consist
of 5 to 12 wolves. Each group has social dominance hier-
archy: alpha, beta, and omega, in order. The alphas are a
male and female which represent the leaders of the group.
The betas are the second level of management hierarchy. The
omegas are the final level in the hierarchy [37].

In order to mathematically model the social hierarchy of
wolves in GWO, the fittest solution is referred to as the alpha
(a). Consequently, the second and third best solutions are
beta (ff) and delta (), respectively. The rest of candidate
solutions are omega (w) [35]. The mathematical model of the
encircling behavior is represented as follows [35]:

D =[C.Xp ()-X ), "
X(t+1)=|Xp(t)- A.Dl,

N
where t indicates the current iteration, C =2.7,,
A =2d.7v,-d, Xmis the position vector of the wolf, 7,
and r, are random vectors in [0, 1] and linearly varies from 2
to 1, C and A are coeflicient vectors, and X p is the position
vector of the prey. During the optimization, w wolves update
their positions around a.f. and J. Therefore, the w wolves
can reposition with respect to «, f3, and § as shown below
[35]:

Da=|C,Xa- X|Dp=|C,Xp-X|Ds
=|¢,Xe- X|,
X1 = 7504_2’1 (I_D)a).y()z = Yﬁ—zz-(ﬁﬁ)-jé
= X6-A,.(D9),
— — —
X(t+1)= X1+X32+X3

(9)

With these equations, a search agent updates its position
according to a. 3. and d in an n-dimensional search space. In
addition, the final position would be in a random place
within a circle which is defined by the positions of a.5. and §
in the search space [37].

3.5. Salp Swarm Algorithm. Salps are part of Salpidae family
with the limpid cylinder design body. They look like jelly-
fishes in texture and movement. The shape of a Salp is shown
in Figure 1(a). The water is pushed Salps bodies to move
forward [38]. Generally, the biological research about Salps
is still in its early stages because their living environments
are hardly accessible, and it is very difficult to keep them in
laboratory environment. Salps swarming attitude is the main
inspiration to build Salp swarm algorithm [39]. Salps
compose a swarm in profound oceans which is called Salp
chain. This chain is illustrated in Figure 1(b). This chain can
help to achieve better locomotion during the foraging
process [40].

Originally, the Salps population is divided into two
groups to formulate the mathematical model for Salp chains:
head and followers. The head position is at the beginning of
the chain while the rest of the chain is referred to as the
followers [41].

The Salps location is determined likewise swarm-based
methods, by an n-dimensional search area via considering
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FIGURE 1: (a) Individual Salp. (b) Salps chain [37].

the number of variables inside the presented problem
represented by n. Accordingly, a two-dimensional matrix
described as x will reservation the position of all Salps. It is
supposed too, in search space, there is “F” which is a food
source as the target of the swarm. The following equation is
suggested to upgrade the leader location [37]:

o E +¢,((ub; =1b;)e, +1b;), c520, 10
! Fj—cl((ubj—lbj)c2+lbj), c; <0,

where x} shows the position of the first Salp (leader) in

the jth dimension, F i is the position of the food source in the

j™ dimension, ub; indicates the upper bound of j di-

mension, Ib; indicates the lower bound of j™ dimension, and

€1 » Cipes » and c5 are random numbers.

Equation (10) shows that the leader only updates its
position with respect to the food source. The coefficient ¢, is
the most important parameter in SSA because it balances
exploration and exploitation defined as follows [37]:

2
¢, = 2¢” W (11)

where [ is the current iteration and L is the maximum
number of iterations.

The parameters ¢, and c; are random numbers uni-
formly generated in the interval of [0, 1]. In fact, they dictate
if the next position in j® dimension should be towards
positive infinity or negative infinity as well as the step size. To
update the position of the followers, the following equations
is utilized (Newton’s law of motion) [37]:

X = %at2 + vot, (12)
where i >2, x’. shows the position of it follower Salp in jth
dimension, tf is time, v, is the initial speed, and a = v, /v,
where v = x — x,/t.

Because the time in optimization is an iteration, the
discrepancy between iterations is equal to 1 and considering
vy = 0, this equation can be expressed as follows [37]:

i Lo i
szz(xj+xj ), (13)
where i >2 and x shows the position of i follower Salp in
jth dimension. Using equations (1) and (4), the Salp chains
can be simulated. Figure 2 shows the pseudocode to im-
plement the SSA algorithm.

4. Formulation of WSN Localization Problem

WSN node localization problem is formulated using the
single hop range-based distribution technique to estimate
the position of the unknown node coordinates (X, Y) with
the aid of anchor nodes (position of known nodes) co-
ordinates (x, y). Anchor nodes are provided with a GPS
device, so it has the capability of automatically determining
its position. Most of the nodes in the WSN are not equipped
with GPS due to high cost. To measure the coordinates of N
unknown nodes, the procedure followed is given below.

Step 1. Randomly initialize the N unknown nodes and M
anchor nodes within the communication range (R). Anchor
nodes measure their position and communicate their co-
ordinates to their neighbors. For all iterations, the node
which settles at the end is termed as the reference node, and
this node will act as anchor node.

Step 2. Three or more anchor nodes within the commu-
nication range of a node are considered as a localized node.

Step 3. Let (x, y) be the coordinates of the target node to be
determined and d; be the distance between the target node
and the /™ anchor node.

d; = \/(’C_xi)2 + ()’_)’i)z- (14)

Step 4. 'The optimization problem is formulated to minimize
the error of the localization problem. The objective function
for the localization problem is formulated as
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Initialize the Salp population x; (i = 1, 2, ..., n) considering u;, and [,
While (end condition is not satisfied)

F = the best search agent
Update ¢; by equation (2)
For each Salp (x;)
If(i==1)

Else

End
End

End
Return F

Calculate the fitness of each search agent (salp)

Update the position of the leading Salp by equation (1)

Update the position of the follower Salp by equation (4)

Amend the Salps based on the upper and lower bounds of variables

FIGURE 2: Pseudocode of the SSA algorithm.

f(x,y) =min 2(\/(x— xi)2+(y_yi)2>2 . (15)

where M is the anchor nodes within the transmission range
(R) of the target node.

Step 5. All target localized nodes (Ny) are determined, the
whole localization error is calculated as the mean of the
square of distances of the estimated coordinates node (x;, y;)
and the actual node coordinates (X, Y;), fori=1, 2, ..., Ni:

B (VX 6ory ) a9

The performance of SSA algorithm evaluated using Ej,
and the number of nonlocalized nodes Ny;, where
Ny = [N- NI

Step 6. Repeat the steps 2-5 until all unknown/target nodes
get localized or no more nodes can be localized.

5. Experimental Analysis

In this section, the proposed WSN localization approach is
evaluated under different scenarios, and its performance is
compared to four other swarm-based algorithms (PSO,
BOA, FA, and GWO) in terms of localization accuracy and
computing time. The computations of the different algo-
rithms are performed using MATLAB R2012b on a machine
of Intel Core i7 CPU, 4 GB RAM, and Windows7 operating
system. The parameters’ values of the deployment area are
shown in Table 1.

For BOA, the sensory modality c is set 0.01, whereas
the initial value of power exponent a is set to 0.1 [25]. For
PSO, initial values of w=0.7 and ¢, =c, = 1.494 were rec-
ommended for faster convergence after experimental tests
[25]. For FA, the randomization parameter « is set to 0.25,
the absorption coefficient y is set to 1.0, and the initial

TABLE 1: Parameters setting of simulation environment.

Parameters Values

Sensor nodes
Anchor nodes

. 6 .
Varies on Y, ,i %25
Varies on increment i =i + 5

Node transmission range (R) 30m
Deployment area 100m x 100 m
Maximum number of iterations 100

attractiveness parameter f3 is set to 1. For GWO, the pa-
rameter a linearly decreases in the interval of [2 to 0] and the
C parameter linearly increases from 0 to 2 [6]. Finally, for
SSA, ¢, is calculated using equation (2), whereas ¢, = 0.7 and
¢; = 0.3 and ¢,, ¢; are random numbers uniformly generated
from the interval [0, 1].

5.1. Sensor Nodes Localization Using SSA. In all conducted
experiments, the coordinates of central nodes (N) and
destination nodes (M) are randomly configured during the
construction of the deployment area. The deployment area
includes three types of nodes: anchor nodes whose known
position, target nodes whose unknown position, and lo-
calized nodes whose positions are already estimated. In this
section, the performance of the SSA-based localization al-
gorithm is evaluated under different scenarios using dif-
ferent numbers of target nodes and different numbers of
anchors as shown in Figure 3.

5.2. Comparison among Different Localization Algorithms.
In this section, SSA and the other swarm algorithms have
been evaluated under different scenarios in terms of local-
ization error, computing time, and number of localized
nodes. The obtained results of the different algorithms are
shown in Table 2.

Under the different scenarios (number of nodes/number
of anchors), it is noticed that for all the localization algo-
rithms, increasing the number of iterations increases both of
the number of localized nodes and the computing time while
reduces the localization error. This notice is rational because
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FiGure 3: Node localization using different numbers of target nodes and anchor nodes. (a) Target nodes = 25; anchor nodes = 10. (b) Target
nodes = 50; anchor nodes = 15. (c) Target nodes = 75; anchor nodes = 20. (d) Target nodes = 100; anchor nodes = 25. (e) Target nodes = 125;

anchor nodes =30. (f) Target nodes = 150; anchor nodes = 35.

increasing the number of iterations means higher amounts
of computations, which requires longer computation time.
On the other side, increasing the number of iterations means
that the chance to find a better solution get bigger; hence, the
number of localized nodes get larger and the value of lo-
calization error get smaller. For better results analysis, the
experimental results are summarized in Table 3.

Based on Table 3, regarding the mean localization error
(Ep), there is no clear pattern that can be detected to rep-
resent the relationship between this performance metric and
the number of target nodes and anchor nodes. However, it is
noticed that SSA has the best results regarding this per-
formance metric compared to PSO, BOA, FA, and GWO,
particularly, when the numbers of target nodes and anchor
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TaBLE 2: Performance metrics of different localization algorithms.
Target Anchor No. of PSO BOA FA GWO SSA
nodes nodes iterations  E;(m) T(s) Ny Ei(m) T(s) Ny E(m) T(s) Ny E(m) T(s) Ny Ey(m) T(s) Ny
25 0.818 0.40 16 0.232 0.37 22 0265 0.6 19 0.744 022 20 0.465 035 22
25 10 50 0.812 0.40 15 0.225 038 23 0262 12 20 0.741 041 21 0462 0.35 23
75 0.803 0.41 18 0.223 039 25 0.258 1.5 21 0.741 054 21 0.458 036 23
100 0.792 041 18 0.221 040 25 0251 1.8 19 0.740 0.79 23 0451 0.37 24
25 0419 0.71 41 0.338 0.84 47 0477 16 46 0.690 0.42 44 0477 0.67 43
50 15 50 0426 0.73 47 0.332 085 48 0473 19 49 0.688 0.63 45 0472 0.69 47
75 0429 0.76 46 0.326 086 49 0465 25 49 0.686 0.81 46 0.468 0.69 48
100 0.434 0.76 48 0.323 0.86 49 0465 3.5 48 0.682 098 48 0464 0.70 50
25 0.735 1.31 73 0.257 149 66 0519 29 71 0641 072 72 0519 090 69
75 20 50 0.728 132 74 0.257 149 66 0513 3.8 72 0.641 095 72 0513 092 72
75 0.728 133 74 0.255 150 70 0.504 47 73 0.638 13 73 0.504 095 73
100 0.724 135 75 0.253 152 72 0503 52 73 0.635 14 74 0.503 096 75
25 0.661 210 97 0355 240 97 0711 38 98 0.611 11 95 0511 131 98
100 25 50 0.658 216 97 0355 244 99 0.709 42 98 0.606 1.5 97 0.509 1.33 98
75 0.642 217 99 0.333 247 100 0.702 56 99 0.602 1.8 98 0502 136 99
100 0.641 2.20 100 0.331 2.50 100 0.704 6.3 98 0.602 2.1 98 0.504 1.37 100
25 0.754 4.87 120 0.549 3.84 122 0.829 2.7 122 0.589 1.5 122 0.529 1.67 123
125 30 50 0.748 4.86 121 0.548 3.85 123 0.824 4.5 123 0.580 2.2 123 0.524 1.68 124
75 0.750 4.89 122 0.534 3.86 124 0.822 59 125 0.580 2.8 123 0.522 1.70 125
100 0.752 495 125 0.534 3.89 124 0.822 6.5 124 0.572 3.3 125 0.522 1.72 125
25 0.625 541 145 0.766 5.88 147 0911 2.5 149 0.559 2.8 148 0.511 2.12 149
150 35 50 0.622 5.42 146 0.765 5.61 148 0.909 4.2 150 0.547 3.6 149 0.509 2.14 149
75 0.619 5.44 148 0.763 5.64 149 0904 6.4 150 0.523 4.3 150 0.504 2.16 150
100 0.616 5.45 150 0.763 5.69 149 0904 7.2 149 0.523 4.8 150 0.504 2.18 150
TaBLE 3: Summary of experimental results of the different localization algorithms.
PSO BOA FA GWO SSA
Target nodes Anchor nodes
E(m) T(s) Np Ey(m) T(s) Ny Ey(m) T(s) Ny E(m) T(s) Ny Ei(m) T(s) Np
25 10 0.79 040 18 022 038 25 0.25 1.8 19 0.74 054 21 045 035 24
50 15 043 0.76 46 032  0.86 49 0.42 25 49 0.69 0.81 46 046 0.69 48
75 20 072 135 75 025 152 68 0.51 47 73 0.64 095 72 050 096 73
100 25 0.65 216 100 035 245 100 0.70 53 98 0.60 21 98 0.51 1.35 100
125 30 0.74 490 123 054 387 124 0.82 6.5 124 0.58 2.8 123 052 1.70 125
150 35 062 543 149 076 565 149 090 72 149 052 43 150 050 215 150

nodes are increased. Regarding the computing time, it is
noticed that increasing the number of target nodes and
anchor nodes increase the computing time for all local-
ization algorithms. However, once again, SSA has the best
computing time compared to PSO, BOA, FA, and GWO.
Finally, regarding the number of localized nodes (Np), it is
noticed that SSA has the best results compared to other
localization algorithms. In addition, it is noticed that SSA
has inferior E; when the percentage of (number of anchor
nodes/number of target nodes) becomes larger such as
(10/25) in the first case in Table 3. That is because the
localization accuracy increases when the anchor density
increases with respect to the number of the target nodes
[25].

The graphical representations of the experimental
results for the different performance metrics are shown in
Figures 4-6.

6. Conclusion

Accurate node localization concerns many applications that
adopt WSN:ss. In this paper, a node localization algorithm has
been proposed based on a novel bioinspired algorithm called
Salp Swarm Algorithm (SSA) which handled the node lo-
calization problem as an optimization problem. The proposed
algorithm has been implemented and validated in different
WSN deployments using different numbers of target nodes
and anchor nodes. Moreover, the proposed algorithm has
been evaluated and compared to four well-known optimi-
zation algorithms, namely PSO, BOA, FA, and GWO, in
terms of localization accuracy, computing time, and several
localized nodes. The obtained simulation results have proved
the superiority of the proposed algorithm compared to the
other localization algorithms regarding the different perfor-
mance metrics. In the future work, the proposed approach
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FIGURE 4: The localization error of the different localization algorithms in different WSN deployments.
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FIGURE 5: The computing time of the different localization algorithms in different WSN deployments.
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FIGURE 6: The number of localized nodes of the different localization algorithms in different WSN deployments.
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can be hybridized with other algorithm to reduce the local-
ization error.

Data Availability

No data were used to support this study. Because our article
discusses the problem of localization in WSNs, our exper-
imental results have been applied based on several networks’
size.
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