
SALSA: A Framework for Dynamic Configuration

of Cloud Services

Duc-Hung Le, Hong-Linh Truong, Georgiana Copil, Stefan Nastic and Schahram Dustdar

Distributed Systems Group, Vienna University of Technology

E-mail: {d.le,truong,e.copil,s.nastic,dustdar}@dsg.tuwien.ac.at

Abstract—Contemporary cloud services are constructed from
different types of software and deployed on multiple cloud
infrastructures, which offer various configuration options, and
can change dynamically at runtime. Due to this complexity, such
cloud services require substantial configuration efforts. Currently
we lack techniques for automating the complex tasks and provid-
ing fine-grained configuration features for multi-cloud services. In
this paper, we present a novel multi-level configuration approach
for complex cloud services on multi-cloud environments. We
develop techniques for automating configuration orchestration
activities. Our solution enables the fine-grained configuration at
different application abstraction levels and supports the dynamic
change of cloud services at runtime. We provide the SALSA
framework to implement our approach and demonstrate its
usefulness with several real-world services.

Keywords-Dynamic configuration, runtime management, mul-
tiple clouds, cloud computing, framework

I. INTRODUCTION

Because cloud services are composed of components of

various types, such as middleware services, containers and

application-specific libraries, which are deployed on different

types of cloud resources, the configuration and deployment

of such cloud services require substantial efforts. In practices,

it is possible to combine different tools (e.g. Chef [1] and

SlipStream [2]) to accomplish complex configuration tasks,

but it is difficult to automate the whole service configuration

that deals with various types of artifacts and services.

Two types of users1 would face above mentioned challenges.

First, service controllers [3] [4], which control the dynamic

changes of cloud services require mechanisms to bring the

cloud services to the desired configurations. In order to provide

more controlling abilities, the controllers need to perform

complex configuration actions, which deal with different types

of services. Second, cloud service developers or providers

need coarse-grained configuration capabilities as they do not

want to deal with underlying complex configuration tasks, such

as dependencies resolving, cloud resources provisioning and

deploying common components. This is difficult to achieve

because of the dynamic and diverse nature of multi-cloud

environments.

This work was supported by the European Commission in terms of the
CELAR FP7 project (FP7-ICT-2011-8 #317790). The authors would like to
thank Alessio Gambi, Daniel Moldovan, Oliver Moser and Tien Dung Nguyen
for their fruitful insights.

1In this paper, we refer users as the service providers and cloud service
controllers who use SALSA framework.

There are contemporary tools to support configuration tasks,

such as SlipStream [2] and Google Cloud Deployment Man-

ager [5] for declaring and deploying virtual machine-based

environments, or Chef [1] and Puppet [6] for supporting

artifact configuration. Research frameworks [7]–[10] have

also been proposed for addressing the configuration problem.

However, these solutions do not provide a full view of dynamic

configuration of the complex cloud services, thus automating

the configuration tasks is complex for both types of users.

This paper introduces a framework for configuration orches-

tration of cloud services with the following contributions:

• A model for providing the configuration capabilities on

different application levels and deployment stacks. It

supports the configuration on multiple granularities of

cloud service structure and for different kinds of services.

• A service for configuring distributed services in which

relationships between service units are complex, provid-

ing a full view of the cloud service and centralizing

configuration functionalities.

We have implemented SALSA, the prototype of our frame-

work for dynamic configuration functionalities. We show how

our solution can simplify and enhance the configuration pro-

cess of complex cloud services at runtime on multiple cloud

infrastructures.

The remaining of the paper is organized as follows. Sec-

tion 2 presents our motivation based on a real world example.

Section 3 describes the multi-level configuration information.

Section 4 shows techniques to achieve runtime configuration.

Section 5 outlines some use cases and experiments. Section 6

concludes the paper and discusses the future work.

II. MOTIVATION AND RELATED WORK

A. Motivation

To analyze the challenges of the configuration for complex

cloud services in multi-cloud environments, let us consider a

Machine-to-Machine Data as a Service (M2MDaaS) whose

structure is depicted in Figure 1. In this service, serveral

Gateways receive sensoring data from numerous Sensors, and

then aggregate and send the data to the M2MDaaS which

includes several services. The Event Processing analyzes the

data and stores the results into the Data End. The data can be

transferred via a Message Oriented Middleware to guarantee

the performance. These service units are hosted on virtual

machines across different cloud systems with various APIs.

2014 IEEE 6th International Conference on Cloud Computing Technology and Science

978-1-4799-4093-6/14 $31.00 © 2014 IEEE

DOI 10.1109/CloudCom.2014.99

146

Fig. 1: Illustrative configuration complexity for the M2MDaaS service

Gateways, Sensors and M2MDaaS need to be deployed to

several types of cloud resources provided by different IaaSs.

This clearly requires various techniques to deploy and config-

ure different types of software artifacts (e.g., executable sen-

sors, lightweight gateway platforms, and heavyweight cloud

service units). At runtime, data generated from sensors can

change over time due to various conditions, such as the need

to increase the number of sensor instances and the frequency

of sensor measurements. This requires us to dynamically

(re)configure and (re)deploy some software, including cloud

service units, in different clouds.

For such scenarios, we need solutions for automatic config-

uring complex cloud services at multiple levels of abstraction

that can work with different cloud infrastructures:

• Deploying diverse types of cloud services on hetero-

geneous environments requires extensible configuration

functionalities that can interface to different underlying

technologies and infrastructures.

• Configuring cloud services in different levels, such as

executables, OS containers, service containers, and Web

services, requires an extensive knowledge management

about configuration capabilities, dependency analysis, and

how to enact these capabilities at runtime.

Such solutions are needed not only for simplifying the de-

ployment and configuration effort of the user (software devel-

oper and provider), but also for automatic software operation

management tools (such as elasticity controllers [3], [4]).

Although several tools and techniques have been developed for

cloud deployment (see them in Section II-B), they are mostly

developed for the end user and for single software stacks in

single cloud environments. Therefore, we need a framework

to support the configuration of the whole cloud service at both

the deployment time and runtime, on multi-cloud systems and

at different levels. Essential requirements for this framework

are: (i) a novel model to represent configuration requirements

of complex services, (ii) techniques to centrally manage con-

figurations, (iii) integration with existing tools for executing

complex configuration tasks in different environments.

B. Related work

The challenge of managing component diversity is ad-

dressed by a number of configuration management tools,

e.g. Chef [1], CFEngine [11], Puppet [6]. TOSCA [12],

CloudMF [13] and c-Eclipse [14] are the advanced tools

that support the description and configuration of complex

topologies. Oracle Virtual Assembly Builder [15] simplifies

the configuration of multi-layer applications by packing com-

ponents into VM appliances. Antonis et al. in [16] presented

an architecture to capture the application deployment lifecycle.

However, these works require low level information for all the

components that take a lot of user’s efforts and reduce the

portability of cloud services.

The challenge of configuration dynamicity is dealing with

the provisioning of configuration functionalities at runtime.

Rui Han et al. in [7] introduce a platform for dynamic

deployment and scaling cloud applications. Calheiros et al.

in [17] introduce a framework that provisions resources from

different sources and supports different application models.

These solutions limit to the cloud resources level. In our work,

by integrating other tools, we can configure cloud services

dynamically at runtime, and not only at the cloud resource

but also at application levels.

Krzysztof et al. in [18] introduce an approach of incorpo-

rating Domain Specific Languages(DSL) into the process of

developing and deploying applications. Meriem et al. in [19]

propose a deployment model to manage the dependencies for

software components for the deployment. Binz et al. in [12]

show approach to use TOSCA to resolve the dependencies of

the cloud service. These models only support dependencies at

the deployment time while our solution aims to resolve the

dependencies also at runtime.

The challenges of orchestration of application topology

have been observed in a number of tools, such as Juju [20],

SlipStream [2], Brooklyn [21] which support the configuration

of the application topology at the virtual machine level and

support user to perform the configuration of all software stacks

via scripts or their languages. Jacek Cala et al. in [9] introduce

147

Fig. 2: The complexity of multi application levels and multi deploy-
ment stacks

an automatic deployment framework for Azure cloud platform.

Gideon Juve et al. in [8] discussed about a deployment

service which is able to handle complex dependencies and

supported multiple clouds. Caballer et al. in [22] present a

platform for dynamic management of virtual infrastructure

using Ansible [23]. These solutions aimed to orchestrate

virtual machine environments, while our solution aims to give

fine-grained orchestration on different levels.

III. MULTI-LEVEL CONFIGURATION INFORMATION OF

CLOUD SERVICES

A. Configuration capabilities at multiple application levels

To understand the need to support multi-level configuration

of cloud services, we need to examine the complex structure

of today’s cloud services. As presented in [3], a cloud service

can be decomposed into services topologies and service units

(Figure 2(a)). Service units represent individual software or

cloud offering services, and can be grouped in a service

topology for semantically connecting and to enable more

complex configuration tasks. A service instance represents a

running service unit with its associated runtime information.

This generic model can be used to represent different kinds of

cloud applications/systems.

In order to support the configuration of such cloud services,

each level of the cloud service must be able to expose

configuration capabilities that indicate the type of available

operations at the service deployment time or at runtime, which

can affect the properties of that service. Figure 2(b) shows the

categories of configuration operations as follows:

• The primitive operations abstract the core con-

figuration actions of service units. Depending on the de-

ployment stacks, the primitive operations are enforced by

different methods, e.g. virtual machine can be configured

via cloud providers’ APIs, executables and libraries can

be configured via scripts.

• The complex operations represent the composition

of multiple primitive operations or other complex opera-

tions, that allows the service units to cooperate together.

This enables complex configuration tasks, but still keeps

the loosely-coupled relationships between these service

units. For example, to migrate a web server from one

cloud provider to another, we not only need to create new

web server and move the data to the new place, but also

allocate new VMs and configure the network for them.

Being able to capture these configuration capabilities at dif-

ferent software levels will enable a higher granularity of

configuration, where users can manage their cloud services

in a finer-grained manner.

B. Deployment relationships at multiple software stacks

For the above-mentioned cloud services, we need to sup-

port multiple deployment stacks, providing loosely-coupled

configuration capabilities for different types of service units

and artifacts. Thus, we can provision dependent services by

an independent manner. We classified the deployment stacks

that reflect the dependencies and mechanisms for configuring

these services. Figure 2(c) shows the stacks we defined in our

framework:

• Virtual machine (VM) provides an environment for

running software components. This stack is provisioned

by IaaS providers.

• Application container is an application that pro-

vides a generic environment for running other applica-

tions, such as Docker [24], Vagrant [25], Karaf [26].

• Web container provides an environment for running

web applications, such as Tomcat [27], JBoss [28].

• Application represents the applications which run on

top of a virtual machine or a container, for example a web

service or a Java executable application.

Different parts of the cloud service structure need to be

configured to work properly, which are represented by rela-

tionships between service units. As the dependencies can be

varied, we distinguish among the following relationship types:

• The vertical relationships captures the rela-

tionships among a unit and other units hosted by that

unit. The hosting instance must be ready before deploying

dependent units, e.g. a web service and a web container.

• The horizontal relationships show that a ser-

vice unit is needed for another to operate properly, for

example a web service which needs a load balancer

for directing requests. The service units with horizontal

relationship usually connect to each others via network.

• The local relationships among units show that

we need to deploy those service units on the same hosting

service instance, such as two services run on a same VM.

These categories allow us to manage different types of

software in more structured way during runtime.

C. Capturing configuration capabilities and software depen-

dencies

In order to configure these diverse types of services with

various types of operations, we need to capture the con-

figuration capabilities and provide a unified way to access

them. In Figure 3, we capture the configuration capabilities

on multiple service levels. Moreover, the association among

service units can be represented by the relationships between

their configuration capabilities. For example, a web container

148

Fig. 3: Model of configuration capabilities

has a capability to increase its memory resources, which

means we need the hosting VM to extend its RAM. At

the service topology level, configuration capabilities reflect

the interactions between service units that provide complex

operations. For example, to scale out a master-slave topology,

we need to capture the capabilities of deploying new slave

service instances and the add-new-slave operations from the

master.

The configuration capabilities can be captured via a service

registry or by users who specify the service. The model in

Figure 3 can be interfaced with different service registries, then

an implementation for performing the configuration can be

referred depending on the mechanisms or types of the service.

In the case that multiple mechanisms are available, we can

select the appropriate one by the inputs, e.g., for a more secure

configuration, a specific mechanism is applied. To associate

different configuration capabilities, each of them has a list of

dependencies, which link to other configuration capabilities of

other services.

IV. RUNTIME SERVICE CONFIGURATION IN MULTI-CLOUD

ENVIRONMENTS

Based on inputs containing cloud service structures, config-

uration capabilities and underlying cloud software infrastruc-

tures, at runtime, for dynamic configuration of cloud services,

several activities are performed. Figure 4 shows the detailed

flows of configuring different stacks. The configuration ca-

pabilities can be captured at the cloud service and service

topology level, which includes multiple service unit configu-

ration tasks. For each service unit, a service unit orchestrator is

generated for handling the task. We separate the configuration

process for VM level from that for other software levels. When

creating a new VM, a bootstrap script and a client are run

to configure the environment and respectively to support the

configuration of higher software levels. In the following, we

will discuss some steps in Figure 4.

A. Generating the deployment topology

Users, when describing their cloud service, do not know

the complex details of the whole service at runtime. For each

service unit, users define (i) artifacts for the configuration

capabilities and (ii) configuration parameters. However, this

description still misses the information regarding where to de-

ploy the service units, and how to configure the dependencies,

or what is the optimal configuration of cloud resources. For

example, when we need a library which requires a specific

VM, the information of suitable VM image and VM type need

to be generated.

Fig. 4: General flow of configuring cloud services

The heterogeneous service unit types and relationship types

in multi-cloud environments bring challenges in resolving

dependencies and require a base representational model to

deal with the problem. Studies in [12], [13], [19], [29]

proposed service unit models for resolving dependencies for

cloud services. These models focus on relationships between

service units at the deployment time but not during runtime. In

our solution, we associate the configuration capability model

(Figure 3) to the service unit model, so that relationships

between service units can be determined by the dependencies

of their configuration capabilities.

Figure 5 illustrates the process of generating configuration

information for a service unit. The meta information contains

abstract nodes which define generic service unit types, which

can have several implementation nodes for particular artifacts.

In order to perform this process, we based on two analyses:

• Generate information of service units with appropri-

ate configuration capabilities. For example, the Increase

Heap capability requires the VM scale up capability,

which can be enforced by Flexiant VM.

• Generate information of service units for performing the

configuration capabilities. For example, the mechanism of

deploying the Service unit A requires some dependency

packages, and a VM to hosted all of them.

Due to the fact that the dependencies are generated for

each configuration capability, the configuration detail of cloud

services contains information for both deployment time and

runtime. By this, not only the deployment but also the runtime

configuration can de done without changing the environment.

B. Orchestrating service configurations

At the deployment time, the configuration orchestration

initiates the service topology on different cloud resources. At

runtime, it connects the newly-deployed service units with

the already running cloud service units. To deal with the

configuration of complex topologies, some studies considered

the performance of cloud services, e.g. [8], [30], [31]. In

149

Fig. 5: Example of the generation of one service unit

Fig. 6: Greedy orchestration process

our work, we build a generic mechanism based on a greedy

approach to support finer-grained orchestration processes. In

the future, better orchestration algorithms can be designed

based on this and embedded within our framework.

Our greedy mechanism uses the cooperation of one cloud

service orchestrator and multiple service unit orchestrators

(Figure 6). From the generated cloud service configuration

(in Section IV-A), we assigned each service unit to a service

unit orchestrator which runs independently and interacts with

the cloud service orchestrator. Each service unit orchestrator is

aware of the conditions for the configuration operation and per-

forming the assigned actions. The cloud service orchestrator

manages service unit states and maintains a shared information

space containing service units configuration information. By

updating states and receiving commands from the cloud ser-

vice orchestrator, service unit orchestrators can individually

perform the tasks in the correct order.

C. Placing service units at runtime

To support the high level of configuration, we consider that

users will not care about where to deploy and how to configure

Fig. 7: Illustration of placement cases

service units. In many cases, a set of service units can be

deployed on top of another service instance for sharing the

resources and runtime environment. A placement strategy is

used to decide where to deploy a new service units on the

running cloud service or cloud system. Our framework allows

to plug-in different placement strategies based on different

deployment stacks. While the placement problem on top of

cloud systems and on top of VMs are addressed by many

studies [32]–[34], our framework integrates different strategies

on different deployment stacks.

In our work, we use two mechanisms for the placement.

First, we specify the maximum number of service instances

can be hosted by another service instance, for example one VM

can host multiple java applications but only one web server.

Second, we specify thresholds for resources of the VM and

use a monitoring system to evaluate the resource usage if it

is over the threshold in order to decide the placement. On

a new deployment, a service unit orchestrator (Section IV-B)

will search for an available hosting service instance that still is

able to host a new instance of the assigned service unit. If no

suitable hosting service instance is found, the cloud service

orchestrator will trigger a new deployment of the hosting

service unit. Figure 7 illustrates the placement during several

scaling out operations. The instances of the service unit A3

are deployed on the application container C2 and all of them

are hosted on VMs across several cloud providers. At runtime,

we can decide either deploy the A3 on an existing container

or on a new one depending the status of existing containers.

D. Managing configuration states

The cloud service configuration orchestrator needs to know

the state of configuration tasks to trigger appropriate actions

and manage service unit orchestrators. To manage the con-

figuration state at multiple levels, we use a state aggregation

algorithm to retrieve the states on the cloud service structure

and deployment stacks. We identify the following configura-

tion states: error(1), allocating(2), staging(3), configuring(4),

deployed(5) and running(6). The state of a service instance is

the progress of its configuration task. For the state aggregation,

the states of a service will be the smallest state of services on

lower level and stack. For example, a service unit has a service

150

Fig. 8: SALSA’s architecture

instance is in configuring state and the others are in running

state, the whole service unit will be in the allocating state. If

that service instance are hosted on another, the state of that

hosting instance is set to configuring.

V. SALSA ARCHITECTURE

A. Overview

We have implemented SALSA2 to support the multi-level

configuration functionalities, of which the architecture is

shown in Figure 8. SALSA comprises three main building

blocks: (i) The Central Configuration Service is for orches-

trating the configuration operations, (ii) Local Configurators

perform tasks on top of deployment stacks by following the

instruction from the Central Configuration Service, and (iii) the

Information Services maintain the knowledge for generating

the configuration plan and mapping with the external artifact

repositories.

Users interact with the framework via Configuration APIs.

To enrich configuration information, the Configuration Gen-

erator queries the Information Services to generate the full

configuration details. As described in Section IV-A, it gener-

ates new nodes from the Node Type Dependency Graph, then

adds the configuration capabilities and artifacts for software

from Artifact Metadata Service and cloud resources form the

Cloud Ecosystem Information. The artifact meta-information

2Prototype and supplement materials: http://tuwiendsg.github.io/SALSA

refers to real artifacts which are stored in External Repositories

(e.g GitHub3 and Chef Community4).

The Topology Orchestrator orchestrates configurations of

multiple service units and service topologies using the greedy

mechanism presented in Section IV-B. The Cloud Configura-

tors and Local Configurators utilize different tools in order

to deal with different cloud providers and application types.

At the bootstrapping of a new spawned VM, we use cloud-

init [35] to start the Local Configurator. The VM Monitoring

Agent monitors different stacks of cloud services, which is

integrated with the Elasticity Monitoring and Analysis [36].

B. Integration with multiple cloud infrastructures

Beside the core components, SALSA uses external tools

and services to perform the actual configuration operations,

increasing the extendability of the framework by exporting

the configuration actions to different output formats and call

the external tools.

The Cloud Configurator allows SALSA to plug in different

cloud drivers for connecting to different cloud infrastructures.

These cloud drivers also map the cloud specific APIs to

the service unit’s configuration capabilities depending to the

services of the providers. We implemented the Openstack

connector using JClouds [37] and some specific cloud APIs

from cloud providers like StratusLab5 and Flexiant6.

The Local Configurator wraps the functionalities of dif-

ferent software configuration tools and maps them on the

configuration capabilities of service units. By manipulating

the VM environment, the Local Configurator uses the existing

local package management tools (e.g. apt-get, yum, gem,

pip) or setups and uses higher level tools (e.g. Chef). We

also implemented a plug-in mechanism that allows the Local

Configurator to work in different infrastructures. Depending

on the nature of the tools, we have different ways to fetch the

artifacts for them from External Repositories.

VI. ILLUSTRATING EXAMPLES AND EXPERIMENTS

We use the M2MDaaS service described in Section II-A to

show how SALSA is used to provide fine-grained configura-

tion capabilities. We use following the cloud systems: (i) Our

private cloud with OpenStack7, (ii) the LAL site of StratusLab

and (iii) the Flexiant public cloud infrastructure.

A. Simplifying complex configuration management

For starting a configuration process of a complex cloud

service, the service provider defines the cloud service topology

and its artifacts. We use TOSCA [12] to specify cloud service

structures as it supports to define topology and different

node types. Figure 9 shows an example of a TOSCA-based

cloud service structure information. In this description, the

3GitHub. https://github.com/
4Chef Community. http://www.getchef.com/community/
5StratusLab. http://stratuslab.eu
6Flexiant. http://www.flexiant.com
7OpenStack. http://www.openstack.org/

151

Fig. 9: Example of input and runtime information in TOSCA

Fig. 10: Screenshot of configuration of the DaaS service

user defined two node templates: the DataController and the

DataNode, which represent two service units.

To be able to deploy and configure the above cloud service,

SALSA analyzed the user input, queried the missing configu-

ration from the Information Services and produced a complete

service configuration. For example, in order to host and run

the Data Node, SALSA generated the dependency nodes, such

as nodes for jre and Cassandra8 packages, then a VM node

which includes the provider name, the VM type and a base

image (Figure 9(a)). The relationships connecting new nodes

are generated. The configuration of the VM is determined

by analyzing the properties of all the software on top of it.

Some service units can expose their properties to be used

during the configuration of other service units, such as the

Data Controller exposed its IP (Figure 9(b)).

At runtime, service providers can interact with the cloud

services via a user interface (shown in Figure 10) by triggering

their configuration capabilities. The user interface also shows

runtime information of service instances and the states of

8Cassandra. http://cassandra.apache.org/

configuration operations.

B. Dealing with configuration in multiple clouds

1) Multiple clouds settings: When configuring cloud ser-

vices on multi-cloud systems, we face the problem of hetero-

geneous environments, which limits the ability of configuring

one artifact over multiple clouds. We examined several ways to

configure an artifact: (i) one package that includes all depen-

dencies and can only be deployed on a specific environment,

(ii) a script that can be executed on any version of the same

operating system, and (iii) a description that is defined using

the model in Section III-C which SALSA can support to

generate dependencies at deployment time (A, B and C in

Table I).

Table I shows a comparison between these configuration

possibilities. SALSA supports in choosing the low level de-

pendencies regardless of the cloud environments, which will

increase the options in configuring one service in heterogene-

ous cloud environments.

2) Evaluating configuration time of multiple service units:

We use SALSA to configure a number of the sensor clients

of M2MDaaS (Figure 1) on two cloud systems: (i) our private

cloud of OpenStack with m1.small VM type (1 CPU, 2GB

RAM) and (ii) Flexiant with small VM type (1 CPU, 1GB

RAM). Each VM is set to host maximum 30 sensor clients.

By using SALSA, we performed two tests. In the first test, we

measure the configuration time of the whole stacks including

spawning VMs, configuring environment and execute the

sensor client artifacts. In the second test, we undeployed the

sensor clients from the first test and keep the VMs running,

then deployed the same number of sensor clients on top of

existing VMs. We tested both cases with incremental number

of sensors which the number of VMs is also increased. We

defined the number of sensors to be deployed and undeployed,

and SALSA determined number of VMs automatically.

Figure 11 shows the result of these tests. Because each test

was executed on multiple VMs, we annotated the chart with

the times of the last finished VM. Obviously, configuring only

the application stack is faster than the whole stacks. While

adding and removing VMs for dynamic services is slower,

SALSA reserved the running VMs for the new sensors to

be deployed later. Thus, the time for provisioning dynamic

services is reduced.

We also notice that the number of instances have more

impact on the private Openstack cloud and less on the Flexiant

cloud. For the case of the configuration of the whole stacks,

our OpenStack private cloud took a longer time to deploy more

sensors because it needed more time to spawn VMs simulta-

neously, while Flexiant was better in spawning multiple VMs

at a same time. In the second case, the time to deploy different

number of sensors are more fixed as all the VMs received the

same workload of 30 sensors. The time for OpenStack slightly

increased due to the high workload of SALSA orchestration

process, which did not happen for Flexiant as the Flexiant

VMs completed tasks slower. Although the configuration time

152

Images
Provider’s

available images

Configuration

possibilities

OS Ver. (1) (2) (3) (A) (B) (C)

Ubuntu

14.04
13.04
12.10
12.04

Yes
Yes
Yes

-

Yes
-
-

Yes

Yes
-

Yes
-

1 12

80

Centos

6.5
6.3
6.2
6.0

Yes
-
-

Yes

Yes
-

Yes
-

Yes
Yes

-
-

1 8

Total number of configurations 2 20

(1) OpenStack (2) Flexiant (3) StratusLab

(A) Package (B) Script (C) SALSA input

TABLE I: Comparison of config. possibilities on multiple clouds

Fig. 11: Time for provisioning sensor clients

of Flexiant is longer, the stability shows that this cloud system

is more suitable for IoT applications.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we introduced a framework to support the

automatic configuration of complex cloud services on multi-

cloud environments. We show that our SALSA framework

can simplify the complexity of multi-level configurations and

deployments for cloud services.

In our future work, we will extend our framework with

further optimization features. First, it is important that we im-

prove the placement strategy for discovering suitable deploy-

ment targets. Second, we will be optimizing cloud resources

selection at runtime. In order to achieve those, we need to

analyze runtime information of cloud services and integrating

some optimization algorithms to SALSA.

REFERENCES

[1] Chef. http://www.getchef.com/.
[2] SlipStream. http://sixsq.com/products/slipstream.html.
[3] G. Copil, D. Moldovan, H.-L. Truong, and S. Dustdar, “Multi-level

elasticity control of cloud services,” in Service-Oriented Computing, ser.
Lecture Notes in Computer Science, S. Basu, C. Pautasso, L. Zhang, and
X. Fu, Eds. Springer Berlin Heidelberg, 2013, vol. 8274, pp. 429–436.

[4] R. Han, L. Guo, M. Ghanem, and Y. Guo, “Lightweight resource scaling
for cloud applications,” in 12th IEEE/ACM International Symposium on

Cluster, Cloud and Grid Computing, 2012, May 2012, pp. 644–651.
[5] Google Cloud Deployment Manager. http://goo.gl/vksPCP.
[6] Puppet. http://puppetlabs.com/.
[7] R. Han, L. Guo, Y. Guo, and S. He, “A deployment platform for

dynamically scaling applications in the cloud,” in Cloud Computing

Technology and Science (CloudCom), 2011 IEEE Third International

Conference on, Nov 2011, pp. 506–510.

[8] G. Juve and E. Deelman, “Automating application deployment in
infrastructure clouds,” 4th IEEE International Conference on Cloud

Computing Technology and Science Proceedings, pp. 658–665, 2011.

[9] P. W. Jacek Caa, “Automatic software deployment in the azure
cloud,” in Distributed Applications and Interoperable Systems, Ams-
terdam,Sumtech The Netherlands, Jun. 2010, pp. 155–168.

[10] H.-E. Yu, Y.-L. Pan, C.-H. Wu, H.-S. Chen, C.-M. Chen, and K.-Y.
Cheng, “On-demand automated fast deployment and coordinated cloud
services,” in 5th IEEE International Conference on Cloud Computing

Technology and Science (CloudCom 2013), 2013.

[11] CFEngine. http://cfengine.com.

[12] T. Binz, G. Breiter, F. Leyman, and T. Spatzier, “Portable cloud services
using tosca,” Internet Computing, IEEE, vol. 16, pp. 80–85, May 2012.

[13] N. Ferry, F. Chauvel, A. Rossini, B. Morin, and A. Solberg, “Managing
multi-cloud systems with CloudMF,” in Proceedings of the Second

Nordic Symposium on Cloud Computing, 2013, Internet Technologies,
ser. NordiCloud ’13. New York, NY, USA: ACM, 2013, pp. 38–45.

[14] C. Sofokleous, N. Loulloudes, D. Trihinas, and G. P. M. Dikaiakos, “c-
eclipse: An open-source management framework for cloud applications,”
in Europar, 2014.

[15] Oracle Virtual Assembly Builder. http://goo.gl/neRgdg.

[16] K. M. Antonis Papaioannou, “An architecture for evaluating distributed
application deployments in multi-clouds,” in 5th IEEE International

Conference on Cloud Computing Technology and Science, 2013, 2013.

[17] R. N. Calheiros, C. Vecchiola, D. Karunamoorthy, and R. Buyya,
“The Aneka platform and qos-driven resource provisioning for elastic
applications on hybrid clouds,” Future Gener. Comput. Syst., vol. 28,
no. 6, pp. 861–870, Jun. 2012.

[18] K. Sledziewski, B. Bordbar, and R. Anane, “A dsl-based approach to
software development and deployment on cloud,” in Advanced Informa-

tion Networking and Applications (AINA), Apr. 2010, pp. 414–421.

[19] M. Belguidoum and F. Dagnat, “Dependability in software component
deployment,” in 2nd International Conference on Dependability of

Computer Systems, ENST Bretagne, Brittany, Jun. 2007, pp. 223–230.

[20] Juju. https://juju.ubuntu.com/.

[21] Brooklyn. http://brooklyncentral.github.io.

[22] M. Caballer, I. Blanquer, G. Molt, and C. de Alfonso, “Dynamic
management of virtual infrastructures,” Journal of Grid Computing, pp.
1–18, 2014.

[23] Ansible. http://www.ansible.com.

[24] Docker. https://www.docker.com/.

[25] Vagrant. http://www.vagrantup.com/.

[26] Karaf. http://karaf.apache.org/.

[27] Tomcat. http://tomcat.apache.org/.

[28] JBoss. http://jbossas.jboss.org/.

[29] N. Ferry, A. Rossini, F. Chauvel, B. Morin, and A. Solberg, “Towards
model-driven provisioning, deployment, monitoring, and adaptation of
multi-cloud systems,” in Proceedings of the 2013 IEEE Sixth Interna-

tional Conference on Cloud Computing, ser. CLOUD ’13. Washington,
DC, USA: IEEE Computer Society, 2013, pp. 887–894.

[30] A.-F. Antonescu, P. Robinson, and T. Braun, “Dynamic topology orches-
tration for distributed cloud-based applications,” in Second Symposium

on Network Cloud Computing and Applications (NCCA), 2012, Dec
2012, pp. 116–123.

[31] H. Kim, Y. el Khamra, I. Rodero, S. Jha, and M. Parashar, “Autonomic
management of application workflows on hybrid computing infrastruc-
ture,” Sci. Program., vol. 19, no. 2-3, pp. 75–89, Apr. 2011.

[32] F. Diaz, S. A. Zahr, and M. Gagnaire, “An exact placement approach
for optimizing cost and recovery time under faulty multi-cloud envi-
ronments,” in 5th IEEE International Conference on Cloud Computing

Technology and Science (CloudCom 2013), 2013.

[33] F. Chang, R. Viswanathan, and T. Wood, “Placement in clouds for
application-level latency requirements,” in Cloud Computing, 2012 IEEE

5th International Conference on, 2012, pp. 327–335.

[34] F. Charrada, N. Tebourski, S. Tata, and S. Moalla, “Approximate
placement of service-based applications in hybrid clouds,” in Enabling

Technologies: Infrastructure for Collaborative Enterprises (WETICE),

2012 IEEE 21st International Workshop on, June 2012, pp. 161–166.

[35] Cloud-Init. http://cloudinit.readthedocs.org/.

[36] D. Moldovan, G. Copil, H.-L. Truong, and S. Dustdar, “Mela: Monitor-
ing and analyzing elasticity of cloud services,” in Cloud Computing

Technology and Science (CloudCom), 2013 IEEE 5th International

Conference on, vol. 1, Dec 2013, pp. 80–87.

[37] JClouds. https://jclouds.apache.org.

153

